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Question: When are two things the same?
Answer (Leibniz): When they have all the same properties.

Indiscernibility of identicals

Identity of indiscernibles

In mathematics, usually asserted explicitly in foundational theories.

In first order logic / ZFC, this is the substitutive principle of equality

We will use Dependent Type Theory (DTT) where it is the eliminator of identity types:

2)

In mathematics, usually trivially true, because of haecceities:

This splits in two:

1)



Often, in mathematics, we want to consider things "the same" under weaker conditions:

 - Isomorphism of groups, rings, fields, topological spaces, ...
 - Equivalence of categories
 - Biequivalence of bicategories
 ...

In ZFC set theory, isomorphic groups are not indiscernible!

But such properties are "uninteresting", or more precisely non-structural.

In Dependent Type Theory, we cannot exhibit any non-structural property.

This metatheoretic property shows that DTT matches mathematical practice better than ZFC,
in this regard.  But for practical use, we would rather have a positive, internal version.

In Homotopy Type Theory / Univalent Foundations (HoTT/UF)    a form of DTT    we can prove,

all properties are structural, i.e. that isomorphic structures are indiscernible. internally, that

"Indiscernibility of isomorphs"



Again because of haecceities, indiscernibility of isomorphs implies identity of isomorphs:

To a set-theoretic mind this looks like a "skeletality" property, collapsing isomorphism to
identity.  But actually, in HoTT/UF we expand the notion of identity to include isomorphism.

To be precise, from indiscernibility of identicals we get a canonical map in the other direction:

and we prove a Structure Identity Principle (SIP) saying that this map is an equivalence.

Hence, in particular, there is a map in the other direction; but rather more is true.

In fact, in practice

Indiscernibility of Isomorphs = Structure Identity Principle

we prove the SIP first and deduce indiscernibility of isomorphs from that.



The basic principle that implies all SIPs is Voevodsky's univalence axiom,

which is just the SIP for types:

denotes the type of equivalences.  This is roughly like the type of isomorphisms

but enhanced to be correct for types that are not sets, i.e. whose identity types

are not propositions (i.e. may have more than one distinct element).



Univalence (the SIP for types) implies the SIP for groups:

Since equality of tuples is componentwise, for groups 

(Technically, the products on the RHS are Sigma-types, i.e. the multiplications are identified
as we expect for a group isomorphism.)

General SIPs were proven in the HoTT Book (Chapter 9) and by Coquand-Danielsson.
They apply to all "set-level structures" like groups, rings, fields, topological spaces, etc.
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A SIP for categories was also proven in the HoTT Book and Ahrens-Kapulkin-Shulman.

It says that the canonical map

is an equivalence (of types), where is the type of

But to make this true, we have to define "category" carefully...

In category theory, isomorphism is not the "correct" notion of "sameness" for categories.

equivalences of categories.



Naive definition: A "category" in DTT consists of

A type of objects

A family of hom-types

Composition functions

Identities

Associativity and unit axioms

If the types are arbitrary, then the "axioms" should have an infinite tower of higher coherences

For a theory that better matches traditional 1-category theory,

we require all the hom-types to be sets.

In the HoTT Book, this notion (with that restriction) is called a precategory.



What restriction should we place on the type of objects There are three natural choices.

1) It is also a set.  We call this a strict category.

- Strict category theory looks the most like classical 1-category theory.
- But the SIP is false for strict categories.
- Also, most naturally-occurring categories (e.g. Set) are not strict.

2) No restriction, i.e. work with precategories.

- The most general choice, and suffices for a good deal of category theory.
- But parts of classical category theory fail, e.g. "ff+eso implies equivalence" is false.
- The SIP is also false for general precategories.

3) Require the objects to satisfy their own SIP: the map

We call these (univalent) categories.

- Most naturally-ocurring categories (e.g. Set, Grp, Top, ...) are univalent.
- "ff+eso implies equivalence" is true (doesn't even require AC!)
- The SIP holds.

is an equivalence.



What about other (higher-)categorical structures?

categories

2-categories

3-categories

double categories

fibred categories -categories

-categories

triple categories

locally cubical bicategories

enriched categories

monoidal categories

We want to prove a general Structure Identity Principle for higher-categorical structures.
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"Negative thinking": Often weird things about higher categories make more sense when we
compare them to their "shadows" for "lower categories", i.e. sets, posets, truth values, etc.

Do set-level structures have a version of the "univalence" condition (a.k.a. "SIP for objects")?

The "univalence" condition in a univalent category may seem like a "weird and new thing"
relative both to classical category theory and to set-level mathematics in HoTT/UF.

(I believe this is part of what leads some people to instead consider precategories
 to be the "basic notion of category" in HoTT/UF.)

I aim to convince you that it is neither weird nor new, but just a new manifestation
of something familiar.



Some (set-level) structures have axioms that involve equality.  
Hence, we can't expect any notion of "sameness" for their elements weaker than equality.

- algebraic structures like groups, rings, fields, ...

- ordered structures (with antisymmetry) like posets, lattices, total orders, ...

Other structures don't refer to equality in their axioms. In this case, there     generally
an induced "indistinguishability" relation on their elements, which may be weaker than equality.

- preorders:

- topological spaces:

X is "univalent" iff it is a partial order.

X is "univalent" iff it is

is



This can be captured formally by using

E.g. in (multi-sorted, first-order, relational) logic without equality, we have

- A collection of sorts.
- A collection of relation symbols, each assigned some family of sorts as arity.
- A collection of axioms, which are formulas built from the relation symbols as atomic.

In logic with equality, each sort A is additionally equipped with a specified binary relation
This allows stating axioms involving equalities of elements, e.g. associativity in a group:

We additionally assume that the E relations are congruences for all the others.

Nontrivial notions of "indistinguishability" arise precisely in theories that can be formulated
in logic without equality.

logic with equality logic without equality.or



A theory         equality is just a special case of a theory             equality...

... except that we usually consider only models of it that are
meaning that the interpretation of the E relations is "real" equality in the model.

standard,

But this is just another "univalence" condition, with E playing the role of "indistinguishability"

A "univalence" condition for structures is already present in classical first-order logic.

We don't notice it because

For logic with equality, it coincides with "standardness", which is so "standard"
that we don't even think of it as an assumption.

For logic without equality, it generally yields "very weak separation axioms"
that we often assume anyway when restricting to "nice objects".

with without
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A set-level theory has only

0) sorts are the bottom level:
1) relation symbols (predicates) are             depending on sorts (their arities).

(In DTT and HoTT/UF, propositions are types, predicates are dependent types.)

A higher theory has                                             For instance, a category has

0) the sort      of objects at

1) the sorts of morphisms, depending on the objects, at

2) relations, such as equality of morphisms, at

Thus, a "higher signature" has to incorporate the "dependency structure".

two levels of dependency:

more levels of dependency.

rank 0.
rank 1,

rank 0.

rank 2.

rank 1.



For simplicity, consider only relational signatures (no operations, only predicates).
It is always possible to encode operations as relations via their graphs.

Makkai used inverse categories as signatures for First-Order Logic with Dependent Sorts (FOLDS).

(Our notion of signature is somewhat more general, but I'll ignore that today.)



The nonidentity arrows with a given sort as domain represent
"all the dependencies" of that sort.

Thus, in a model, the sort T is interpreted by a family of types with 6 dependencies:
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identity of indiscernibles:Recall the notion of

As a "global" statement about a foundational system, this is trivial because of haecceities.

But as a "local" statement about a structure for a particular signature, with P ranging only
over predicates in that signature, it is nontrivial.

Our notion of "isomorphism" or "indistinguishability" between elements of a structure
will assert that they "share all the same properties" expressible in that signature.

Thus, we call it indiscernibility, writing for "x and y are indiscernible".

Of course, in a higher structure, will be a type, not just a proposition.

We call its elements indiscernibilities.

A structure will then be                if each map is an equivalence:

a strong form of the "local" identity of indiscernibles.

univalent













More examples

- If a sort K has an equality relation (local haecceity), then

- In particular, for morphisms in a category

- If P is a top-rank sort (i.e. a relation symbol), then

Thus, univalence at K means that       is a set and its equality is standard.

Thus, univalence at A means that M is a precategory, with standard equality.

Thus, univalence at P means that      is a proposition we even get that automatically!

This includes all set-level structures: groups, rings, fields, ...

(Applies in particular to T, E, I in a category.)
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is an equivalence for univalent     -structures M, N.

is the type of "equivalences of      -structures"... but what are those?

consists of functors

and natural isomorphisms

Not clear how to generalize this to     -structures: what is a "natural isomorphism"?

is a functor such that

1) F is essentially surjective:

2) F is full:

3) F is faithful:

Analogous "faithfulness" properties for the sorts T and I follow automatically.

An equivalence of categories

An equivalence of categories
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