
Homotopy type theory
A high-level language for invariant mathematics

Michael Shulman1

1(University of San Diego)

March 8, 2019
Indiana University Bloomington

Homotopy Type Theory (HoTT) is. . .

A framework for doing mathematics that can be “compiled”
into any ∞-topos.

A foundation for mathematics whose basic objects behave like
∞-groupoids.

An enhancement of constructive type theory with a
homotopical extensionality axiom.

A dependently typed programming language that incorporates
homotopical ideas.

A way to formalize mathematics in a computer that is
well-adapted to structural mathematics.

A high-level abstract framework for working with sameness.

Homotopy Type Theory (HoTT) is. . .

A framework for doing mathematics that can be “compiled”
into any ∞-topos.

A foundation for mathematics whose basic objects behave like
∞-groupoids.

An enhancement of constructive type theory with a
homotopical extensionality axiom.

A dependently typed programming language that incorporates
homotopical ideas.

A way to formalize mathematics in a computer that is
well-adapted to structural mathematics.

A high-level abstract framework for working with sameness.

An analogy to programming

processor
machine code

• hard to use
• error-prone
• lots of manual work

high-level language
• easy to use
• error-checking
• lots of automation
• more abstract

compiler

processor #1
machine code

processor #3
machine code

compiler #1 compiler #3

An analogy to programming

processor
machine code

• hard to use
• error-prone
• lots of manual work

high-level language
• easy to use
• error-checking
• lots of automation
• more abstract

compiler

processor #1
machine code

processor #3
machine code

compiler #1 compiler #3

An analogy to programming

processor #2
machine code

high-level language
• easy to use
• error-checking
• lots of automation
• more abstract

compiler #2

processor #1
machine code

processor #3
machine code

compiler #1 compiler #3

The other side of the analogy

set theory
• error-prone
• lots of manual work

homotopy type theory
• error-checking
• lots of automation
• more abstract

interpretation

topos #1 topos #3

interpretation #1 interpretation #3

The other side of the analogy

set theory
• error-prone
• lots of manual work

homotopy type theory
• error-checking
• lots of automation
• more abstract

interpretation

topos #1 topos #3

interpretation #1 interpretation #3

The other side of the analogy

topos #2
set theory

homotopy type theory
• error-checking
• lots of automation
• more abstract

interpretation #2

topos #1 topos #3

interpretation #1 interpretation #3

Homotopy type theory is
a high-level abstract framework for working with sameness.

Outline

1 The informal behavior of sameness

2 All is not rosy in the garden

3 Homotopy type theory

4 Platform-independence

Sameness can be tautological.

Example

1 = 1.

Sameness can be a highly nontrivial open problem.

Example

Is P = NP?

Sameness is. . .

reflexive: everything is the same as itself.

symmetric: if x is the same as y , then y is the same as x .

transitive: if x is the same as y , and y is the same as z , then x
is the same as z .

Two things that are the same have all the same properties.

Example

If x is the same as y , then any true statement about x is also a true
statement about y . (The indiscernibility of identicals.)

Example

If x is the same as y , then f (x) is the same as f (y) for any f .

Two things can be the same even if
their representations are different.

Example

0.5 = 0.499999 · · ·

“Every interesting equation is a lie.” (Gian-Carlo Rota?)

Example

We say 1 + 1 = 2, but “1 + 1” and “2” are not the same expression.

For sameness to be non-tautological, we must be allowed to consider
things the same even when their representations are different.

Two things can be the same even if
their representations are different.

Example

0.5 = 0.499999 · · ·

“Every interesting equation is a lie.” (Gian-Carlo Rota?)

Example

We say 1 + 1 = 2, but “1 + 1” and “2” are not the same expression.

For sameness to be non-tautological, we must be allowed to consider
things the same even when their representations are different.

Sameness is compositional:
two structures are the same if all their pieces are.

Example

(x1, y1) = (x2, y2) if and only if x1 = x2 and y1 = y2.

Example

For functions f , g : A→ B, we have f = g if and only if
f (x) = g(x) for all x ∈ A.

Sameness is not always the same as equality.

Example

Two groups are the same if they are isomorphic.

Example

Two topological spaces are the same if they are homeomorphic.

Example

Two categories are the same if they are equivalent.

(etc.)

Sameness is context-dependent.

The word for a thing carries a presumption of the context for
sameness.

Example

0.5 and 0.499999 . . . are different decimal expansions, but represent
the same real number.

Example

3 and 7 are not the same integer, but represent the same integer
modulo 4.

Example

M2(R) (2× 2 matrices over R) and H (the quaternions) are not the
same algebra, but they are the same vector space.

It only makes sense to compare things for sameness
that have the same context.

Example

“e iπ is the same as −1” is a meaningful (true) sentence; both are
complex numbers.

Example

“Z/2Z× Z/2Z is the same as Z/4Z” is a meaningful (false)
sentence; both are abelian groups.

Example

“e iπ is the same as Z/4Z” is not a meaningful sentence.
Like “colorless green ideas sleep furiously”, it is a “category mistake”
(in the philosophical sense).

Nontrivial sameness occurs outside pure mathematics too.

Example

An electric potential is a function ϕ whose negative gradient, −∇ϕ,
is the (static) electric field. Two potentials are the same if ϕ1 − ϕ2

is a constant.

Example

A magnetic potential is a vector field A whose curl, ∇× A, is the
(static) magnetic field. Two magnetic potentials are the same if
A1 − A2 is irrotational.

At least arguably, potentials have a real existence independently of
fields: in the quantum-mechanical Aharonov-Bohm effect a particle
is affected by a potential whose field is zero.

Sameness is compositional. . . ?

Example

A group is a triple (G , ∗, e) where G is a set, ∗ is a binary operation
G × G → G , and e is an element of G , satisfying axioms.

So two groups (G , ∗, e) and (H, ?, i) should be the same if

The set G is the same as the set H,

The operation ∗ is the same as the operation ?, and

The element e is the same as the element i .

Sameness is compositional. . . ?

Example

A group is a triple (G , ∗, e) where G is a set, ∗ is a binary operation
G × G → G , and e is an element of G , satisfying axioms.

So two groups (G , ∗, e) and (H, ?, i) should be the same if

The set G is the same as the set H,

The operation ∗ is the same as the operation ?, and

The element e is the same as the element i .

What does it mean for two sets to be the same?

Two different answers! Maybe we should use different words.

Definition (Extensionality)

Two material sets A and B are the same if they have the same
elements: for all x we have x ∈ A if and only if x ∈ B.

Definition (Bijection)

Two structural sets A and B are the same if we have functions
f : A→ B and g : B → A such that f ◦ g = idB and g ◦ f = idA.

Material sets (which are used in ZFC) can be considered
“representations” of structural sets (which are used in most
mathematics), like integers are representations of integers-mod-4.

Example

Two groups (G , ∗, e) and (H, ?, i) are the same if

The set G is bijective to the set H,

The operation ∗ is the same as the operation ? under this
bijection, and

The element e is the same as the element i under this bijection.

Example

Two topological spaces (X ,OX) and (Y ,OY) are the same if

The set X is bijective to the set Y , and

The open sets U ∈ OX are the same as the open sets V ∈ OY

under this bijection.

(etc.)

Sameness is transportive.

Example

Two groups (G , ∗, e) and (H, ?, i) are the same if

The structural set G is the same as (i.e. bijective to) the set H,

The operation ∗ is the same as the operation ? under this
bijection, and

The element e is the same as the element i under this bijection.

In other words, if f : G ∼−→ H is the bijection, then

f (x1 ∗ x2) = f (x1) ? f (x2) and f (e) = i .

Sameness can be structure rather than a mere relation.

Example

Two groups can be isomorphic in more than one way.
In fact a group can be isomorphic to itself in more than one way!

Example

Similarly, two sets can be bijective in more than one way, etc.

The “ways in which x is the same as y” (isomorphisms, bijections)
have their own context for sameness.

If sameness is structure, then so are its “properties”.

reflexivity: everything is the same as itself in a specified way.
(the identity isomorphism idG : G ∼= G)

symmetry: for any way in which x is the same as y , there is a
specified way in which y is the same as x .
(the inverse f −1 : H ∼−→ G of an isomorphism f : G ∼−→ H)

transitive: for any way in which x is the same as y , and any
way in which y is the same as z , there is a specified way in
which x is the same as z .
(the composite of two isomorphisms G

f−→ H
g−→ K)

We must remember the structure of sameness
even outside pure mathematics.

Example

In Einstein’s general relativity, spacetime is represented by a
4-manifold M with a Lorentzian metric.

Two spacetimes are the same if there is a diffeomorphism
φ : M1

∼−→ M2 that preserves the metrics. Then x ∈ M1 and
φ(x) ∈ M2 represent the same point in spacetime.

If ψ : M1
∼−→ M2 is a different diffeomorphism that doesn’t

preserve the metrics, then x ∈ M1 and ψ(x) ∈ M2 do not
represent the same point in spacetime.

This is true even when ψ is idM : M ∼= M. But this confused
Einstein for a long time (his hole argument).

We must remember the structure of sameness
even outside pure mathematics.

Example

In Einstein’s general relativity, spacetime is represented by a
4-manifold M with a Lorentzian metric.

Two spacetimes are the same if there is a diffeomorphism
φ : M1

∼−→ M2 that preserves the metrics. Then x ∈ M1 and
φ(x) ∈ M2 represent the same point in spacetime.

If ψ : M1
∼−→ M2 is a different diffeomorphism that doesn’t

preserve the metrics, then x ∈ M1 and ψ(x) ∈ M2 do not
represent the same point in spacetime.

This is true even when ψ is idM : M ∼= M. But this confused
Einstein for a long time (his hole argument).

We must remember the structure of sameness
even outside pure mathematics.

Example

In Einstein’s general relativity, spacetime is represented by a
4-manifold M with a Lorentzian metric.

Two spacetimes are the same if there is a diffeomorphism
φ : M1

∼−→ M2 that preserves the metrics. Then x ∈ M1 and
φ(x) ∈ M2 represent the same point in spacetime.

If ψ : M1
∼−→ M2 is a different diffeomorphism that doesn’t

preserve the metrics, then x ∈ M1 and ψ(x) ∈ M2 do not
represent the same point in spacetime.

This is true even when ψ is idM : M ∼= M. But this confused
Einstein for a long time (his hole argument).

Outline

1 The informal behavior of sameness

2 All is not rosy in the garden

3 Homotopy type theory

4 Platform-independence

Problem #1

Two things that are the same have all the same properties. . . ?

Example

Define a group G to be splanzy if G ⊆ R.

Z is splanzy.

Zi = {ai | a ∈ Z} ⊆ C is not splanzy.

Yet, Z is isomorphic to Zi .

Splanziness is not meaningful in the “sameness context” of groups.

Question: Which properties are meaningful in the sameness
context of groups?

Answer #1: Um. . . those that are invariant under isomorphism?

Problem #1

Two things that are the same have all the same properties. . . ?

Example

Define a group G to be splanzy if G ⊆ R.

Z is splanzy.

Zi = {ai | a ∈ Z} ⊆ C is not splanzy.

Yet, Z is isomorphic to Zi .

Splanziness is not meaningful in the “sameness context” of groups.

Question: Which properties are meaningful in the sameness
context of groups?

Answer #1: Um. . . those that are invariant under isomorphism?

Problem #1

Question: Which properties are meaningful in the sameness
context of groups?

Answer #2:

I shall not today attempt further to define the kinds of
material I understand to be embraced within that shorthand
description, and perhaps I could never succeed in intelligibly
doing so. But I know it when I see it.

– Justice Potter Stewart, Jacobellis v. Ohio

Problem #1

Why is this not good enough?

1 We are mathematicians, not lawyers: we hold ourselves to a
higher standard.

2 The expert may know it when they see it, but a novice can be
tripped up.

3 Computers can’t (yet) learn to “know it when they see it”.

4 Actually proving invariance is mind-numbingly tedious.

Problem #2

Whenever we define some structure (say widgets), we must

1 Define when two widgets are the same.

2 Show that sameness for widgets is reflexive, symmetric, and
transitive.

Often, this all means means defining structure, about which we
must then prove things. That might also mean defining more
structure, etc.

Problem #2

The structure of fully-structural sameness is highly complicated.

If f : x ∼−→ y and g : y ∼−→ z are structures for sameness of x
and y and of y and z , we have a specified g ◦ f : x ∼−→ z .

If also h : z ∼−→ u, we have (h ◦ g) ◦ f and h ◦ (g ◦ f), which
should be the same as structures for sameness of x and u.

If also k : u ∼−→ v , we have two structures for sameness of
((k ◦ h) ◦ g) ◦ f and k ◦ (h ◦ (g ◦ f)) as structures for sameness
of x and v , which should be the same.

. . .

There are techniques for handling all of this that work in many
cases, but not all; and we have to learn and apply them.

Problem #3

Sameness is compositional. . . ?

Example

A category is a set C0 of objects, a set C1 of morphisms, . . .

So two categories should be the same if

The set C0 is the same as the set D0,

The set C1 is the same as the set D1,

. . .

But this defines an “isomorphism of categories”, not an equivalence!

For ordinary structures like groups, compositionality based on
bijections gave the right notion of sameness. But it seems like the
objects of a category need to be something other than “sets”.

Problem #3

Sameness is compositional. . . ?

Example

A category is a set C0 of objects, a set C1 of morphisms, . . .

So two categories should be the same if

The set C0 is bijective to the set D0,

The set C1 is bijective to the set D1,

. . .

But this defines an “isomorphism of categories”, not an equivalence!

For ordinary structures like groups, compositionality based on
bijections gave the right notion of sameness. But it seems like the
objects of a category need to be something other than “sets”.

Outline

1 The informal behavior of sameness

2 All is not rosy in the garden

3 Homotopy type theory

4 Platform-independence

Homotopy type theory is an abstract framework for working with
sameness that:

1 automatically tracks contexts for sameness.

2 automatically builds notions of sameness compositionally.

3 automatically transports anything along a sameness.

4 automatically generates the complicated structure of sameness.

5 admits structured sameness and remembers the structure.

6 allows introducing new notions of sameness on old objects.

7 treats sets structurally, but subsets materially.

8 can treat categories and similar structures up to equivalence.

Think of it like a “high-level programming language” (Python, Ruby,
Java), with features and guarantees making it easier to use and less
error-prone, that gets automatically “compiled” to the low-level
“assembly language” of mathematical objects.

Definition

We will say type rather than “context for sameness”.

Thus a “type” specifies a collection of things (its “elements” or
“objects”) together with the relevant notion of sameness for them.

Definition

If x is an element of the type A we write x : A.

If x : A and y : A for the same type A, we can ask whether they are
the same.

Definition

For x : A and y : A, we write x = y for “x is the same as y”.

There is no existing notation encompassing all notions of sameness.
But equality is the most common kind of sameness.

Recall we sometimes ask whether two “structures for sameness” are
themselves the same. Thus “x = y” must itself be a type.

Definition

We call the elements of x = y identifications of x with y .

Example

If G ,H are groups (i.e. G : Groups and H : Groups), then G = H
is the type of isomorphisms from G to H.

Example

If A,B are (structural) sets (i.e. A : Sets and B : Sets), then
A = B is the type of bijections from A to B.

Often there is no “structure” to sameness (i.e. simple equality). But
we don’t want x = y to sometimes be a type and sometimes not.
Instead, sometimes it is a type with only one element.

Definition

A proposition is a type in which any two elements are the same.

If a proposition has at least one (hence exactly one) element, we
call it true. If it has no elements, we call it false.

Example

1 + 1 = 2 is (a type that is) a proposition, which is true.
√

2 = π is (a type that is) a proposition, which is false.

Definition

A set is a type A such that for any x , y : A the type x = y is a
proposition.

But what is a type, really?

Well, that’s a question for whoever programs the “compiler”.
All we as the “user” need to know is that there are these things
called “types” that we can do certain things with.

In fact, there are lots of different compilers!

In the “reference implementation” by Voevodsky, types are
compiled to Kan complexes, a simplicial notion of ∞-groupoid.

They can also be fibrant objects in a Quillen model category
that presents any (∞, 1)-topos. (We’ll come back to this later.)

For now, we’ll just focus on how types behave.

But what is a type, really?

Well, that’s a question for whoever programs the “compiler”.
All we as the “user” need to know is that there are these things
called “types” that we can do certain things with.

In fact, there are lots of different compilers!

In the “reference implementation” by Voevodsky, types are
compiled to Kan complexes, a simplicial notion of ∞-groupoid.

They can also be fibrant objects in a Quillen model category
that presents any (∞, 1)-topos. (We’ll come back to this later.)

For now, we’ll just focus on how types behave.

But what is a type, really?

Well, that’s a question for whoever programs the “compiler”.
All we as the “user” need to know is that there are these things
called “types” that we can do certain things with.

In fact, there are lots of different compilers!

In the “reference implementation” by Voevodsky, types are
compiled to Kan complexes, a simplicial notion of ∞-groupoid.

They can also be fibrant objects in a Quillen model category
that presents any (∞, 1)-topos. (We’ll come back to this later.)

For now, we’ll just focus on how types behave.

Sameness is compositional.

Example

For types A and B, there is a product type A× B whose elements
are ordered pairs (x , y) with x : A and y : B. The type
(x1, y1) = (x2, y2) is the type (x1 = x2)× (y1 = y2).

Example

For an indexed family of types {Aj}, there is a product type
∏

j Aj

whose elements are tuples (xj)j with each xj : Aj . The type
(xj)j = (yj)j is the type

∏
j(xj = yj).

Example

For types A and B, there is a function type “A→ B” whose
elements are functions from A to B. For f , g : A→ B the type
f = g is the type

∏
x(f (x) = g(x)).

All functions respect sameness: if f : A→ B and x , y : A with
e : x = y , we have apf (e) : f (x) = f (y).

Example

There is a type ∅ that has no elements, and a type 1 that has
exactly one element.

Example

For types A and B, there is a disjoint union type Aq B whose
elements are either inl(a) for a : A or inr(b) for b : B.

The type inl(a1) = inl(a2) is the type a1 = a2.

The type inl(b1) = inl(b2) is the type b1 = b2.

The type inl(a) = inr(b) is the type ∅.

Example

For an indexed family of types {Aj}, there is a disjoint union type∐
j Aj , or

∑
j Aj , whose elements are pairs (j , x) with x : Aj . The

type (i , x) = (j , y) is. . . ?

We want to say (i = j)× (x = y), but that doesn’t make sense
since x and y don’t belong to the same type.

But if i = j , then Ai and Aj ought to be “the same”. . .

Example

For types A and B, there is a disjoint union type Aq B whose
elements are either inl(a) for a : A or inr(b) for b : B.

The type inl(a1) = inl(a2) is the type a1 = a2.

The type inl(b1) = inl(b2) is the type b1 = b2.

The type inl(a) = inr(b) is the type ∅.

Example

For an indexed family of types {Aj}, there is a disjoint union type∐
j Aj , or

∑
j Aj , whose elements are pairs (j , x) with x : Aj . The

type (i , x) = (j , y) is. . . ?

We want to say (i = j)× (x = y), but that doesn’t make sense
since x and y don’t belong to the same type.

But if i = j , then Ai and Aj ought to be “the same”. . .

The way to compare an element of A with an element of B is to be
given a structure for sameness of A and B as types, i.e. an
identification A = B in the type of types.

Thus E : A = B should have, for any a : A and b : B a type E (a, b)
generalizing “x = y”, with “sameness-like” properties:

If a1 = a2 and E (a2, b) then E (a1, b).

If E (a, b1) and b1 = b2 then E (a, b2).

If E (a1, b) and E (a2, b) then a1 = a2.

If E (a, b1) and E (a, b2) then b1 = b2.

Also every element of A should be representable by some element of
B and vice versa:

For any a : A there exists a b : B such that E (a, b).

For any b : B there exists a a : A such that E (a, b).

The way to compare an element of A with an element of B is to be
given a structure for sameness of A and B as types, i.e. an
identification A = B in the type of types.

Thus E : A = B should have, for any a : A and b : B a type E (a, b)
generalizing “x = y”, with “sameness-like” properties:

If a1 = a2 and E (a2, b) then E (a1, b). ← automatic

If E (a, b1) and b1 = b2 then E (a, b2). ← automatic

If e1 : E (a1, b) and e2 : E (a2, b) then
(a1, e1) = (a2, e2) in

∑
x E (x , b).

If e1 : E (a, b1) and e2 : E (a, b2) then
(b1, e1) = (b2, e2) in

∑
y E (a, y).

Also every element of A should be representable by some element of
B and vice versa:

For any a : A there exists a b : B such that E (a, b).

For any b : B there exists a a : A such that E (a, b).

Definition

There is a universe type “Type” whose elements are types. For
types A,B, the type A = B is the type of equivalences.
(This is Voevodsky’s univalence axiom.)

Definition

An equivalence between types A,B consists of a type E (a, b) for
each a : A and b : B such that

1 If e1 :E (a1, b) and e2 :E (a2, b) then (a1, e1) = (a2, e2).

2 If e1 :E (a, b1) and e2 :E (a, b2) then (b1, e1) = (b2, e2).

3 For each a : A, there is a b : B such that E (a, b).

4 For each b : B, there is an a : A such that E (a, b).

There are also many other equivalent definitions of
equivalences; this is not Voevodsky’s original one.

When A and B are sets, this reduces to a bijection.

Now we can fill in some gaps.

Definition

For a type A, an A-indexed type family is a function P : A→ Type.

Example

Given P : A→ Type, and e : x = y in A, we have an equivalence
apP(e) : P(x) = P(y). This gives indiscernibility of identicals: for
any u : P(x) there is v : P(y) (such that apP(e)(u, v)).

In the types
∏

j :J Aj and
∑

j :J Aj , actually A is an indexed type
family A : J → Type.

Definition (Identifications in
∑

-types)

If e : i = j in J, we have apA(e) : Ai = Aj , an equivalence.
Hence for x : Ai and y : Aj we have a type apA(e)(x , y); we define
(i , x) = (j , y) in

∑
j :J Aj to be the type

∑
e:i=j apA(e)(x , y).

That is, i and j are the same, and under this identification x and y
are the same.

The type of groups is∑
G :Set

∑
m:G×G→G

∑
e:G(∏

x ,y ,z:G

m(m(x , y), z) = m(x ,m(y , z))
)
×

(∏
x :G

((m(x , e) = x)× (m(e, x) = x))
)
×(∏

x :G

∑
y :G

((m(x , y) = e)× (m(y , x) = e))
)

Thus, by definition of sameness in
∑

, two groups are the same if

The sets G and H are the same (i.e. bijective).

The multiplications are the same under this bijection.

The units are the same under this bijection.

(No more conditions; the other components are propositions.)

Definition

A category is

A type C0 of objects,

A family of sets homC : C0 × C0 → Set

Compositions, identities, axioms, . . .

For objects x , y : C0, the canonical map from x = y to the
type isoC (x , y) of isomorphisms in C is an equivalence.

Now two categories are the same (compositionally!) if

The types C0 and D0 are the same in Type (i.e. equivalent).

homC and homD are the same under this equivalence.

These bijections respect composition and identities.

This is the same as an equivalence of categories, because the
sameness of C0 and D0 is “up to” their identifications, which are
equivalent to the isomorphisms in C and D.

Outline

1 The informal behavior of sameness

2 All is not rosy in the garden

3 Homotopy type theory

4 Platform-independence

Let G be a group (i.e. a set with a multiplication and unit s.t.. . .).

Definition

A principal G -bundle over a set X is a set P with free G -action
G × P → P such that P/G = X .

Example

The twisted double cover of a circle is a principal Z/2Z-bundle.

The type of principal G -bundles over X is

G -Bun(X) =
∑
P:Set

∑
a:G×P→P

(free-action(a)× (P/G = X)).

Definition

A G -torsor is a nonempty set Z with a free and transitive G -action.

The type of G -torsors is

G -Tors =
∑
Z :Set

∑
a:G×P→P

(free-trans(a)× ‖Z‖).

Theorem (in homotopy type theory)

G -Tors is a classifying type for principal G -bundles:

G -Bun(X) = (X → G -Tors).

Note the “=” referring to sameness of types, i.e. equivalence.
The notion of sameness supplied by the automatic machinery of
homotopy type theory is almost always the “right” one for whatever
you’re doing.

Definition

A G -torsor is a nonempty set Z with a free and transitive G -action.

The type of G -torsors is

G -Tors =
∑
Z :Set

∑
a:G×P→P

(free-trans(a)× ‖Z‖).

Theorem (in homotopy type theory)

G -Tors is a classifying type for principal G -bundles:

G -Bun(X) = (X → G -Tors).

Note the “=” referring to sameness of types, i.e. equivalence.
The notion of sameness supplied by the automatic machinery of
homotopy type theory is almost always the “right” one for whatever
you’re doing.

Usually, principal bundles and torsors have topology on them, but
these definitions and theorem don’t say anything explicitly about
topology. It looks like they’re only talking about discrete sets
(where every principal bundle is trivial).

And in the “reference implementation”, with types interpreted by
simplicial sets, that’s exactly what they come out to mean.

But we can also “compile” the same theorem in lots of other
interpretations!

Example

We can interpret types as topological spaces∗. Then G is a
topological group, and G -Tors is a topological groupoid classifying
topological principal bundles.

Example

We can interpret types as smooth spaces∗. Then G is a Lie group,
and G -Tors is a Lie groupoid classifying smooth principal bundles.

Example

We can interpret types as algebraic spaces∗. Then G is an algebraic
group, and G -Tors is an algebraic groupoid classifying algebraic
principal bundles.

Example

We can interpret types as sheaves on some space Y . Then G is a
sheaf of groups, and G -Tors is a sheaf of groupoids classifying
sheaf principal bundles.

Example

We can interpret types as computable sets∗. Then G is a
computable group, and G -Tors is a computable groupoid classifying
computable principal bundles.

Example

We can interpret types as sets or spaces with an Γ-action, for some
fixed group Γ. Then G is an extension of Γ, and G -Tors is an
Γ-groupoid classifying (G , Γ)-principal bundles.

Other “compilers” exist that interpret types as:

Super-geometric spaces

Sets with “a compatible action of all groups at once”

Sets with time-varying dynamical behavior

Classically observable aspects of quantum systems

Nonstandard sets containing infinitesimal objects

Parametrized spectra or excisive homotopy functors

∞-categories or (∞, n)-categories

For a theorem to compile to all these models, it has to avoid making
special “system calls” that don’t exist in all of them. The most
familiar such is the law of excluded middle, that every proposition is
either true or false.

However, this is often surprisingly easy to do without.

Some open problems

1 No existing version of homotopy type theory makes all the
characterizations of identification types hold by definition; some
of them hold only up to equivalence.

2 Most of the “compilers” that I mentioned are not yet
completely implemented. (But come back tomorrow to hear
about some recent progress!)

Further reading

The Homotopy Type Theory book:
https://homotopytypetheory.org/book/

Other surveys and introductions:
https://ncatlab.org/homotopytypetheory/show/

References#surveys

https://homotopytypetheory.org/book/
https://ncatlab.org/homotopytypetheory/show/References#surveys
https://ncatlab.org/homotopytypetheory/show/References#surveys

	The informal behavior of sameness
	All is not rosy in the garden
	Homotopy type theory
	Platform-independence

