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The homotopy hypothesis

. . . the study of n-truncated homotopy types (of semisimplicial sets,
or of topological spaces) [should be] essentially equivalent to the
study of so-called n-groupoids. . . . This is expected to be achieved
by associating to any space (say) X its “fundamental n-groupoid”
Πn(X ). . . . The obvious idea is that 0-objects of Πn(X ) should be
the points of X , 1-objects should be “homotopies” or paths between
points, 2-objects should be homotopies between 1-objects, etc.

– Grothendieck, 1983
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Some definitions of higher categories

• 1957: Kan (∞-groupoids)
• 1983: Grothendieck (∞-groupoids)
• 1987: Street (ω-categories)
• 1995: Tamsamani-Simpson (n-categories)
• 1997: Joyal (ω-categories)
• 1997: Baez-Dolan, Hermida-Makkai-Power (ω-categories)
• 1998: Batanin, Leinster (ω-categories)
• 1999: Penon (ω-categories)
• 1999: Trimble (n-categories)
• 2007: Moerdijk-Weiss (n-categories)
• 2009: Barwick ((∞, n)-categories)
• 2009: Rezk ((∞, n)-categories)
• 2010: Maltsiniotis (ω-categories)
• 2012: Ara ((∞, n)-categories)
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Some definitions of higher categories

• 1957: Kan (∞-groupoids) ← nonalgebraic, simplicial
• 1983: Grothendieck (∞-groupoids)
• 1987: Street (ω-categories)
• 1995: Tamsamani-Simpson (n-categories)
• 1997: Joyal (ω-categories) ← nonalgebraic, simplicial
• 1997: Baez-Dolan, Hermida-Makkai-Power (ω-categories)
• 1998: Batanin, Leinster (ω-categories)
• 1999: Penon (ω-categories)
• 1999: Trimble (n-categories)
• 2007: Moerdijk-Weiss (n-categories)
• 2009: Barwick ((∞, n)-categories) ← nonalgebraic, simplicial
• 2009: Rezk ((∞, n)-categories) ← nonalgebraic, simplicial
• 2010: Maltsiniotis (ω-categories)
• 2012: Ara ((∞, n)-categories)
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Styles of ∞-groupoid

Following Kan, the nonalgebraic, simplicial definitions. . .

• satisfy the homotopy hypothesis.

• support a rich theory.

• have lots of applications.

So why should we care about algebraic, globular ones?
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The homotopy hypothesis

(image by Leinster, 2010)
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Discs versus morphisms

There is a fundamental mismatch:

• In homotopy theory, spaces are glued together from discs.

• A classical ∞-groupoid is a structured collection of morphisms.

What’s the difference?

• The 2-sphere S2 can be built from a point and a 2-disc, but
has infinitely many higher morphisms (e.g. π3(S2) = Z).

• The Eilenberg–Mac Lane space K (Z2, 2) has only one
nontrivial 2-morphism, but requires infinitely many discs.



Grothendieck’s problem Homotopy type theory Synthetic ∞-groupoids Category theory

Discs versus morphisms

There is a fundamental mismatch:

• In homotopy theory, spaces are glued together from discs.

• A classical ∞-groupoid is a structured collection of morphisms.

What’s the difference?

• The 2-sphere S2 can be built from a point and a 2-disc, but
has infinitely many higher morphisms (e.g. π3(S2) = Z).

• The Eilenberg–Mac Lane space K (Z2, 2) has only one
nontrivial 2-morphism, but requires infinitely many discs.



Grothendieck’s problem Homotopy type theory Synthetic ∞-groupoids Category theory

Small examples

I like to write down and work with small examples, but. . . it seems
nearly impossible to write down explicitly any quasicategory that
isn’t actually the nerve of a category.

– me, 2010

[This] is a tall order: a formalism which would allow you to compute
easily with small examples should give you a recipe for calculating
unstable homotopy groups of spheres. (Of course, this depends on
exactly what you mean by “small.”)

– Lurie, 2010
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Homotopy type theory

Homotopy type theory is a synthetic theory of ∞-groupoids.
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Synthetic versus analytic

synthetic analytic

Euclid’s geometry geometry in R2

homotopy type theory
∞-groupoids à la Kan,
Grothendieck, Batanin, . . .
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Why synthetic? I

“An ∞-groupoid A has a collection of objects, with for each pair of
objects a and b an ∞-groupoid A(a, b), plus operations. . . ”

1 Analytically, difficult to make sense of as a definition.

2 Synthetically, makes perfect sense as an axiom.

. . . if our ∞-groupoids are globular.
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Why synthetic? II

Everything is an ∞-functor =⇒
we cannot distinguish between equivalent objects!

If we stay within the rules of the synthetic theory, everything
automatically satisfies the “principle of equivalence”.
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Why synthetic? III

What is a natural equivalence between ∞-functors f , g : A→ B?

1 Analytically:
• for each object a ∈ A, a morphism γa : fa→ ga,
• for each morphism φ : a→ a′, a 2-morphism γa′ .f φ→ gφ.γa,
• for each 2-morphism µ : φ→ φ′, a 3-morphism . . .
• . . .

2 Synthetically:
• for each a ∈ A, a morphism γa : fa→ ga.

“for each” always means “an ∞-functor assigning to each”.
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Why synthetic? IV

synthetic analytic

Euclid’s (pure) geometry
geometry in R2

OR
hyperbolic geometry

(constructive)
homotopy type theory

∞-groupoids
OR

stacks

models

models



Grothendieck’s problem Homotopy type theory Synthetic ∞-groupoids Category theory

Rethinking the homotopy hypothesis

Old

The (analytic) homotopy theory of ∞-groupoids is equivalent to
that of spaces.

• A theorem for some analytic definitions of ∞-groupoid.

• A desideratum for all of them.

New

The synthetic theory of ∞-groupoids is modeled by spaces (but also
by lots of other things).

• A theorem (Voevodsky, Awodey–Warren, Lumsdaine–S.).
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Discs versus morphisms, revisited

• An analytic ∞-groupoid is defined by
• for objects a, b, a set of morphisms a→ b;
• for each f , g : a→ b, a set of 2-morphisms f → g ;
• for each u, v : f → g , a set of 3-morphisms u → v ;
• . . .

• A synthetic ∞-groupoid A has
• for objects a, b, an ∞-groupoid A(a, b) of morphisms a→ b.

The 2-morphisms are the morphisms of A(a, b), etc.

The synthetic ones. . .

1 . . . are not “put together” out of sets!

2 . . . can’t be put together any old way — have to follow rules.
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Example: Univalence

The synthetic ∞-groupoid ∞-Gpd has

• Objects: (small) (synthetic) ∞-groupoids A,B, . . .

• Morphisms: ∞-Gpd(A,B) = the ∞-groupoid of equivalences
of ∞-groupoids A ' B.

The rule which allows us to form ∞-Gpd is the univalence axiom
(Voevodsky).

Recall: everything is an ∞-functor =⇒
we cannot distinguish between equivalent ∞-groupoids!
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Discs are free generators

• The classical space S2 is built from
• a 0-disc and
• a 2-disc.

• The classical ∞-groupoid Π∞(S2) has
• one 0-morphism,
• one 1-morphism,
• a Z worth of 2-morphisms,
• a Z worth of 3-morphisms,
• a Z2 worth of 4-morphisms,
• . . .

• The synthetic ∞-groupoid S2 is freely generated by
• an object b ∈ S2, and
• a 2-morphism s ∈ S2(b, b)(1b, 1b).
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More generators

The rule of higher inductive types allows us to form the synthetic
∞-groupoid freely generated by any reasonable “generators”.

• The torus T 2 is freely generated by b ∈ T 2 and
p, q ∈ T 2(b, b) and s ∈ T 2(b, b)(pq, qp).

• The coproduct A + B is freely generated by functors
i : A→ A + B and j : B → A + B.

• 1 is freely generated by an object ? ∈ 1.

• ∅ is freely generated by no generators.

Relations are just higher generators: all presentations are free.

• The pushout A +C B is freely generated by functors
i : A→ A +C B and j : B → A +C B and a natural equivalence
between the two functors C → A +C B.
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Recursive generators

• N is freely generated by 0 ∈ N and a functor s : N→ N.

• The free monoid on A is freely generated by e ∈ LA and a
functor A× LA→ LA.
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Truncation by generators

• The classical space K (Z, 2) is built from
• one 0-disc and one 2-disc, as for S2;
• enough 4-discs to kill off the undesired 3-morphisms;
• enough 5-discs to kill off the undesired 4-morphisms;
• enough 6-discs to kill off the undesired 5-morphisms;
• . . .

• The analytic ∞-groupoid Π∞(K (Z, 2)) has
• one 0-morphism and one 1-morphism;
• a Z worth of 2-morphisms;
• only identity k-morphisms for k ≥ 3.

• The synthetic ∞-groupoid K (Z, 2) is freely generated by
• an object b ∈ K (Z, 2);
• a 2-morphism s ∈ K (Z, 2)(b, b)(1b, 1b);

• for every parallel pair of 3-morphisms f , g in K (Z, 2), a
4-morphism from f to g .
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Aside: the Yoneda lemma

For each a, the hom-functor A(a,−) : A→∞-Gpd is freely
generated by the identity 1a ∈ A(a, a).

Remarks:

1 This is a definition of A(a, b).

2 It implies all the composition and coherence structure of an
∞-groupoid. (Lumsdaine, Garner–van den Berg)

3 We get essentially Grothendieck’s definition of ∞-groupoid!
(Brunerie)
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Progress in synthetic homotopy theory

• π1(S1) = Z (S., Licata)

• πk(Sn) = 0 for k < n (Brunerie, Licata)

• πn(Sn) = Z (Licata, Brunerie)

• The long exact sequence of a fibration (Voevodsky)

• The Hopf fibration and π3(S2) = Z (Lumsdaine, Brunerie)

• π4(S3) = Z2 (Brunerie – almost)

• The Freudenthal suspension theorem (Lumsdaine)

• The Blakers–Massey theorem (Lumsdaine, Finster, Licata)

• The van Kampen theorem (S.)

• Whitehead’s theorem for n-types (Licata)

• Covering space theory (Hou)

Some of these are new proofs.
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π1(S1) = Z

S1 is freely generated by b ∈ S1 and ` ∈ S1(b, b).

Theorem (S.)

S1(b, b) ' Z.

Proof (Licata).

Define f : Z→ S1(b, b) by f (n) = `n.

Define g : S1(b, b)→ Z by g(α) = G (α)(0), for G : S1 →∞-Gpd

G (b) = Z ∈ ∞-Gpd

G (`) = succ ∈ ∞-Gpd(Z,Z).

Prove g ◦ f = 1Z by induction.

Prove f ◦ g = 1S1(b,b) by . . . ?
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π1(S1) = Z

S1 is freely generated by b ∈ S1 and ` ∈ S1(b, b).

Theorem (S.)

S1(b, b) ' Z.

Proof (Licata).

Generalize f and g to

fx : G (x)→ S1(b, x) for all x ∈ S1

gx : S1(b, x)→ G (x) for all x ∈ S1

and prove fx(gx(p)) = p for all x ∈ S1 and p ∈ S1(b, x).

But ∞-Gpd(b,−) is freely generated by 1b, so it suffices to check

fb(gb(1b)) = f (g(1b)) = f (0) = 1b.
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Definition

• An ∞-groupoid A is a subsingleton if the two projections
A× A ⇒ A are naturally equivalent.

• A is a set if each A(a, b) is a subsingleton.

Theorem (Rijke–Spitters)

These sets satisfy (constructive) ETCS.

We can use homotopy type theory as a foundation for mathematics.
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Precategories

Definition

A precategory C consists of

1 An ∞-groupoid C0 of objects.

2 A family HomC : C0 × C0 →∞-Gpd.

3 Each HomC (x , y) is a set (i.e. essentially discrete).

4 Composition, identity, associativity, . . .

Questions:

• Is C0 a set?

• How is C0(x , y) related to HomC (x , y)?
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Categories and strict categories

Definition (Bartels)

A precategory C is a strict category if C0 is a set.

Definition (Voevodsky, Ahrens–Kapulkin–S.)

A precategory C is a category if C0(x , y) is equivalent to the subset
of isomorphisms in HomC (x , y).
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Equivalences of categories

“A fully faithful and essentially surjective functor is an equivalence.”

1 For strict categories: equivalent to the axiom of choice.

2 For precategories: just false.

3 For categories: just true.
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Univalence for categories

Everything is an ∞-functor =⇒
• we cannot distinguish isomorphic objects in a category.

• we cannot distinguish equivalent categories!

categories(C ,D) = Equivalences(C ,D)
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Why ∞-groupoids?

Why not synthetic ω-categories?

1 Harder to axiomatize.

2 Harder to work with.

3 Synthetic ∞-groupoids give us most of what we want.

4 There are other important higher-categorical structures!
(n-fold categories, equipments, enriched categories,
multicategories, fibrations, . . . )

∞-groupoids are the raw material of higher-dimensionality.



Grothendieck’s problem Homotopy type theory Synthetic ∞-groupoids Category theory

Why ∞-groupoids?

Why not synthetic ω-categories?

1 Harder to axiomatize.

2 Harder to work with.

3 Synthetic ∞-groupoids give us most of what we want.

4 There are other important higher-categorical structures!
(n-fold categories, equipments, enriched categories,
multicategories, fibrations, . . . )

∞-groupoids are the raw material of higher-dimensionality.



. . . the set-based mathematics we know and love is just the tip of an
immense iceberg of n-categorical, and ultimately ω-categorical,
mathematics.. . . The basic philosophy is simple: never mistake
equivalence for equality. The technical details, however, are not so
simple — at least not yet. To proceed efficiently it is crucial that we
gain a clearer understanding of the foundations . . .

– Baez and Dolan, 1998

[Homotopy type theory is] a new conception of foundations of
mathematics, with intrinsic homotopical content, [and] an
“invariant” conception of the objects of mathematics. . .

– The HoTT Book, 2013

http://homotopytypetheory.org/book

http://homotopytypetheory.org/book
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