
A TYPE THEORY FOR FIBRED FUNCTORS AND

POLYNOMIALS

MICHAEL SHULMAN

1. A dependent type theory with bunches

We have two kinds of types, which we call types and functors. Every type is
a functor (a “constant functor”, although the rules will not impose this), but not
every functor is a type. We will refer to functors that are not known to be types as
nonconstant.

As in Bunched Implication, there are two context-combining operations: an
“additive” monoid structure (written (∆ ; Ψ) with unit {}a) representing dependency,
including the trivial case of cartesian products; and a “multiplicative” monoid
structure (written (∆ ,Ψ) with unit {}m) representing functor composition.

Because we allow dependency, we need these context operations to “happen in any
context”, so we have separate “telescopes” or “dependent contexts”. The additive
combination of contexts is potentially dependent, and hence ordered: in (∆ ; Ψ) we
could have Ψ dependent on ∆. But if it is not dependent, an exchange rule should
be admissible, as are appropriate weakening, contraction, and substitution/cut. The
multiplicative combination of contexts is not dependent: in (∆ ,Ψ) we cannot have
Ψ depend on ∆, though both can depend additively on the same context to the
left. The multiplicative combination has no structural rules (unless you consider
associativity and unitality to be a structural rule) — not even exchange, since
functor composition is not commutative.

Finally, we also distinguish judgmentally those contexts and telescopes that
consist entirely of types combined additively, which play a special role. (They
are the contexts of the “underlying ordinary type theory” that we are enhancing
with functors.) The judgments are shown in Figure 1, along with some probably
admissible rules saying that every type is a functor and similarly for contexts
in Figure 2. The rules for context combinations are shown in Figure 3 and the
judgmental equality rules making these into monoids in Figure 4. In Figure 5 we
give a “variable” rule for additive contexts only; the natural multiplicative variable
rule “x : A ` x : A” (with no ambient context) is a special case of this, since unary
multiplicative contexts are the same as unary additive ones.

Date: April 2018.

Γ ctx Γ typectx Γ ` A type Γ ` F functor

Γ ` ∆ tel Γ ` ∆ typetel Γ ` a : A

Figure 1. Judgments

1

2 MICHAEL SHULMAN

Γ typectx

Γ ctx

Γ ` A type

Γ ` A functor

Γ ` ∆ typetel

Γ ` ∆ tel

Figure 2. Inclusion judgments (probably admissible)

� ctx
Γ ctx Γ ` ∆ tel

(Γ ; ∆) ctx

Γ typectx Γ ` ∆ typetel

(Γ ; ∆) typectx

Γ typectx

Γ ` {}m tel

Γ ctx

Γ ` {}a tel
Γ ctx

Γ ` {}a typetel
Γ ` A functor

Γ ` (x : A) tel

Γ ` A type

Γ ` (x : A) typetel

Γ ` ∆ tel Γ ; ∆ ` Ψ tel

Γ ` (∆ ; Ψ) tel

Γ ` ∆ typetel Γ ; ∆ ` Ψ typetel

Γ ` (∆ ; Ψ) typetel

Γ typectx Γ ` ∆ tel Γ ` Φ tel Γ ; ∆ ` Ψ tel

Γ ; ∆ ` (Φ ,Ψ) tel

Figure 3. Rules for telescopes and contexts

Γ ctx

(Γ ; {}a) ≡ Γ ctx

Γ ` ∆ tel Γ ; ∆ ` Ψ tel

(Γ ; (∆ ; Ψ)) ≡ ((Γ ; ∆) ; Ψ) ctx

Γ ` ∆ tel

Γ ` ({}a ; ∆) ≡ ∆ tel

Γ ` ∆ tel

Γ ` (∆ ; {}a) ≡ ∆ tel

Γ ` ∆ tel Γ ; ∆ ` Ψ tel Γ ; ∆ ; Ψ ` Φ tel

Γ ` (∆ ; (Ψ ; Φ)) ≡ ((∆ ; Ψ) ; Φ) tel

Γ typectx Γ ` ∆ tel Γ ; ∆ ` Φ tel

Γ ; ∆ ` ({}m ,∆) ≡ ∆ tel

Γ typectx Γ ` Φ tel

Γ ` (∆ , {}m) ≡ Φ tel

Γ typectx Γ ` ∆ tel Γ ` Φ tel Γ ` Ψ tel Γ ; ∆ ` Υ tel

Γ ; ∆ ` (Φ , (Ψ ,Υ)) ≡ ((Φ ,Ψ) ,Υ) tel

plus congruence rules

Figure 4. Equality rules for telescopes and contexts

Γ ` A functor Γ, x : A ` ∆ tel

Γ ; x : A ; ∆ ` x : A

Figure 5. Variable rule for additive contexts

Unlike in (the original presentation of) ordinary BI, we make the structural rules
for additive contexts admissible. We also allow multiplicative combination to happen
in an extra additive context, as long as the nonconstant functors in that context

A TYPE THEORY FOR FIBRED FUNCTORS AND POLYNOMIALS 3

Γ typectx Γ ` ∆ tel Γ ` F functor Γ ; ∆ ` G functor

Γ ; ∆ ` F ◦G functor

Γ typectx

Γ ` X functor

Γ typectx Γ ` ∆ tel Γ ` F functor Γ ; ∆ ` G functor

Γ ; ∆ ; (φ : F , ψ : G) ` 〈φ, ψ〉 : F ◦G
Γ typectx

Γ ; {}m ` C : X

Γ(z : X) ` H functor Γ({}m)[C/z] ` θ : H[C/z]

Γ(z : X) ` (letC := z in θ) : H

Γ(z : F ◦G) ` H functor Γ(x : F, y : G)[〈x, y〉/z] ` θ : H[〈x, y〉/z]
Γ(z : F ◦G) ` (let 〈x, y〉 := z in θ) : H

plus computation rules

Figure 6. Rules for multiplicative tensor

are only used on the right-most telescope in the multiplicative combination. This
appears in the last rule in Figure 3. That is, the multiplicative combination satisfies
a sort of “ordered modal context-clearing” with respect to nonconstant functors:
none of them can be used on the left-hand branch.

An analogous restriction appears in the formation and introduction rules for the
multiplicative connectives in Figure 6, which internalize functor composition and
identities. For simplicity, we give the rules in sequent calculus style rather than
building in cuts. We write the binary multiplicative tensor as ◦, thinking of it as
functor composition, and the unary one as X, thinking of it as the identity functor
X 7→ X.

As in ordinary BI, in the elimination rules for X and ◦ we have a context Γ with
a “hole” that gets filled by different things; this is what notation like Γ(z : X) means.
However, dependency makes things a little complicated. When defining the body of
the let-expression and when typing the result, we have to substitute in the rest of
the context that depends on the hole variable as well as in the consequent. (This is
like the “Frobenius” version of the eliminator for identity types; as in that case, it
could probably be eliminated if we had enough function types, but our intended
model does not.) If we built in cuts, then in describing the term being let-destructed
we would have to take account of the part of the context on which it can depend.

The rules for negative additive Σs are shown in Figure 7, again in sequent calculus
style. They basically internalize the additive context combination, except that we
also allow destructing Σs on the left of a multiplicative context join. Note that 1 is
a type, and

∑
x:AB is a type if A and B are.

The rules for additive Πs are shown in Figure 8. We only assert that products of
functors over types exist, while products of types over types are types. Otherwise
there is nothing surprising here. As usual, if F does not depend on A, we write
A→ F instead of

∏
x:AF .

4 MICHAEL SHULMAN

Γ ctx

Γ ` 1 type

Γ ` F functor Γ ; x : F ` G functor

Γ `
∑

x:FG functor

Γ ` A type Γ ; x : A ` B type

Γ `
∑

x:AB type

Γ ctx

Γ ` ? : 1

Γ ` φ : F Γ ` ψ : G[φ/x]

Γ ` (φ, ψ) :
∑

x:FG

Γ ` a : A

Γ ; (u : 1 ,∆) ` (let ? := u in a) : A

Γ, (z :
∑

x:AB ,∆) ` C functor Γ ; x : A ; (y : B ,∆) ` c : C[(x, y)/z]

Γ ; (z :
∑

x:AB ,∆) ` (let (x, y) := z in c) : C

plus computation and uniqueness rules

Figure 7. Rules for additive Σs

Γ ` A type Γ ; x : A ` F functor

Γ `
∏

x:AF functor

Γ ` A type Γ ; x : A ` B type

Γ `
∏

x:AB type

Γ ; x : A ` φ : F

Γ ` λx.φ :
∏

x:AF

Γ ` f :
∏

x:AF Γ ` a : A

Γ ` f(a) : F [a/x]

plus computation and uniqueness rules

Figure 8. Rules for additive Πs

2. Polynomial functors and the Yoneda lemma

The original goal of all this was to be able to use the “functors” and maps between
them to describe the “attaching maps” for constructors of higher inductive types.
The domains of such maps are polynomial functors, which in our theory we can
define in any type context:

Γ typectx Γ ` A type Γ ; x : A ` Bx type

(Γ ; x : A ; y : Bx) typectx

Γ ; x : A ; y : Bx ` X functor

Γ ; x : A ` (Bx → X) functor

Γ `
∑

x:A(Bx → X) functor

The codomains of the attaching maps will be functors obtained (by further yet-to-
be-specified rules) from the “monad associated to the previous constructors”. Thus,
we need to be able to define maps out of polynomial functors.

Internally, a polynomial functor can be thought of as a “coproduct of representable
functors”. Therefore, by the Yoneda lemma, maps from

∑
x:A(Bx → X) to another

functor F should be determined by a family of elements of F (Bx) for each x : A. We
don’t have a notion of “application” of functors to types; instead we just compose a
functor with a type (considered as a constant functor). With this representation,

A TYPE THEORY FOR FIBRED FUNCTORS AND POLYNOMIALS 5

using the rules for ◦ we can derive maps out of polynomial functors from such
“families of elements”. First we have (omitting some variables and terms):

Γ ; x : A ` F ◦Bx

Γ ; x : A ; (Bx → X) ` F ◦Bx

weak
??

Γ ; x : A ; (Bx → X) ; F ◦Bx ` F
Γ ; x : A ; (Bx → X) ` F

cut

Γ ;
∑

x:A(Bx → X) ` F
Σ-left

Here the left-hand premise Γ ; x : A ` F ◦Bx is “a family of elements of F (Bx) for
each x : A” while the conclusion is the map we want. Thus it remains to derive the
right-hand premise.

Γ ; x : A ; F ` F
var

Γ ; x : A ; (Bx → X) ;Bx ` X
Π-app

Γ ; x : A ; (Bx → X) ; (F , Bx) ` F ◦ X
◦-intro

Γ ; x : A ; (Bx → X) ; F ◦Bx ` F ◦ X
◦-elim

Γ ; x : A ; (Bx → X) ; F ◦Bx ` F
unit

The final step is the isomorphism F ◦ X ∼= F , which is proved as usual. Note how
the use of ◦-introduction obeys the restriction that only the right-hand functor can
depend on nonconstant functors in the context.

The setup of section 1, allowing us to nest additive and multiplicative contexts
arbitrarily deeply, may seem like kind of overkill for this simple application. But it’s
actually the easiest way I was able to think of to say exactly what we are allowed
to do with these contexts, in a way that’s flexible enough to permit the above
argument. We do need some nesting: the crucial step above involves the nested
context ((Bx → X) ; (F ,Bx)). And we can’t just separate the type context from the
functor context either, since Bx is a type but has to appear in the functor context.

The setup does allow us to prove other useful things. For instance, since we
allowed eliminating Σs on the left of a multiplicative context, we can show that
they are “objectwise” in the sense that they act on the first functor in a composite.
Given x : A ` Fx functor and ` G functor, one direction is easy:

x : A ; Fx `
∑

x:AFx x : A ;G ` G
x : A ; (Fx , G) `

∑
x:AFx ◦G∑

x:A(Fx ◦G) `
∑

x:AFx ◦G

and the other is somewhat harder:

x : A ; (y : Fx , z : G) ` x : A

y :
∑

x:AFx , z : G ` π1(y) : A∑
x:AFx ◦G ` a : A

y :
∑

x:AFx ` π2(y) : Fa G ` G∑
x:AFx , G ` Fa ◦G∑
x:AFx ◦G ` Fa ◦G∑

x:AFx ◦G `
∑

x:A(Fx ◦G)

6 MICHAEL SHULMAN

It should be straightforward to show that these are inverses. We expect Πs to also
be objectwise, and in one direction we have:

x : A ;
∏

x:AFx ` Fx G ` G
x : A ; (

∏
x:AFx , G) ` Fx ◦G∏

x:AFx ◦G ; x : A ` Fx ◦G∏
x:AFx ◦G `

∏
x:A(Fx ◦G)

but I have not been able to prove the opposite implication, or think of any enhance-
ment of the rules in Figure 8 that would make it possible. It may be necessary
to assert axiomatically that the above definable unidirectional map is an isomor-
phism; I guess this is not hugely surprising given that other axioms like function
extensionality are necessary when working with Πs.

We also have the “non-axiom of choice” for functors. Suppose we are given

Γ typectx

Γ ; x : A ` Bx type

Γ ; x : A ; y : Bx ` Fx,y functor

Then we can form both

Γ `
∏

x:A

∑
y:Bx

Fx,y functor

Γ `
∑

g:
∏

x:A Bx

∏
x:AFx,g(x) functor

and we can derive inverse isomorphisms between them using the usual formulas.
It follows that polynomial functors are closed under Σs and Πs over types.

Combining all the above properties (including the axiomatic objectwise-ness for Π),
we can also show that they are closed under composition:

(
∑

x:A(Bx → X)) ◦ (
∑

u:C(Du → X)) ∼=
∑

x:A

∏
y:Bx

(X ◦ (
∑

u:C

∏
v:Du

X))

∼=
∑

x:A

∏
y:Bx

∑
u:C

∏
v:Du

X
∼=

∑
x:A

∑
g:Bx→C

∏
y:Bx

∏
v:Dg(y)

X
∼=

∑
(x,g):

∑
x:A(Bx→C)

∏
w:Bx×Dg(y)

X

It is therefore sensible to introduce a judgment to characterize polynomial functors
inductively:

Γ typectx

Γ ` X poly

Γ ` F poly Γ ` G poly

Γ ` F ◦G poly

Γ ` A type Γ, x : A ` F poly

Γ `
∑

x:AF poly

Γ ` A type Γ, x : A ` F poly

Γ `
∏

x:AF poly

I think this will be useful when describing HITs. (In fact, so far we have not
introduced any rules that produce non-polynomial functors, but the original idea
was to introduce free monads on them.)

3. A sketch of semantics

Let C be a category with finite limits. A fibred (endo)functor of C is a functor
C→ → C→ that fixes codomains and preserves pullback squares. The category of
fibred functors has finite limits taken pointwise. A morphism of fibred functors

A TYPE THEORY FOR FIBRED FUNCTORS AND POLYNOMIALS 7

(i.e. a fibred natural transformation) is cartesian if its naturality squares are
pullbacks. Every object A of C yields a constant fibred functor taking every X → Ξ
to Ξ× A→ Ξ. The functors arising in this way are precisely those whose unique
map to the terminal functor is cartesian.

We interpret the contexts, telescopes, and functors of our type theory by fibred
functors and morphisms between them in the usual way. We interpret types and
type telescopes by cartesian morphisms, so that type contexts are interpreted by
objects of C. The additive context combination, and the Σs that internalize it, are
just the usual composition of dependent projections.

The multiplicative context combination, and the multiplicative product and
unit that internalize it, are defined using functor composition, but using the fibred
nature of our functors. The multiplicative unit ({}m or X), in type context Γ ∈ C,
is interpreted by the fibred functor that sends every X → Ξ to the projection
X ×Γ→ X → Ξ. This factors alternatively through Ξ×Γ, i.e. the constant functor
at Γ, giving the dependency Γ ` X functor.

Composition is somewhat trickier. Given a type context Γ ∈ C and a fibred
functor ∆ mapping to Γ, and also fibred functors F over Γ and G over ∆, we
interpret (F , G) and F ◦ G by the functor defined as follows. Given X → Ξ, we
first apply G to get

GΞ(X)→ ∆Ξ(X)→ Ξ× Γ→ Ξ.

Then we apply F to GΞ(X) regarded as indexed, not over Ξ, but over ∆Ξ(X). This
gives

F∆Ξ(X)(GΞ(X))→ ∆Ξ(X)× Γ→ Ξ× Γ× Γ→ Ξ.

Finally we pull this back along the diagonal Γ→ Γ× Γ to get

(F ◦G)Ξ(X)→ ∆Ξ(X)→ Ξ× Γ→ Ξ.

Associativity and unitality are straightforward to check.
Finally, assuming C to be locally cartesian closed, we define Πs objectwise: given

a cartesian map A → Γ and a map F → A, we define
∏

x:AF at X to be the
dependent product of F (X) → A(X) along A(X) → Γ(X). The Beck-Chevalley
condition for dependent products, and the cartesianness of A→ Γ, ensures that this
is again a fibred functor. (This is why we allow only types, rather than arbitrary
functors, in the domain of Πs.)

If C has a homotopy theory, then we can restrict the types to be fibrations. We
do not restrict the functors in any way. In particular, functors need not preserve
fibrations; but this is not a problem, because we have not syntactically required
the “application” F ◦A of a functor to a type to result in a type. In this model the
constant functor at a non-fibration is a perfectly good functor, but not a type.

4. Codensity monads

In general, functor composition ◦ is not a closed monoidal structure. However, if
A is a type regarded as a constant functor, then (− ◦A) does have a right adjoint
defined on constant functors, obtained by right Kan extension along the functor
from the terminal category that picks out A. The result may no longer be fibrant,
though, so we don’t assert that it is a type.

Γ typectx Γ ` A type Γ ` B type

Γ ` A(B functor

Γ ; (∆ , x : A) ` b : B

Γ ; ∆ ` (λλx.b) : A(B

	1. A dependent type theory with bunches
	2. Polynomial functors and the Yoneda lemma
	3. A sketch of semantics
	4. Codensity monads

