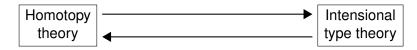
Cell complexes and inductive definitions

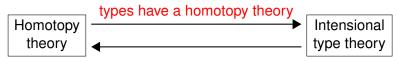
Michael Shulman¹ Peter LeFanu Lumsdaine²

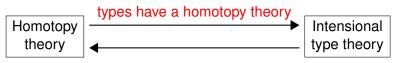
¹University of California, San Diego San Diego, California

> ²Dalhousie University Halifax, Nova Scotia

Joint Mathematics Meetings Boston, Massachusetts AMS Special Session on Homotopy Theory January 7, 2012

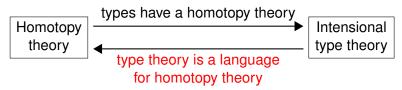


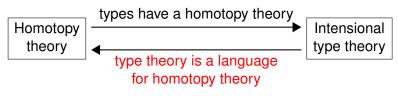




That means...

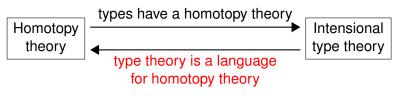
- Types form a model category (almost) with equivalences, fibrations, cofibrations
- We care about homotopically meaningful constructions
- ...





That means...

- Type theory is a formal system, like ZFC
- Homotopy theory can be formalized in type theory

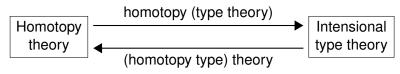


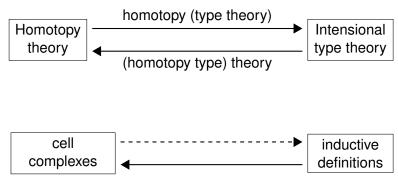
That means...

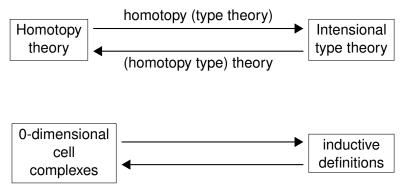
- Type theory is a formal system, like ZFC
- Homotopy theory can be formalized in type theory

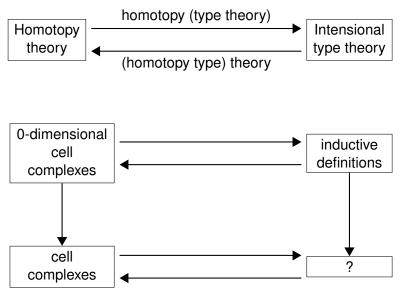
What is this good for?

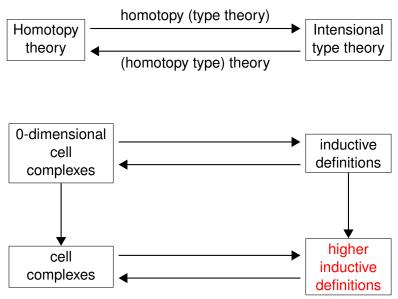
- A more direct formalization than in ZFC
- A more computer-friendly formal system than ZFC
- The same proof can apply to many homotopy theories (equivariant, parametrized, sheaves, ...)











Outline

Outline

The natural numbers

Definition

The natural numbers $\ensuremath{\mathbb{N}}$ are inductively defined by

- 1 an element $0 \in \mathbb{N}$
- **2** an operation $s \colon \mathbb{N} \to \mathbb{N}$.

What does this mean?

The natural numbers

Definition

The natural numbers \mathbb{N} are inductively defined by

- **1** an element $0 \in \mathbb{N}$
- **2** an operation $s \colon \mathbb{N} \to \mathbb{N}$.

What does this mean?

Answer #1

- 0 is a natural number;
- for any natural number *x* there is another called *s*(*x*);
- and every natural number is constructed in exactly one of these ways.

The natural numbers

Definition

The natural numbers \mathbb{N} are inductively defined by

- 1 an element $0 \in \mathbb{N}$
- **2** an operation $s \colon \mathbb{N} \to \mathbb{N}$.

What does this mean?

Answer #2

(ℕ, 0, s) is an initial object in the category whose objects are triples (X, 0_x ∈ X, s_X: X → X).

More inductive definitions

Example

For any set *X*, the set L_X of finite lists of elements of *X* is inductively defined by

- 1 the empty list $\epsilon \in L_X$
- **2** the "cons" operation $X \times L_X \rightarrow L_X$.

More inductive definitions

Example

For any set X, the set L_X of finite lists of elements of X is inductively defined by

- 1 the empty list $\epsilon \in L_X$
- **2** the "cons" operation $X \times L_X \rightarrow L_X$.

Example

The set T of finite binary rooted trees is inductively defined by

- a leaf node $\ell \in T$
- **2** a "branch node" operation $T \times T \rightarrow T$.

Inductive definitions

Definition An inductive definition of a set *A* is a list of constructor types

$$F_i(A) \rightarrow A$$

where each F_i is an endofunctor of **Set**.

- For \mathbb{N} , we have $F_0(A) = 1$, $F_1(A) = A$.
- For L_X , we have $F_0(A) = 1$, $F_1(A) = X \times A$.
- For T, we have $F_0(A) = 1$, $F_1(A) = A \times A$.

The set being defined is the initial object of the category of sets equipped with such constructor maps.

Non-recursive inductive definitions

The domains of the constructors don't have to involve A at all.

Examples

- For any sets X and Y, their disjoint union X ⊔ Y is inductively defined by
 - 1 a function $X \rightarrow X \sqcup Y$
 - **2** a function $Y \rightarrow X \sqcup Y$

Non-recursive inductive definitions

The domains of the constructors don't have to involve A at all.

Examples

- For any sets X and Y, their disjoint union X ⊔ Y is inductively defined by
 - 1 a function $X \rightarrow X \sqcup Y$
 - **2** a function $Y \rightarrow X \sqcup Y$
- A three-element set Z is inductively defined by
 - 1 An element $a \in Z$
 - 2 An element $b \in Z$
 - 3 An element $c \in Z$

Non-recursive inductive definitions

The domains of the constructors don't have to involve A at all.

Examples

- For any sets X and Y, their disjoint union X ⊔ Y is inductively defined by
 - 1 a function $X \rightarrow X \sqcup Y$
 - **2** a function $Y \rightarrow X \sqcup Y$
- A three-element set Z is inductively defined by
 - 1 An element $a \in Z$
 - 2 An element $b \in Z$
 - 3 An element $c \in Z$
- The empty set Ø is inductively defined by

Constructing inductively defined sets

Theorem

Any inductive definition defines an essentially unique set.

Proof.

Uniqueness is easy (it is initial in some category). For existence, construct $A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots$ as follows.

1 Let
$$A_0 = \emptyset$$
.

2 Let each A_{n+1} be A_n plus new images for all constructors acting on elements of A_n (that haven't been added yet).

This eventually converges.

Constructing inductively defined sets

Theorem

Any inductive definition defines an essentially unique set.

Proof.

Uniqueness is easy (it is initial in some category). For existence, construct $A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots$ as follows.

1 Let
$$A_0 = \emptyset$$
.

2 Let each A_{n+1} be A_n plus new images for all constructors acting on elements of A_n (that haven't been added yet).

This eventually converges.

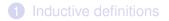
Example

For $\mathbb N$, we have $\emptyset \to \{0\} \to \{0,1\} \to \{0,1,2\} \to \cdots$

A slogan

An inductive definition is a precise description of a universal property for a set, from which we can automatically extract an iterative construction of that set.

Outline



From sets to spaces

Observation The iterative construction

$$A_0 \to A_1 \to A_2 \to \cdots$$

is a 0-dimensional cell complex. The constructors tell us when to glue in a new 0-cell.

From sets to spaces

Observation The iterative construction

$$A_0
ightarrow A_1
ightarrow A_2
ightarrow \cdots$$

is a 0-dimensional cell complex. The constructors tell us when to glue in a new 0-cell.

Question

Can we describe more general cell complexes with "inductive definitions"?

An "*n*-cell constructor" will need to specify, not just when to glue in a new *n*-cell, but what its attaching map should be.

Higher inductive definitions

Definition (Lumsdaine, S.)

A higher inductive definition of a space *A* is a list of constructor types, each of which has

- a domain $F_i(A)$; and
- a codomain which is one of
 - **1** A;
 - 2 the space of paths between two specified points of A;
 - 3 the space of homotopies between two specified paths in A;
 - 4 ...

Higher inductive definitions

Definition (Lumsdaine, S.)

A higher inductive definition of a space *A* is a list of constructor types, each of which has

- a domain $F_i(A)$; and
- a codomain which is one of
 - **1** A;
 - 2 the space of paths between two specified points of A;
 - 3 the space of homotopies between two specified paths in A;
 - 4 ...

Remark

Instead of "homotopies between two specified paths in *A*" we could say "nullhomotopies of a specified loop in *A*", or any other way to describe a 1-sphere in *A*. This way just matches the type theory better.

0 • 1

Example

The interval I is inductively defined by

- 1 a point $0 \in I$
- 2 a point $1 \in I$
- 3 a path 0 → 1

Thus *I* is initial in the category of spaces *X* equipped with two points $0_X, 1_X \in X$ and a path $0_X \rightsquigarrow 1_X$.

Example

The circle S^1 is inductively defined by

- 1 a point $0 \in S^1$
- 2 a path $0 \rightarrow 0$

NB: the path $0 \rightarrow 0$ is not the constant path!

Example

 S^1 is also inductively defined by

- 1 two points $0, 1 \in S^1$
- **2** two paths $0 \rightsquigarrow 1, 0 \rightsquigarrow 1$

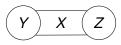
Example

The torus T^2 is inductively defined by

• a point
$$0 \in T^2$$

- 2 a path ℓ: 0 ~→ 0
- **3** a path $m: 0 \rightsquigarrow 0$
- 4 a path $\ell * m \rightsquigarrow m * \ell$ (where * denotes path concatenation)

Homotopy colimits



The homotopy pushout of $f: X \to Y$ and $g: X \to Z$ is inductively defined by

1 a map
$$h: Y \rightarrow P$$

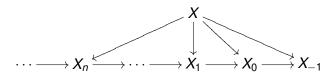
2 a map
$$k: Z \rightarrow P$$

3 for every $x \in X$, a path $h(f(x)) \rightsquigarrow k(g(x))$

Remark

Everything happens in the category of spaces, so all constructors are automatically continuous. In particular, $h(f(x)) \rightsquigarrow k(g(x))$ depends continuously on *x*.

Postnikov towers



The "very bottom" X_{-1} is

- empty if X is empty, and
- contractible if X is nonempty.
- It is inductively defined by
 - 1 a map $X \rightarrow X_{-1}$
 - **2** for every $x, y \in X_{-1}$, a path $x \rightsquigarrow y$

Remark

Again, the path $x \rightsquigarrow y$ depends continuously on x and y.

Postnikov towers, II

Similarly, X_0 is inductively defined by

- 1 a map $X \to X_0$
- **2** for any $x, y \in X_0$ and paths $\alpha, \beta \colon x \rightsquigarrow y$, a path $\alpha \rightsquigarrow \beta$.

X_1 is inductively defined by

- 1 a map $X \to X_1$
- 2 for any $x, y \in X_1$, any paths $\alpha, \beta \colon x \rightsquigarrow y$, and any paths $\mu, \nu \colon \alpha \rightsquigarrow \beta$, a path $\mu \rightsquigarrow \nu$.

and so on...

Constructing higher inductive types

Theorem

Any higher inductive definition defines an essentially unique space.

Proof.

Proceed as before, constructing $A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots$. This time, at each step we glue in cells of appropriate dimensions corresponding to all the constructors.

Given $f: A \to B$. Definition *Z* is *f*-local if Map(*B*,*Z*) $\xrightarrow{f^*}$ Map(*A*,*Z*) is an equivalence. An *f*-localization of *X* is an (up-to-homotopy) reflection of *X* into *f*-local spaces.

Given $f: A \rightarrow B$.

Definition

Z is *f*-local if Map(*B*,*Z*) $\xrightarrow{f^*}$ Map(*A*,*Z*) is an equivalence. An *f*-localization of *X* is an (up-to-homotopy) reflection of *X* into *f*-local spaces.

First try

The *f*-localization X_f of X is inductively defined by

$$1 a map X \to X_f$$

2 for any $g \colon A \to X_f$ and $b \in B$, a point $e_g(b) \in X_f$

- **(3)** for any $g: A \rightarrow X_f$ and $a \in A$, a path $e_g(f(a)) \rightsquigarrow g(a)$
- 4 for any $h: B \to X_f$ and $b \in B$, a path $e_{h \circ f}(b) \rightsquigarrow h(b)$

Idea: $g \mapsto e_g$ defines Map(A, X_f) \rightarrow Map(B, X_f), and the two path-constructors make it a homotopy inverse to f^* .

- This space X_f is f-local.
- But it is not the *f*-localization of *X*: it is (homotopy) initial among spaces under *X* equipped with a chosen homotopy inverse to *f*^{*}.
- We need "homotopy equivalence data" for *f** which lives in a contractible space.

Second try (this one works)

The *f*-localization X_f of X is inductively defined by

1 a map
$$X \to X_f$$

2 for $g: A \rightarrow X_f$ and $b \in B$, a point $e_g(b) \in X_f$

- **3** for $g: A \rightarrow X_f$ and $a \in A$, a path $\sigma_g(a): e_g(f(a)) \rightsquigarrow g(a)$
- 4 for $h: B \to X_f$ and $b \in B$, a path $\rho_h(b): e_{h \circ f}(b) \rightsquigarrow h(b)$
- **5** for $h: B \to X_f$ and $a \in A$, a path $\rho_h(f(a)) \rightsquigarrow \sigma_{h \circ f}(a)$

Third try (this one works too)

The *f*-localization X_f of X is inductively defined by

$$1 a map X \to X_f$$

- 2 for $g: A \to X_f$ and $b \in B$, a point $e_q^1(b) \in X_f$
- 3 for $g : A \to X_f$ and $b \in B$, a point $e_g^2(b) \in X_f$
- 4 for $g: A \to X_f$ and $a \in A$, a path $\sigma_g(a): e_g^1(f(a)) \rightsquigarrow g(a)$
- **6** for $h: B \to X_f$ and $b \in B$, a path $\rho_h(b): e_{hof}^2(b) \rightsquigarrow h(b)$

Spectrification

Definition

A prespectrum is a sequence of pointed spaces $\{X_n \mid n \in \mathbb{N}\}$ and maps $\gamma_n \colon X_n \to \Omega X_{n+1}$.

It is an $(\Omega$ -)spectrum if each γ_n is an equivalence.

Spectrification

Definition

A prespectrum is a sequence of pointed spaces $\{X_n \mid n \in \mathbb{N}\}$ and maps $\gamma_n \colon X_n \to \Omega X_{n+1}$.

It is an (Ω -)spectrum if each γ_n is an equivalence.

The spectrification $\{LX_n\}$ of $\{X_n\}$ is inductively defined by

- **1** maps $\ell_n \colon X_n \to LX_n$
- 2 for each $x \in LX_n$, a path $\ell_{n+1}(*) \rightsquigarrow \ell_{n+1}(*)$ (i.e. a map $L\gamma_n \colon LX_n \to \Omega(LX_{n+1})$)
- **3** for each $x \in X_n$, a path $L\gamma_n(\ell_n(x)) \rightsquigarrow (\Omega\ell_{n+1})(\gamma_n(x))$
- **4** data making each $L\gamma_n$ an equivalence, as for localization.

Concluding slogan

A higher inductive definition is a precise description of a universal property for a space, from which we can automatically extract an iterative construction of that space.

More Information

http://www.homotopytypetheory.org