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Here we go

Theorem

Every Grothendieck (∞, 1)-topos can be presented by a model
category that interprets “Book” Homotopy Type Theory with:

• Σ-types, a unit type, Π-types with function extensionality, and
identity types.

• Strict universes, closed under all the above type formers, and
satisfying univalence and the propositional resizing axiom.
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Some caveats

1 Classical metatheory: ZFC with inaccessible cardinals.

2 Classical homotopy theory: simplicial sets. (It’s not clear which
cubical sets can even model the (∞, 1)-topos of ∞-groupoids.)

3 Will not mention “elementary (∞, 1)-toposes” (though we can
deduce partial results about them by Yoneda embedding).

4 Not the full “internal language hypothesis” that some
“homotopy theory of type theories” is equivalent to the
homotopy theory of some kind of (∞, 1)-category.
Only a unidirectional interpretation — in the useful direction!

5 We assume the initiality hypothesis: a “model of type theory”
means a CwF.
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Fibrations as types

Standard categorical semantics of dependent type theory is:

• A category whose objects represent “types” or “contexts”.

• A class of “display maps” B � A representing dependent types
x : A ` B(x) type.

• Sections of a display map represent terms x : A ` b(x) : B(x).

• Further structure corresponding to all the rules of type theory.

Theorem (Awodey–Warren)

The elimination rule for identity types says exactly that the
reflexivity term A→ IdA has the left lifting property with respect to
the display maps. Thus, if we regard display maps as fibrations,
then identity types are path objects.
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Type-theoretic model categories

Any Quillen model category E models type theory with fibrations as
display maps. The question is which additional rules it also models.

• E always has a unit type and Σ-types (fibrations contain the
identities and are closed under composition).
• If E is locally cartesian closed, and for any fibration f the

dependent product f∗ preserves fibrations and acyclic fibrations,
then E has Π-types satisfying function extensionality.
• Equivalent to f ∗ preserving acyclic cofibrations and cofibrations.
• Since f ∗ always preserves acyclic fibrations, this is equivalent to

it preserving weak equivalences and cofibrations.
• Hence it follows if E is right proper and cofibration = mono.

• If f ∗ preserves acyclic cofibrations for any fibration f , then E
has identity types (they have to be pullback-stable).

We also need a coherence theorem, e.g. Lumsdaine–Warren local
universes, or Voevodsky universes.
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Higher inductive types

Theorem (Lumsdaine–S.)

If E is right proper, combinatorial, simplicial, simplicially locally
cartesian closed, and its cofibrations are the monomorphisms, then
it also has most higher inductive types.

“Build them 1-categorically,
mixing in fibrant replacement algebraically.”
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Everything but universes

Theorem (Summary)

Every locally cartesian closed, locally presentable (∞, 1)-category
admits the structure of a model of Homotopy Type Theory with:

• Σ-types, a unit type, Π-types with function extensionality, and
identity types.

• Most higher inductive types.

Proof.

Gepner–Kock presented any such (∞, 1)-category as a
semi-left-exact localization of an injective model structure on
simplicial presheaves, which has all these properties.
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What about universes?

• Say a morphism is κ-small if it has κ-small fibers.

• Every Grothendieck (∞, 1)-topos has object classifiers for
κ-small morphisms, which satisfy univalence (Rezk, Lurie,
Gepner–Kock).

• If κ is inaccessible, the κ-small morphisms are closed under
everything. . . at the (∞, 1)-category level.

• But in type theory, if A : U and B : A→ U then
∏

x :A B(x)
must literally be an element of U , not just equivalent to one.
Coherence theorems can weaken this to isomorphism in models,
but not (yet) to equivalence.

• We need a κ-small fibration π : Ũ → U such that every κ-small
fibration is a 1-categorical pullback of π.
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Universes in presheaves

Definition

If E = [[[C op, Set]]] is a presheaf category, define a presheaf U where
U(c) is the “set” of κ-small fibrations over the representable
yc = C (−, c). For γ : c1 → c2, the functorial action
U(c2)→ U(c1) is by pullback along yγ : yc1 → yc2 .

This takes a bit of work to make precise:

• U(c) must be a set containing at least one representative for
each isomorphism class of such κ-small fibrations,

• Chosen cleverly to make pullback strictly functorial.
Will not discuss this today, nothing is really new here.
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Universes in presheaves, II

Similarly, we can define Ũ to consist of κ-small fibrations equipped
with a section. We have a κ-small projection π : Ũ → U.

Theorem

Every κ-small fibration is a pullback of π.

But π may not itself be a fibration! All we can say is that its
pullback along any map x : yc → U, with yc representable, is a
fibration (namely the fibration that “is” x ∈ U(c)).



Review: model categories for type theory Left exact localizations Injective fibrations

Universes in presheaves, III

Theorem

If the generating acyclic cofibrations in E = [[[C op,Set]]] have
representable codomains, then π : Ũ → U is a fibration.

Proof.

To lift in the left square, we can instead lift in the right square,
whose right map is a fibration.

A Ũ

yc U

∼ π

A yc ×U Ũ

yc yc

∼
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Presheaf universes that do exist

There’s more to prove (U is fibrant, and univalence holds), but this
is the crux of the matter. Thus we get known examples:

Example

In simplicial sets, the generating acyclic cofibrations are
Λk [n]→ ∆[n], where ∆[n] is representable.

Example

In simplicial presheaves on an inverse (or elegant Reedy) category
R, the generating acyclic cofibrations are

(∆[n]× ∂R(−, x)) ∪ (Λk [n]×R(−, x))→ ∆[n]×R(−, x)

and ∆[n]×R(−, x) is representable by (n, x) ∈ �×R.
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The Plan

• A Grothendieck (∞, 1)-topos is, by definition, an accessible left
exact localization of a presheaf (∞, 1)-category.

• It can therefore be presented by an accessible left exact
localization of an injective model structure on simplicial
presheaves, which we know models all of homotopy type theory
except universes.

Thus it will suffice to:

1 Understand injective model structures.

2 Understand left exact localizations.

We take these in reverse order.



Review: model categories for type theory Left exact localizations Injective fibrations

Outline

1 Review: model categories for type theory

2 Left exact localizations

3 Injective fibrations



Review: model categories for type theory Left exact localizations Injective fibrations

Accessible lex modalities

Definition (in HoTT)

A reflective subuniverse consists of

• A predicate in♦ : U → Prop. If in♦(X ) we say X is modal.

• A reflector ♦ : U → U with units ηX : X → ♦X .

• For all X , the type ♦X is modal.

• If Y is modal, then (− ◦ ηX ) : (♦X → Y )→ (X → Y ) is an
equivalence.

It is a lex modality if in addition

• ♦ preserves pullbacks.

A lex modality is accessible if

• There exists B : A→ U such that X is modal if and only if for
all a : A the map X → (Ba → X ) is an equivalence.
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Modal type operations

Theorem (in HoTT)

If ♦ is an accessible lex modality, then:

1 If A is modal and x , y : A, then x = y is modal.

2 If A is modal, and B : A→ U is such that each B(x) is modal,
then

∑
x :A B(x) and

∏
x :A B(x) are modal.

3 The universe of modal types
∑

X :U in♦(X ) is modal.

4 We can construct “modal higher inductive types” by adding a
nullification constructor to the others of a given HIT.



Review: model categories for type theory Left exact localizations Injective fibrations

Modeling type theory with lex modalities

Theorem

If E is a model category that interprets homotopy type theory (with
universes), and ♦ is an accessible lex modality in the internal type
theory of E , then there is a corresponding localization of E that
also interprets homotopy type theory.

We essentially knew this already back at the IAS special year.

The subtle problem is that it’s not clear that every external
accessible left exact localization of E induces an internal accessible
lex modality!
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Fiberwise reflections

Because a reflective subuniverse is a map ♦ : U → U , it induces a
reflective subcategory not just of E but of all slice categories of E :

Y Ũ

X U

y
π  

♦XY Ũ

X U U

y π

♦

If ♦ is a lex modality, then each ♦X is a left exact reflection.
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From localizations to modalities

If L : E → E is an accessible left exact localization at some set of
maps S , there are two ways to try to extend it to slice categories:

1 Localize E /X at the pullback class X ∗(S). This yields an
accessible reflective subcategory of E /X , but it is not clear
that it is left exact.

2 Construct the “reflective factorization system”:

Y LXY LY

X LX

y

This yields a left exact reflective subcategory of E /X , but it is
not clear that this family of reflective subcategories is
accessible in the internal sense.



Review: model categories for type theory Left exact localizations Injective fibrations

Pulling back left exactness

Theorem (Anel–Biedermann–Finster–Joyal, 2019)

If S is closed under diagonals and pullbacks to a generating set,
then S-localization is left exact. Every left exact localization can be
obtained from such an S .

This property of S is preserved by pullback to X . Thus localizing
E /X at X ∗(S) is left exact, hence a lex modality.

Theorem

If E interprets homotopy type theory (with universes), then so does
any accessible left exact localization of it.
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Injective model structures

S = simplicial sets, D = a small simplicially enriched category.

Theorem

The category [[[Dop,S ]]] of simplicially enriched presheaves has an
injective model structure such that:

1 The weak equivalences are pointwise.

2 The cofibrations are pointwise, hence are the monomorphisms
in [[[Dop,S ]]].

3 It is right proper, combinatorial, simplicial, and simplicially
locally cartesian closed.

4 It presents the (∞, 1)-category of (∞, 1)-presheaves on the
small (∞, 1)-category presented by D .

So it models everything but universes.
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Why pointwise isn’t enough

Let D be unenriched for simplicity. When is X ∈ [[[Dop,S ]]]
injectively fibrant? We want to lift in

A X

B

i ∼

g

where i : A→ B is a pointwise acyclic cofibration.
If X is pointwise fibrant, then for all d ∈ D we have a lift

Ad Xd

Bd

id ∼

gd

hd

but these may not fit together into a natural transformation B → X .
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Naturality up to homotopy

Naturality would mean that for any δ : d1 → d2 in D we have
Xδ ◦ hd2 = hd1 ◦ Bδ. This may not hold, but we do have

Xδ ◦ hd2 ◦ id2 = Xδ ◦ gd2 = gd1 ◦ Aδ = hd1 ◦ id1 ◦ Aδ = hd1 ◦ Bδ ◦ id2 .

Thus, Xδ ◦ hd2 and hd1 ◦ Bδ are both lifts in the following:

Ad2 Xd1

Bd2

id2 ∼

Since lifts between acyclic cofibrations and fibrations are unique up
to homotopy, we do have a homotopy

hδ : Xδ ◦ hd2 ∼ hd1 ◦ Bδ.



Review: model categories for type theory Left exact localizations Injective fibrations

Coherent naturality

Similarly, given d1
δ1−→ d2

δ2−→ d3, we have a triangle of homotopies

Xδ2δ1 ◦ hd3 hd1 ◦ Bδ2δ1

Xδ2 ◦ hd2 ◦ Bδ1

hδ1

hδ2δ1

hδ2

whose vertices are lifts in the following:

Ad3 Xd1

Bd3

id3 ∼

Thus, homotopy uniqueness of lifts gives us a 2-simplex filler.
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Homotopy coherent natural transformations

For X ,Y ∈ [[[Dop,S ]]], a homotopy coherent natural transformation
h : X ù Y consists of:

• For every d ∈ D , a morphism hd : Xd → Yd .

• For every d1
δ−→ d2 in D , a homotopy hδ : ∆[1]→ E (Xd2 ,Yd1)

between Yδ ◦ hd2 and hd1 ◦ Xδ, such that hidd is constant.

• For every d1
δ1−→ d2

δ2−→ d3 in D , a 2-simplex
hδ1,δ2 : ∆[2]→ E (Xd3 ,Yd1) whose boundaries involve hδ1 , hδ2 ,
and hδ2δ1 , satisfying similar constancy conditions.

• And so on.

Where G is right adjoint to the forgetful U : [[[Dop,S ]]]→ S ob D

(G is the “cofree presheaf” on a family of objects).
In fact (GZ )d1 =

∏
δ:d1→d2

Zd2 .
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• And so on.

Where G is right adjoint to the forgetful U : [[[Dop,S ]]]→ S ob D

(G is the “cofree presheaf” on a family of objects).
In fact (GZ )d1 =

∏
δ:d1→d2

Zd2 .



Review: model categories for type theory Left exact localizations Injective fibrations

Homotopy coherent natural transformations

For X ,Y ∈ [[[Dop,S ]]], a homotopy coherent natural transformation
h : X ù Y consists of:

• A natural transformation X → G (Y?).

• A natural transformation X → G
(∏

δ:d1→? Y
∆[1]
d1

)
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d1
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Homotopy coherent natural transformations

For X ,Y ∈ [[[Dop,S ]]], a homotopy coherent natural transformation
h : X ù Y consists of:

• A natural transformation X → GUY .

• A natural transformation X → GUGUY ∆[1]

with suitable conditions.

• A natural transformation
X → GUGUGUY ∆[2] with suitable conditions.

• And so on.

Where G is right adjoint to the forgetful U : [[[Dop,S ]]]→ S ob D

(G is the “cofree presheaf” on a family of objects).
In fact (GZ )d1 =

∏
δ:d1→d2

Zd2 .
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Homotopy coherent natural transformations

For X ,Y ∈ [[[Dop,S ]]], a homotopy coherent natural transformation
h : X ù Y consists of:

• A natural transformation X → CD(Y ).

Where G is right adjoint to the forgetful U : [[[Dop,S ]]]→ S ob D

(G is the “cofree presheaf” on a family of objects).
and the cobar construction CD(Y ) is the totalization of the
cosimplicial object

GU GUGUY GUGUGUY · · ·
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The coherent morphism coclassifier

Conclusion

CD(Y ) is the coclassifier of coherent transformations: we have a
natural bijection

h : X ù Y

h : X → CD(Y )

Some more facts:

• The (strictly natural) identity X ù X corresponds to a
canonical map νX : X → CD(X ).

• If h : X → Y is strict, then h : X → CD(Y ) factors as
h = νY ◦ h.

• νX is always a pointwise acyclic cofibration!
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Injective fibrancy

Theorem

X ∈ [[[Dop,S ]]] is injectively fibrant if and only if it is pointwise
fibrant and νX : X → CD(X ) has a retraction r : CD(X )→ X .
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Injective fibrancy

Theorem

X ∈ [[[Dop,S ]]] is injectively fibrant if and only if it is pointwise
fibrant and νX : X → CD(X ) has a retraction r : CD(X )→ X .

Proof of “only if”.

If X ∈ [[[Dop,S ]]] is injectively fibrant, then since νX is a pointwise
acyclic cofibration we have a lift:

X X

CD(X )

νX r
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Injective fibrancy

Theorem

X ∈ [[[Dop,S ]]] is injectively fibrant if and only if it is pointwise
fibrant and νX : X → CD(X ) has a retraction r : CD(X )→ X .

Proof of “if”.

Given a pointwise acyclic cofibration i : A→ B and a map
g : A→ X , we construct a coherent h : B ù X with h ◦ i = g .

A X

B

g

i
h

A X

B

g

i
k

We have h : B → CD(X ); define k = r ◦ h : B → X . Since h ◦ i = g
is strict, h ◦ i = νX ◦ g , and k ◦ i = r ◦ h ◦ i = r ◦ νX ◦ g = g .
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Injective fibrations

Given f : X → Y , define a factorization by pullback:

X

Ef CD(X )

Y CD(Y )

λf
νX

f νf

ρf y CD(f )

νY

Theorem

f : X → Y is an injective fibration if and only if it is a pointwise
fibration and λf has a retraction r : Ef → X over Y .
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Remarks

1 This characterization is not “cofibrantly generated”: we still
don’t know anything about the generating acyclic cofibrations.

2 Dually, projective cofibrations can sometimes∗ be characterized
as retracts of their bar constructions. In 2-category theory
these are called flexible objects, previously known to coincide
with projectively cofibrant ones (Lack 2007).

∗ though not for simplicial sets
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Semi-algebraic fibrations

Because we didn’t say anything about the generating acyclic
cofibrations, we can’t use the same trick as before to prove the
universe is fibrant. But we can do something else.

Definition

A semi-algebraic injective fibration is a map f : X → Y with

1 The property of being a pointwise fibration, and

2 The structure of a retraction for λf .

• Pullback preserves semi-algebraic injective fibration structures.

• f is an injective fibration iff it has some such structure.
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Universes for injective fibrations

It is a fact that [[[Dop,S ]]] ' [[[C op, Set]]] for some ordinary small
category C = � o D .

Definition

Define U ∈ [[[Dop,S ]]] ' [[[C op, Set]]], where for c ∈ C , U(c) is a set
of κ-small semi-algebraic injective fibrations over yc = C (−, c).
The functorial actions are by pullback.

Similarly, we define Ũ using sectioned fibrations, and π : Ũ → U.
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The universal fibration is a fibration

Theorem

π : Ũ → U is a (semi-algebraic) injective fibration.

Proof.

We have U = colimx∈U(c) yc . Then x∗π : x∗Ũ → yc is a
semi-algebraic injective fibration for all x : yc → U, and pullback
along any yc ′ → yc is compatible with these structures.

The functorial factorization E preserves pullbacks, and pullbacks
preserve colimits, so Eπ = colimx∈U(c) Ex∗π, and the compatible
retractions for λx∗π induce a retraction for λπ.
(Note π is a pointwise fibration, by the same representable-
codomain arguments as before.)

As before, this is the crux of the matter; the rest is straightforward.
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Conclusion

Theorem

Every Grothendieck (∞, 1)-topos can be presented by a model
category that interprets homotopy type theory, with strict univalent
universes closed under Σ-, Π-, and identity types.

Proof.

Present it as an accessible left exact localization of an injective
model structure on simplicial presheaves [[[Dop,S ]]]. Then [[[Dop,S ]]]
has a universe, hence so does the localization.
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