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for homotopy theory

That means. . .

• Types form a model category (almost) with equivalences,
fibrations, cofibrations

• We care about homotopically meaningful constructions
• . . .
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type theory is a language
for homotopy theory

That means. . .

• Type theory is a formal system, like ZFC
• Homotopy theory can be formalized in type theory

What is this good for?

• A more direct formalization than in ZFC
• A more computer-friendly formal system than ZFC
• The same proof can apply to many homotopy theories

(equivariant, parametrized, sheaves, . . . )
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The natural numbers

Definition
The natural numbers N are inductively defined by

1 an element 0 ∈ N
2 an operation s : N→ N.

What does this mean?



The natural numbers

Definition
The natural numbers N are inductively defined by

1 an element 0 ∈ N
2 an operation s : N→ N.

What does this mean?

Answer #1

• 0 is a natural number;
• for any natural number x there is another called s(x);
• and every natural number is constructed in exactly one of

these ways.



The natural numbers

Definition
The natural numbers N are inductively defined by

1 an element 0 ∈ N
2 an operation s : N→ N.

What does this mean?

Answer #2

• (N,0, s) is an initial object in the category whose objects
are triples (X , 0x ∈ X , sX : X → X ).



More inductive definitions

Example
For any set X , the set LX of finite lists of elements of X is
inductively defined by

1 the empty list ε ∈ LX

2 the “cons” operation X × LX → LX .

Example
The set T of finite binary rooted trees is inductively defined by

1 a leaf node ` ∈ T
2 a “branch node” operation T × T → T .
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Inductive definitions

Definition
An inductive definition of a set A is a list of constructor types

Fi(A)→ A

where each Fi is an endofunctor of Set.

• For N, we have F0(A) = 1, F1(A) = A.
• For LX , we have F0(A) = 1, F1(A) = X × A.
• For T , we have F0(A) = 1, F1(A) = A× A.

The set being defined is the initial object of the category of sets
equipped with such constructor maps.



Non-recursive inductive definitions

The domains of the constructors don’t have to involve A at all.

Examples

• For any sets X and Y , their disjoint union X t Y is
inductively defined by

1 a function X → X t Y
2 a function Y → X t Y

• A three-element set Z is inductively defined by
1 An element a ∈ Z
2 An element b ∈ Z
3 An element c ∈ Z

• The empty set ∅ is inductively defined by
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Constructing inductively defined sets

Theorem
Any inductive definition defines an essentially unique set.

Proof.
Uniqueness is easy (it is initial in some category). For
existence, construct A0 → A1 → A2 → · · · as follows.

1 Let A0 = ∅.
2 Let each An+1 be An plus new images for all constructors

acting on elements of An (that haven’t been added yet).
This eventually converges.

Example
For N, we have ∅ → {0} → {0,1} → {0,1,2} → · · ·
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A slogan

An inductive definition is a precise description of a universal
property for a set, from which we can automatically extract an
iterative construction of that set.
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From sets to spaces

Observation
The iterative construction

A0 → A1 → A2 → · · ·

is a 0-dimensional cell complex. The constructors tell us when
to glue in a new 0-cell.

Question
Can we describe more general cell complexes with “inductive
definitions”?
An “n-cell constructor” will need to specify, not just when to glue
in a new n-cell, but what its attaching map should be.
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Higher inductive definitions

Definition (Lumsdaine, S.)
A higher inductive definition of a space A is a list of constructor
types, each of which has
• a domain Fi(A); and
• a codomain which is one of

1 A;
2 the space of paths between two specified points of A;
3 the space of homotopies between two specified paths in A;
4 · · ·

Remark
Instead of “homotopies between two specified paths in A” we
could say “nullhomotopies of a specified loop in A”, or any other
way to describe a 1-sphere in A. This way just matches the
type theory better.
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Cell complexes as higher induction

0 1

Example
The interval I is inductively defined by

1 a point 0 ∈ I
2 a point 1 ∈ I
3 a path 0 1

Thus I is initial in the category of spaces X equipped with two
points 0X ,1X ∈ X and a path 0X  1X .



Cell complexes as higher induction

0

Example
The circle S1 is inductively defined by

1 a point 0 ∈ S1

2 a path 0 0

NB: the path 0 0 is not the constant path!



Cell complexes as higher induction

0 1

Example
S1 is also inductively defined by

1 two points 0,1 ∈ S1

2 two paths 0 1, 0 1



Cell complexes as higher induction
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Example
The torus T 2 is inductively defined by

1 a point 0 ∈ T 2

2 a path ` : 0 0
3 a path m : 0 0
4 a path ` ∗m m ∗ ` (where ∗ denotes path concatenation)



Homotopy colimits

Y ZX

The homotopy pushout of f : X → Y and g : X → Z is
inductively defined by

1 a map h : Y → P
2 a map k : Z → P
3 for every x ∈ X , a path h(f (x)) k(g(x))

Remark
Everything happens in the category of spaces, so all
constructors are automatically continuous. In particular,
h(f (x)) k(g(x)) depends continuously on x .



Postnikov towers

X
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. . . // Xn // . . . // X1 // X0 // X−1

The “very bottom” X−1 is
• empty if X is empty, and
• contractible if X is nonempty.

It is inductively defined by
1 a map X → X−1

2 for every x , y ∈ X−1, a path x  y

Remark
Again, the path x  y depends continuously on x and y .



Postnikov towers, II

Similarly, X0 is inductively defined by
1 a map X → X0

2 for any x , y ∈ X0 and paths α, β : x  y , a path α β.

X1 is inductively defined by
1 a map X → X1

2 for any x , y ∈ X1, any paths α, β : x  y , and any paths
µ, ν : α β, a path µ ν.

and so on. . .



Constructing higher inductive types

Theorem
Any higher inductive definition defines an essentially unique
space.

Proof.
Proceed as before, constructing A0 → A1 → A2 → · · · .
This time, at each step we glue in cells of appropriate
dimensions corresponding to all the constructors.



Localization

Given f : A→ B.

Definition
Z is f -local if Map(B,Z )

f∗−→ Map(A,Z ) is an equivalence.
An f -localization of X is an (up-to-homotopy) reflection of X into
f -local spaces.

First try
The f -localization Xf of X is inductively defined by

1 a map X → Xf

2 for any g : A→ Xf and b ∈ B, a point eg(b) ∈ Xf

3 for any g : A→ Xf and a ∈ A, a path eg(f (a)) g(a)

4 for any h : B → Xf and b ∈ B, a path eh◦f (b) h(b)

Idea: g 7→ eg defines Map(A,Xf )→ Map(B,Xf ), and the two
path-constructors make it a homotopy inverse to f ∗.
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Localization

• This space Xf is f -local.
• But it is not the f -localization of X : it is (homotopy) initial

among spaces under X equipped with a chosen homotopy
inverse to f ∗.

• We need “homotopy equivalence data” for f ∗ which lives in
a contractible space.



Localization

Second try (this one works)
The f -localization Xf of X is inductively defined by

1 a map X → Xf

2 for g : A→ Xf and b ∈ B, a point eg(b) ∈ Xf

3 for g : A→ Xf and a ∈ A, a path σg(a) : eg(f (a)) g(a)

4 for h : B → Xf and b ∈ B, a path ρh(b) : eh◦f (b) h(b)

5 for h : B → Xf and a ∈ A, a path ρh(f (a)) σh◦f (a)



Localization

Third try (this one works too)
The f -localization Xf of X is inductively defined by

1 a map X → Xf

2 for g : A→ Xf and b ∈ B, a point e1
g(b) ∈ Xf

3 for g : A→ Xf and b ∈ B, a point e2
g(b) ∈ Xf

4 for g : A→ Xf and a ∈ A, a path σg(a) : e1
g(f (a)) g(a)

5 for h : B → Xf and b ∈ B, a path ρh(b) : e2
h◦f (b) h(b)



Spectrification

Definition
A prespectrum is a sequence of pointed spaces {Xn | n ∈ N}
and maps γn : Xn → ΩXn+1.
It is an (Ω-)spectrum if each γn is an equivalence.

The spectrification {LXn} of {Xn} is inductively defined by
1 maps `n : Xn → LXn

2 for each x ∈ LXn, a path `n+1(∗) `n+1(∗)
(i.e. a map Lγn : LXn → Ω(LXn+1))

3 for each x ∈ Xn, a path Lγn(`n(x)) (Ω`n+1)(γn(x))

4 data making each Lγn an equivalence, as for localization.
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Concluding slogan

A higher inductive definition is a precise description of a
universal property for a space, from which we can automatically
extract an iterative construction of that space.



More Information

http://www.homotopy type theory.org

http://www.homotopytypetheory.org
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