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Geometric HoTT: Review

Definition

A geometric ∞-groupoid is an ∞-sheaf on some (∞, 1)-site of
“geometric spaces”.

Definition

An (∞, 1)-site is a small (∞, 1)-category C equipped with an
accessible left exact localization of [[[Cop,∞Gpd]]].
The local types are the (∞, 1)-sheaves.
The category of (∞, 1)-sheaves is a Grothendieck (∞, 1)-topos.

We want to interpret type theory in the (∞, 1)-topos of geometric
∞-groupoids, or more generally in any (∞, 1)-topos.



Modeling type theory in higher toposes

syntactic type theory
contextual categories/

categories with families/
natural models/. . .

Quillen model categories

(∞, 1)-categories

(1)

(2)

(3)

1 is the “initiality principle”: lots of bookkeeping that should be
written out more systematically, but is undoubtedly true.

2 is a coherence theorem: Voevodsky “global universes”,
Lumsdaine–Warren “local universes”, etc.

3 · · ·



Modeling homotopy type theory in simplicial presheaves

Present an (∞, 1)-topos as a left exact left Bousfield localization
LS[[[C op,S ]]] of the injective model structure on simplicial presheaves
over some small simplicial category C .

Theorem

Any left exact localization LS[[[C op,S ]]] admits the necessary
structure to model homotopy type theory with:

• Σ-types, Π-types, and identity types.

• Strict univalent universes, closed under the above.

• Pushouts, localizations, W -types, and other HITs.

Corollary

We can interpret most of homotopy type theory in any Grothendieck
(∞, 1)-topos.

(Closure of the universes under HITs is work in progress.)
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Sketch of proof I: type formers

1 Cofibrations in LS[[[C op,S ]]] are the monos, hence
pullback-stable.

2 LS[[[C op,S ]]] is right proper: w.e.s pullback-stable along
fibrations.

3 ∴ acyclic cofibrations are pullback-stable along fibrations.
Can interpret identity types by path objects (Awodey–Warren).

4 LS[[[C op,S ]]] is locally cartesian closed.

5 ∴ fibrations and acyclic fibrations are closed under dependent
product along fibrations. Thus we can interpret Π-types.

6 Interpret Σ-types by composing fibrations.

7 Interpret HITs by mixing fibrant replacement with free algebras
constructions (Lumsdaine–S.).

This has all been known for some years.



Sketch of proof II: injective fibrations

The injective fibrations are, by definition, the maps having the right
lifting property with respect to all pointwise acyclic cofibrations.
But this is unhelpful for constructing a universe in general.

Lemma

A pointwise fibration f : X � Y in [[[C op,S ]]] has a relative
pseudomorphism classifier Rf → Y and a natural bijection between

1 (Strict) natural transformations A→ Rf .

2 Homotopy coherent transformations A X such that the
composite A X → Y is strict.

Lemma

f : X → Y in [[[C op,S ]]] is an injective fibration if and only if

1 it is a pointwise fibration, and

2 the canonical map X → Rf has a retraction over Y .
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Sketch of proof III: Presheaf universes

Define a semi-algebraic injective fibration to be a pointwise fibration
equipped with a retraction of X → Rf .

Lemma

In [[[C op,S ]]], a universe can be “defined” by

U(c) =
{

small semi-algebraic injective fibrations over C (−, c)
}
.

• Choose an inaccessible cardinal to define “small”

• Need to choose iso representatives, etc., to strictify

• Semi-algebraicity ensures fibrations can be glued together to
make a universal one over U.



Sketch of proof IV: Sheaf universes

Lemma

Any accessible left exact localization of [[[C op,S ]]] induces an
accessible lex modality in its internal type theory.

Proof.

By Anel–Biedermann–Finster–Joyal (2019, forthcoming), we can
present it by localization at a family that remains lex on pullback to
all slice categories.

Lemma (Rijke–S.–Spitters)

If ♦ is an accessible lex modality in type theory, then
U♦ :=

∑
X :U IsModal♦(X ) is ♦-modal.



Modeling type theory in higher toposes

Corollary

We can interpret most of homotopy type theory in any Grothendieck
(∞, 1)-topos.



Modeling [ in higher toposes

Let C be a 1-site with a terminal object, and E = LS[[[C op,S ]]].
Then we have an adjoint quadruple:

E

S

p?p! p? p#

p!(A) = colimX
p?(A) = the constant presheaf at A
p?(X ) = limX = X (1)
p#(A)(c) = AC (1,c)

p? and p# are fully faithful, & have a map p? → p#.
p? preserves cofibrations and w.e.s, so p? a p? is Quillen.
p?p? doesn’t preserve fibrations: fibrantly replace it to get [.



A disclaimer

Unlike for ordinary type theory, the precise categorical semantics of
modal dependent type theories, and its relation to Quillen model

categories (including coherence theorems), is still work in progress
by various people.

What I’m presenting here is an informal sketch of aspects of Quillen
model category theory that I think are likely to figure importantly in

that semantics when it is fully developed, and that can help to
motivate the rules of modal type theory for a homotopy theorist.



Modeling ] in higher toposes

E

S

p?p! p? p#

p!(A) = colimX
p?(A) = the constant presheaf at A
p?(X ) = limX = X (1)
p#(A)(c) = AC (1,c)

p? always preserves cofibrations. If 1 ∈ C has no nontrivial covers,
then p? preserves weak equivalences, so p? a p# is Quillen.

Thus we get an adjoint triple Lp? a p? a Rp# on (∞, 1)-categories:
a local (∞, 1)-topos.

Now p#p? preserves fibrations; no need for fibrant replacement.
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Spatial type theory

We introduce ] as the “negative dual” of [, analogously to the
adjunction between × and →.

A,B ` C

A× B ` C

A,B ` C

A ` B → C

A | · ` B

· | [A ` C

A | · ` B

· | A ` ]C



]-formation and introduction

A ]A p#p?A

p?p?Γ Γ p#p?Γ = p#p?p
?p?Γ

p?p?∆ p#p?∆ = p#p?p
?p?∆

(−)]

y

∆, Γ | · ` A : Type

∆ | Γ ` ]A : Type

∆, Γ | · ` a : A

∆ | Γ ` a] : ]A

Summary: From “inside” ](−) or (−)], the “outside” cohesive
variables can be treated as crisp.
(Recall: Inside [(−) or (−)[, outside cohesive variables are invisible.)



]-elimination, computation, and uniqueness

A ]A p#p?A

p?p?Γ Γ p#p?Γ = p#p?p
?p?Γ

p?p?∆ p#p?∆ = p#p?p
?p?∆

(−)]

y

p? inverts all the horizontal arrows in this diagram.
Thus p?p?]A ∼= p?p?A→ A, hence x :: ]A ` x] : A, or

∆ | · ` a : ]A

∆ | Γ ` a] : A
(a])

] ≡ a (a])] ≡ a

No fibrant replacement is involved, so both computation and
uniqueness rules can be judgmental.



Comparing [ and ]

Lemma

For any A :: Type, there are natural equivalences

][A ' ]A and [A ' []A.

Proof.

(λy .y][
]) : ][A→ ]A (λx .x]

[]) : ]A→ ][A

(λx .let u[ := x in u][) : [A→ []A

(λy .let v [ := y in v]
[) : []A→ [A

And then some calculation.

Hence ][A ' A when A is codiscrete (A ' ]A),
and []B ' B when B is discrete (B ' [B).



Other facts about spatial type theory

• ] is a left exact monadic modality

• (x ] = y ]) ' ](x = y) for x , y : A.

• [ is a left exact comonadic modality

• (x [ = y [) ' [(x = y) for x , y :: A.

• [([A→ B) ' [(A→ ]B), i.e. [ a ] “crisply”
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Presenting cohesive (∞, 1)-toposes

E

S

p?p! p? p#

p?(A) = the constant presheaf at A.

There’s basically no chance that p! a p? will ever be Quillen.
p?A is almost never injectively fibrant, let alone local.

We could fibrantly replace p?p!X to get sX , but that would clobber
the context. A better solution is to construct it internally.



(∞, 1)-cohesive sites

Definition (Schreiber)

A 1-site is ∞-cohesive if it has an irreducible terminal object, finite
products, and every covering sieve has a contractible nerve.

Lemma

If C is ∞-cohesive, then TFAE for fibrant X ∈ E :

1 X is discrete, i.e. X ' p?p?X.

2 X (U)→ X (V ) is an equivalence in S for any V → U in C .

3 X (1)→ X (V ) is an equivalence in S for any V ∈ C .

4 X (U)→ X (U × V ) is an equivalence in S for all U,V ∈ C .

5 X → (C (−,V )→ X ) is an equivalence in E for all V in some
set of objects that generate C under finite products.

Often C is generated under finite products by one object A1 or R.



Cohesive type theory

Axiom C0

There is a type family Ri such that a crisp type X :: Type is discrete
(i.e. X ' [X ) if and only if it is R-null (i.e. each X → (Ri → X ) is
an equivalence).

We can then construct s by nullifying at R, giving s a [ a ].

Spatial type theory with this axiom has conjectural semantics in
local and stably locally ∞-connected (∞, 1)-toposes,
a.k.a. cohesive (∞, 1)-toposes:

• (∞, 1)-toposes whose global sections geometric morphism
E → S extends to an adjoint string p! a p? a p? a p# where
p! preserves finite products. (Lawvere, Johnstone, Schreiber)

• Categories of “geometric ∞-groupoids” locally modeled on a
good class of “geometrically contractible” spaces.
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Real-cohesive homotopy type theory

Continuous ∞-groupoids = sheaves on the site C = {Rn} of
cartesian spaces, continuous maps, and open covers.

• Models cohesive type theory

• Generated under products by R ∈ C

• The representable C (−,R) is also the Dedekind real numbers
object in E .

Axiom R[

A crisp type X :: Type is discrete (i.e. X ' [X ) if and only if it is
R-null (i.e. X → (R→ X ) is an equivalence), where R is the
Dedekind real numbers.



Other kinds of cohesion

Axiom C1

Axiom C0 + for all i we have an element ri : Ri .

This implies (and should be semantically equivalent to)
punctual local contractibility: [A→ sA is surjective.

Axiom C1

Axiom C1 + some Ri0 is a set and has r0, r1 : Ri0 with r0 6= r1.

This implies (and should be semantically equivalent to)
contractible codiscreteness: s]A ∼= ‖A‖ for crisp A.
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Real-cohesive homotopy type theory

constructive
analysis

synthetic
homotopy theory

s

information



Brouwer’s fixed-point theorem (classical version)

Theorem

Any continuous map f : D2 → D2 has a fixed point.

Proof.

f (z)

r(z)

z

Suppose f : D2 → D2 has no fixed point.
For any z ∈ D2, draw the ray from f (z)
through z to hit ∂D2 = S1 at r(z). Then r is
continuous, and retracts D2 onto S1. Hence
π1(S1) = Z is a retract of π1(D2) = 0, a
contradiction.



The real-cohesive version, first try

We work in real-cohesive HoTT, with sR = 1, hence sS1 = S1.

Theorem

Any function f : D2 → D2 has a fixed point.

Attempted proof.

f (z)

r(z)

z

Suppose f : D2 → D2 has no fixed point.
For any z : D2, draw the ray from f (z)
through z to hit ∂D2 = S1 at r(z). Then r
retracts D2 onto S1. Hence sS1 is a retract
of sD2. But D2 is a retract of R2, hence sD2

is contractible, while sS1 = S1, which is not
contractible.
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Problems

There are two problems with this:

1 It’s a proof by contradiction of a positive statement: the sort
that’s disallowed in constructive mathematics. But cohesive
homotopy type theory is incompatible with excluded middle.

2 Even disregarding that, the assumption “f has no fixed point”
tells us only that f (z) 6= z for all z , whereas constructively, in
order to draw the line connecting two points we need them to
be apart (have a positive distance), not merely unequal.



Classicality axioms for cohesion

Flat excluded middle ([LEM)

For all P :: Prop we have P + ¬P.

“We can use proof by contradiction on crisp propositions.”

Analytic Markov’s Principle (AMP)

For x , y : R, if x 6= y then |x − y | > 0.

“Disequality implies apartness.”

Both hold in the topos of continuous ∞-groupoids.



The real-cohesive version, second try

Theorem (Using [LEM and AMP)

Any function f :: D2 → D2 has a fixed point.

Proof.

f (z)

r(z)

z

Given a crisp f , the statement is crisp, so we
may use proof by contradiction. Suppose f
has no fixed point. Then for any z : D2, we
have f (z) 6= z , hence d(z , f (z)) > 0. So we
can draw the ray from f (z) through z to hit
∂D2 = S1 at r(z). Then r retracts D2 onto
S1. Hence sS1 is a retract of sD2. But D2 is a
retract of R2, hence sD2 is contractible, while
sS1 = S1, which is not contractible.

The crisp hypothesis f :: D2 → D2 means the fixed point doesn’t
vary continuously with f .
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Brouwer’s other theorem

Theorem (Using AMP)

Any f :: R→ R is ε-δ continuous at any a :: R.

Idea of proof.

U = { x | |f (x)− f (a)| < ε } V =
{
x
∣∣ |f (x)− f (a)| > ε

2

}
• R = U ∪ V , so sU ts(U∩V ) sV is contractible.

• Let U0 be the “connected component” of a ∈ U, i.e. the set of
points of U that are identified with a in sU.

• Since a ∈ sU0 must be identified with “far away” points of sV

in the pushout sU ts(U∩V ) sV , the set U0 must contain a point
b of V , which is thus apart from a.

• Everything between a and b must be in U, since U0 is
connected. Repeat on the other side of a.



From connectedness to continuity

Corollary (Using [LEM and AMP)

[(R→ R) is the subset of ε-δ continuous functions in [R→ [R.

Real-cohesive homotopy type theory, plus [LEM and AMP,
determines the ε-δ notion of continuity.
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Cohesive type theories

Type Theory Semantics

HoTT ∞-toposes

Spatial HoTT
([ a ])

local ∞-toposes

Cohesive HoTT
(s a [ a ])

cohesive ∞-toposes

Real-cohesive HoTT
(s a [ a ],

s generated by R)

the ∞-topos of
continuous ∞-groupoids

Differential cohesive HoTT
(s a [ a ] and < a = a &)

differential cohesive ∞-toposes

Infinitesimal cohesive HoTT
(s a [ a ] with [ = s = ])

infinitesimal cohesive ∞-toposes

etc. etc.



Modal type theories in general

1 Specify a 2-category M of modes.

2 The “kinds of variables” are, roughly, the morphisms of M .

3 Each morphism of M can induce an adjoint pair of modalities.

Example

For [ a ], take M to have

• One object,

• One nonidentity morphism r ,

• rr = r and η : 1⇒ r , making r an idempotent monad.

• Licata–Shulman, “Adjoint logic with a 2-category of modes”, 2016

• Licata–Shulman–Riley, “A Fibrational Framework for Substructural
and Modal Logics”, 2017

• Licata–Shulman–Riley, “A Fibrational Framework for Substructural
and Modal Dependent Type Theories”, 2019 (forthcoming)
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