
From HoTT to HOTT
Autonomy in new foundations for mathematics

Michael Shulman

University of San Diego

January 31, 2024
“Is Philosophy Useful for Science, and/or Vice Versa?”

Chapman University

About this talk

This talk is essentially an extended personal anecdote,
illustrating one way that philosophy can be useful for science.

1 I am a mathematician, albeit with a “philosophical bone”.

2 We have proposed Homotopy type theory (HoTT) as a
new foundation for mathematics.

3 Philosophers have critiqued this proposal, clarifying what such
a claim should mean.

4 In response, we are formulating Higher Observational Type
Theory (HOTT), with a better claim to be foundational, and
which may have mathematical advantages as well.

Outline

1 Martin-Löf Type Theory

2 Homotopy Type Theory

3 Philosophical Autonomy

4 Higher Observational Type Theory

Theory of types

The theory of types is intended to be a full scale system for
formalizing intuitionistic mathematics as developed, for example,
in the book by Bishop 1967. . .

[A] mathematical object is always given together with its type,
that is, it is not just an object, it is an object of a certain type.
This may be regarded as a simpler and at the same time more
general formulation of Russell’s 1903 doctrine of types. . .

A type is defined by prescribing what we have to do in order
to construct an object of that type. This is almost verbatim
the definition of the notion of set given by Bishop. . . a type is
welldefined if we understand. . . what it means to be an object
of that type. Thus. . .N → N is a type not because we know
particular number theoretic functions. . . but because we think we
understand the notion of number theoretic function in general.

– Martin-Löf, “An intuitionistic theory of types”, 1975

Nowadays, we write a : A to mean that a is an object of type A.

Propositions as types

A proposition is defined by prescribing how we are allowed to
prove it.. . . For example

971 is a non prime number

is the proposition which we prove by exhibiting two natural
numbers greater than one and a computation which shows that
their product equals 971. . . . it will not be necessary to introduce
the notion of proposition as a separate notion because we can
represent each proposition by a certain type, namely, the type
of proofs of that proposition.. . .

Conversely, each type determines . . . the proposition that the
type in question is nonempty. . . which we prove by exhibiting
an object of the type in question. . . . the difference [between
propositions and types] is one of point of view: in the case of a
proposition, we are not so much interested in what its proofs are
as in whether it has a proof. . . whereas in the case of a type, we
are of course interested in what its objects are and not only in
whether it is empty or nonempty.

– Martin-Löf, “An intuitionistic theory of types: predicative part”, 1975

Sets in logic vs. logic in types

first-order logic ∧,∨,∀,∃

axioms of set theory

x ∈ A

ML Type Theory

x : A

propositions as types

∧,∨, ∀, ∃

Propositions-as-types = the Curry–Howard correspondence

Example: dependent function-types

Suppose now that A is a type and that B is a function. . . which
to an arbitrary object a of type A assigns a type B(a).
Then. . . (x : A) → B(x) is. . . the type of functions which take
an arbitrary object a of type A into an object of type B(a).. . .

When B(a) represents a proposition. . . [this type] represents the
universal proposition ∀(x : A)B(x). A proof of ∀(x : A)B(x) is
a function which to an arbitrary object a of type A assigns a
proof of B(a).. . .

When A and B both represent propositions, [this type] represents
the implication A → B. A proof of A → B is a function which
takes an arbitrary proof of A into a proof of B.

– Martin-Löf, “An intuitionistic theory of types”, 1975

[Here and elsewhere, I’ve updated notation and punctuation to align with
modern usage, and added emphasis in some places.]

Elements of function-types

Each type has some rules that tell us what its elements are:

. . . if we, starting from a variable x that denotes an arbitrary
object of type A, build up a term b[x] that denotes an object
of type B(x), then we may define a function denoted λx .b[x] of
type (x : A) → B(x). . .

And others, determined by this, that say how we can use them:

We may apply an object b of type (x : A) → B(x) to an object
of type A, thereby getting an object b(a) of type B(a).. . .

– Martin-Löf, “An intuitionistic theory of types”, 1975

Example: The type of natural numbers

N is a type, namely the type of natural numbers.

Its elements are:

0 is an object of type N and, if n is an object of type N, so is its
successor s(n). These are the first two Peano axioms.

which determines how we can use them:

Let C be a function which to an arbitrary natural number assigns a
type. Then, given an object d of type C (0) and a function e of type
(x : N) → C(x) → C(s(x)), we may introduce a function of type
(x : N) → C(x) . . . by the recursion schema{

R(0, d , e) = d ,

R(s(n), d , e) = e(n,R(n, d , e))

If C(n) represents a proposition for every natural number n, then R
is the proof of the universal proposition ∀(x : N)C(x) which we get
by applying the principle of mathematical induction.

– Martin-Löf, “An intuitionistic theory of types”, 1975

Very important example: Identity types

If x and y are objects of. . . the same type A, then IdA(x , y) is a
proposition, namely, the proposition that x and y are identical.

Its elements are:

[I]f x is an arbitrary object of type A, then reflx is a proof of IdA(x , x)

which determines how we can use them:

Let C be a ternary function which to an arbitrary pair of objects x
and y of type A and a proof of IdA(x , y) assigns a type. Given a unary
function g [of type (x : A) → C(x , x , reflx)], we may then define a
ternary function f [of type (x : A)(y : A)(z : IdA(x , y)) → C (x , y , z)]
by the schema

f (x , x , reflx) = g(x).

. . . In particular, [this implies] the usual eliminatory axiom of identity

∀(x : A) ∀(y : A)
(
IdA(x , y) →

(
C(x) → C(y)

))
.

– Martin-Löf, “An intuitionistic theory of types: predicative part”, 1975

Example: Universes

. . . we introduce a type “ U” which will be called a universe
and whose objects are to be types, together with the reflection
principle. . . that whatever we are used to doing with types can
be done inside the universe. . .

• If A : U and B : A → U , then
(
(x : A) → B(x)

)
: U .

• N : U
• If A : U and a : A and b : A, then IdA(a, b) : U .
• etc.

. . . the reflection principle does not justify the axiom that U is
an object of type U . . . because then U would, so to say, have
to have been there already before we introduced it.. . .

[This] can be iterated so as to obtain a whole sequence of
universes U0,U1, . . . ,Un,

– Martin-Löf, “An intuitionistic theory of types: predicative part”, 1975

Constructive mathematics and computer programming

Theorem (Canonicity)

In MLTT, every closed expression (i.e. no free variables) reduces to
a canonical one obtained from the primitive rules for defining
elements of its type.

For instance, s(s(0)) + s(s(0)) : N reduces to s(s(s(s(0)))).
This makes MLTT a dependently typed programming language.

In addition, a machine implementation of MLTT yields a ‘proof
assistant’ to formally verify constructive mathematics
(or classical mathematics, by assuming LEM).

Outline

1 Martin-Löf Type Theory

2 Homotopy Type Theory

3 Philosophical Autonomy

4 Higher Observational Type Theory

Uniqueness of identity proofs

It is now a natural question to ask. . . whether any two
elements of an identity [type] are equal. We will call [the
latter] Uniqueness of Identity Proofs.. . .

. . . the intuition that a type is determined by its canonical
objects might be seen as evidence for the validity of UIP,
as the identity [types] have at most one canonical element
corresponding to a proof of reflexivity.

– Hofmann–Streicher, “The groupoid interpretation of type theory”, 1996

The topological interpretation
(Hofmann–Streicher 1996, Awodey–Warren 2009, Voevodsky 2009)

We can interpret each type A as a space JAK.
Then JIdA(x , y)K is the space of paths from JxK to JyK.

Two paths from JxK to JyK might not
be connected by any path in the “space
of paths”, so UIP fails.

JxK JyK

Uniqueness of identity proofs

It is now a natural question to ask. . . whether any two
elements of an identity [type] are equal. We will call [the
latter] Uniqueness of Identity Proofs.. . .

. . . the intuition that a type is determined by its canonical
objects might be seen as evidence for the validity of UIP,
as the identity [types] have at most one canonical element
corresponding to a proof of reflexivity.

– Hofmann–Streicher, “The groupoid interpretation of type theory”, 1996

The topological interpretation
(Hofmann–Streicher 1996, Awodey–Warren 2009, Voevodsky 2009)

We can interpret each type A as a space JAK.
Then JIdA(x , y)K is the space of paths from JxK to JyK.

Two paths from JxK to JyK might not
be connected by any path in the “space
of paths”, so UIP fails.

JxK JyK

Anima

More generally∗, we can interpret types as anima1, consisting of

• A set X0 of objects or 0-cells.

• For x , y ∈ X0, a set X1(x , y) whose elements are called equivalences,
paths, identifications, or 1-cells.

• For e, f ∈ X1(x , y), a set X2(e, f) of 2-cells.

• Similarly, sets Xn(. . .) of n-cells for all n ∈ N.
• Reflexivity, transitivity, symmetry, and infinite higher ops.

Anima are everywhere in mathematics. Almost any “collection” has a
natural notion of identification between its elements.

• Any set, equalities, equalities, equalities,. . .

• Any space, paths, deformations, higher deformations, . . .

• Sets, bijections, equalities, equalities, . . .

• Groups, isomorphisms, equalities, equalities, . . .

• Categories, equivalences, natural isomorphisms, equalities, . . .

1a.k.a. ∞-groupoids — the name “anima” is due to Clausen and Scholze

Anima

More generally∗, we can interpret types as anima1, consisting of

• A set X0 of objects or 0-cells.

• For x , y ∈ X0, a set X1(x , y) whose elements are called equivalences,
paths, identifications, or 1-cells.

• For e, f ∈ X1(x , y), a set X2(e, f) of 2-cells.

• Similarly, sets Xn(. . .) of n-cells for all n ∈ N.
• Reflexivity, transitivity, symmetry, and infinite higher ops.

Anima are everywhere in mathematics. Almost any “collection” has a
natural notion of identification between its elements.

• Any set, equalities, equalities, equalities,. . .

• Any space, paths, deformations, higher deformations, . . .

• Sets, bijections, equalities, equalities, . . .

• Groups, isomorphisms, equalities, equalities, . . .

• Categories, equivalences, natural isomorphisms, equalities, . . .

1a.k.a. ∞-groupoids — the name “anima” is due to Clausen and Scholze

The anima-tion of mathematics

. . . after Cantor and Bourbaki . . . set theoretic mathematics
resides in our brains. When I first start talking about something,
I explain it in terms of Bourbaki-like structures . . . we start with
the discrete sets of Cantor, upon which we impose something
more in the style of Bourbaki.

But fundamental psychological changes also occur. . . . the
place of old forms and structures . . . is taken by some geometric,
right-brain objects.

. . . there is an ongoing reversal in the collective conscious-
ness of mathematicians: the. . . homotopical picture of the world
becomes the basic intuition, and if you want to get a discrete
set, then you pass to the set of connected components. . .

From Interview with Yuri Manin (by Mikhail Gelfand),
AMS Notices, October 2009

BUT in set theory, anima are complicated and hard to use.

http://www.ams.org/notices/200910/rtx091001268p.pdf

The anima-tion of mathematics

. . . after Cantor and Bourbaki . . . set theoretic mathematics
resides in our brains. When I first start talking about something,
I explain it in terms of Bourbaki-like structures . . . we start with
the discrete sets of Cantor, upon which we impose something
more in the style of Bourbaki.

But fundamental psychological changes also occur. . . . the
place of old forms and structures . . . is taken by some geometric,
right-brain objects.

. . . there is an ongoing reversal in the collective conscious-
ness of mathematicians: the. . . homotopical picture of the world
becomes the basic intuition, and if you want to get a discrete
set, then you pass to the set of connected components. . .

From Interview with Yuri Manin (by Mikhail Gelfand),
AMS Notices, October 2009

BUT in set theory, anima are complicated and hard to use.

http://www.ams.org/notices/200910/rtx091001268p.pdf

Homotopy type theory

A radical idea

Take the anima interpretation of MLTT as the intended one!

This allows us to work with anima synthetically, without needing
the complicated explicit definition in terms of sets.
We recover “sets”, up to isomorphism, as the “0-truncated” anima.

We need something to replace UIP, ensuring that types behave like
anima rather than sets.

The univalence axiom
(Voevodsky 2009, foreshadowed by Hofmann–Streicher 1996)

For types A : U and B : U , the type IdU (A,B) is equivalent to the
type of one-to-one correspondences between A and B.

Homotopy type theory

A radical idea

Take the anima interpretation of MLTT as the intended one!

This allows us to work with anima synthetically, without needing
the complicated explicit definition in terms of sets.
We recover “sets”, up to isomorphism, as the “0-truncated” anima.

We need something to replace UIP, ensuring that types behave like
anima rather than sets.

The univalence axiom
(Voevodsky 2009, foreshadowed by Hofmann–Streicher 1996)

For types A : U and B : U , the type IdU (A,B) is equivalent to the
type of one-to-one correspondences between A and B.

Univalent mathematics is structural mathematics

[T]he Principle of Structuralism [is that] isomorphic objects are
identical. . . .Within a mathematical theory, theorem, or proof,
it makes no practical difference which of two “isomorphic copies”
are used, and so they can be treated as the same mathematical
object for all practical purposes. . . . mathematicians have de-
veloped a sort of systematic sloppiness to help them implement
this principle. . . despite being . . . incompatible with conventional
foundations of mathematics in set theory.

– Steve Awodey, “Structuralism, invariance, and univalence”, 2014

For example, if G ∼= H are isomorphic groups, and G has some
property (cyclic, abelian, solvable, simple, . . .), then so does H.
But, 1 ∈ Z, whereas 1 /∈ 2Z.

In type theory with the univalence axiom, a group isomorphism
G ∼= H promotes to an identification s : IdGroup(G ,H), whence
substitution implies P(G) → P(H) for any property P.

Univalent foundations

This suggests a new conception of foundations of mathematics,
with intrinsic [anima-ted] content, an “invariant” conception of
the objects of mathematics — and convenient machine imple-
mentations, which can serve as a practical aid to the working
mathematician. This is the Univalent Foundations program.. . .

[U]nivalent foundations is very much a work in progress. . . The
ultimate theory will almost certainly not look exactly like the one
described in this book, but it will surely be at least as capable
and powerful; we therefore believe that univalent foundations
will eventually become a viable alternative to set theory as the
“implicit foundation” for the unformalized mathematics done by
most mathematicians.

–“Homotopy type theory: univalent foundations of mathematics”
(a.k.a. “The HoTT Book”), 2013

Martin-Löf Type Theory plus the Univalence Axiom (and some other
things) is known as Book HoTT after this book.

Outline

1 Martin-Löf Type Theory

2 Homotopy Type Theory

3 Philosophical Autonomy

4 Higher Observational Type Theory

Is that valid?

Is homotopy type theory really a foundation for mathematics?

Of course now we have to ask

So what is a foundation for mathematics, anyway?

The Pragmatic Mathematician’s Answer

A formal system that is sufficiently expressive for all existing
mathematics to be encoded into it. In other words, a system that is
“mathematics-complete”, by analogy to NP-complete problems and
Turing-complete programming languages.

If this is what a foundation for mathematics is, then yes, obviously,
homotopy type theory is a foundation for mathematics.

But should a foundation be more than that?

Voevodsky’s answer

[A]ny foundation for mathematics. . . should have the following
three components. The first component is a formal deduction
system: a language and rules of manipulating sentences in this
language that are purely formal, such that a record of such
manipulations can be verified by a computer program. The
second component is a structure that provides a meaning to the
sentences of this language in terms of mental objects intuitively
comprehensible to humans. The third component is a structure
that enables humans to encode mathematical ideas in terms of
the objects directly associated with the language.

– Voevodsky, “The origins and motivations of univalent foundations”, 2014

The pragmatic answer covers the first and third components.
Voevodsky adds to this that the system should have an intuitively
comprehensible meaning.

The intuition of anima

So what is the “intuitive meaning” of homotopy type theory?

The second component of univalent foundations, the structure
that provides a direct meaning to the sentences. . . is based on
univalent models. The objects directly associated with sen-
tences. . . by these models are called [anima]. The world of
[anima] is stratified by what we call h-levels, with types of h-level
1 corresponding to logical propositions and types of h-level 2
corresponding to sets. Our intuition about types of higher
levels comes mostly from their connection with multidimensional
shapes, which was studied by ZFC-based mathematics for
several decades.

– Voevodsky, “The origins and motivations of univalent foundations”, 2014

So even according to Voevodsky, our intuition about homotopy
type theory comes from set theoretic mathematics.

A philosopher’s answer

Philosophically, this is a problem for the claim that homotopy type
theory is a foundation for mathematics.

[A] putative foundation for mathematics must boast more than
mere logical autonomy with respect to set theory if it is to be
truly autonomous. It must be possible not only to formulate the
foundation without presupposing a theory of sets; it must be
possible also to understand it and to justify its claims without
such a presupposition.

– Linnebo–Pettigrew, “Category theory as an autonomous foundation”, 2011

An autonomous foundation must therefore use only concepts
that can be pre-mathematically understood, and rules that can
be pre-mathematically motivated. If any aspect of a purported
foundation for mathematics relies for its formulation or justifica-
tion upon some advanced area of mathematics then it cannot
be a foundation for mathematics. . .

– Ladyman–Presnell, “Identity in Homotopy Type Theory, Part I: The Justification of
Path Induction”, 2014

Understanding and justifying type theory

Can we piggyback on the understanding and justification of
Martin-Löf type theory?

Type-theoretically, harmony states that the introduction rules
of a type specify the only way of generating terms of that type,
so in order to define a function out of that type it is enough
to determine what it should do on terms explicitly obtained by
introduction rules. – Bentzen, “What types should not be”, 2020

• The only terms of (x : A) → B(x) are λx .b[x], so the only way
to use such a term is to apply it to an argument.

• The only terms of N are 0 and s(n), so to define a function
(z : N) → C (z) it suffices to define it on terms of these forms.

• The only terms of IdA(x , y) are of the form reflx , so to define
a function (x : A) → (y : A) → (z : IdA(x , y)) → C (x , y , z) it
suffices to define it on terms of these forms.

Not true with univalence!!

Understanding and justifying type theory

Can we piggyback on the understanding and justification of
Martin-Löf type theory?

Type-theoretically, harmony states that the introduction rules
of a type specify the only way of generating terms of that type,
so in order to define a function out of that type it is enough
to determine what it should do on terms explicitly obtained by
introduction rules. – Bentzen, “What types should not be”, 2020

• The only terms of (x : A) → B(x) are λx .b[x], so the only way
to use such a term is to apply it to an argument.

• The only terms of N are 0 and s(n), so to define a function
(z : N) → C (z) it suffices to define it on terms of these forms.

• The only terms of IdA(x , y) are of the form reflx , so to define
a function (x : A) → (y : A) → (z : IdA(x , y)) → C (x , y , z) it
suffices to define it on terms of these forms.

Not true with univalence!!

Justifying univalent Id-elimination

. . . we might say that [Id-elimination] expresses the fact that
every [proof of identity] is of the form refla. . . this reading is quite
confusing in the context of the homotopy interpretation. . . where
there may be. . . many different elements of the identity type!

. . . it is not the identity type that is inductively defined,
but the identity family. . . the type of triples (x , y , p), where
[p : IdA(x , y)]. . . [T]he space corresponding to [this type] is the
free path space — the space of paths in A whose endpoints may
vary — and it is in fact the case that any point of this space
is homotopic to the constant loop at some point, since we can
simply retract one of its endpoints along the given path.

– “Homotopy type theory: univalent foundations of mathematics”, 2013

While this argument provides a justification for [Id-elimination],
it clearly relies upon the details of homotopy theory for its moti-
vation, and so this approach. . . is not suitable for an autonomous
foundation for mathematics.

– Ladyman–Presnell, “Identity in Homotopy Type Theory, Part I: The Justification of
Path Induction”, 2014

Computation vs univalence

We could attempt a similar justification using only pre-mathematical
intuition about “space”, but one precise consequence of the usual
“harmony” objectively fails for Book HoTT: the fact that every
closed expression reduces to a canonical one.

Example

1 Choose any one-to-one correspondence N ⇄ N.
2 Use univalence to make it into an identity e : IdU (N,N).
3 Use Id-elimination to “substitute” 0 : N along e.

We get an expression in N that cannot be reduced: the computation
gets “stuck” on the “computationally unjustified” univalence axiom.

One can argue this invalidates any attempt to invoke harmony,
despite whatever we might write about “pre-mathematical spaces”.

Cubical type theory

BUT: Unlike for other axioms (like excluded middle), there is a clear
candidate for how stuck univalence terms should compute:
Substituting along any s : IdU (A,B) should reduce to applying the
corresponding isomorphism A

∼−→ B.

Cubical Type Theory (Coquand et. al. 2016, 2019, etc.) makes univalence
compute by

• replacing Martin-Löf’s IdA(x , y) with path types, whose
elements are functions f : I → A such that f (0) = x and
f (1) = y . Here I is an abstract interval with two points 0, 1.

• Specifying infinitely many rules for composing and transporting
paths and higher-dimensional paths, and how these operations
compute in different types.

Martin-Löf’s Id-elimination is a theorem in CTT, not a primitive
rule; so it doesn’t need pre-mathematical justification.

Justifying cubical type theory

Essentially, CTT builds the definition of anima into the type theory,
explicitly including all the higher composition operations.

Recently, Angiuli et. al. (2017) and Cavallo and Harper (2018)
have built a realizability model that can be seen as a higher-
dimensional generalization of the meaning explanations of Martin-
Löf for a cubical type theory. . . . [This] model may indeed be seen
as a computational justification for homotopy type theory, but, as
it relies on the mathematical concept of cubical set, further work
would be required to investigate whether it could also constitute
a legitimate pre-mathematical justification for homotopy type
theory. – Bentzen, “What types should not be”, 2020

The presentation of anima in Cubical Type Theory is quite technical,
so justifying it “pre-mathematically” is a tall order.

Outline

1 Martin-Löf Type Theory

2 Homotopy Type Theory

3 Philosophical Autonomy

4 Higher Observational Type Theory

Higher Observational Type Theory

Higher Observational Type Theory (H.O.T.T.) is a proposed third
alternative to Book HoTT and Cubical Type Theory, in which:

1 As in Cubical Type Theory, univalence is not stuck,
Id-elimination is a theorem, and conjecturally all closed
expressions reduce to canonical form.

2 As in Book HoTT, the higher anima operations are all induced
from low-dimensional structure.

3 Arguably, all the rules can be given an autonomous
pre-mathematical justification from a few simple principles.

Altenkirch, Kaposi, Chamoun, and I have been developing HOTT
for several years, and I believe it is approaching completion.

While we hope that HOTT will have technical advantages as well,
my primary motivation for it was philosophical.

Back to Bishop

Recall how Martin-Löf defined types:
A type is defined by prescribing what we have to do in order to
construct an object of that type. This is almost verbatim the
definition of the notion of set given by Bishop 1967.

– Martin-Löf, “An intuitionistic theory of types”, 1975

But here’s what Bishop actually said:
A set is defined by describing exactly what must be done in order
to construct an element of the set and what must be done in
order to show that two elements are equal.

– Bishop, “Foundations of Constructive Analysis”, 1967

In HOTT, we stipulate that:

• Every type X has intrinsic identity types IdX (x , y).

• These are defined separately for each primitive type.

• Every element x : X has a reflexivity term refla,
also defined separately for each primitive term.

Back to Bishop

Recall how Martin-Löf defined types:
A type is defined by prescribing what we have to do in order to
construct an object of that type. This is almost verbatim the
definition of the notion of set given by Bishop 1967.

– Martin-Löf, “An intuitionistic theory of types”, 1975

But here’s what Bishop actually said:
A set is defined by describing exactly what must be done in order
to construct an element of the set and what must be done in
order to show that two elements are equal.

– Bishop, “Foundations of Constructive Analysis”, 1967

In HOTT, we stipulate that:

• Every type X has intrinsic identity types IdX (x , y).

• These are defined separately for each primitive type.

• Every element x : X has a reflexivity term refla,
also defined separately for each primitive term.

Examples: identity types of N

Example

The elements of IdN(u, v) are:

• We have 0′ : IdN(0, 0).

• For any n2 : IdN(n0, n1), we have s ′(n2) : IdN(s(n0), s(n1)).

Reflexivity is defined recursively:

refl0 = 0′

refls(n) = s ′(refln)

Example: identity types of function types

Example

Two functions are equal if they map equal elements to equal elements.

IdA→B(f , g) =

(x0 : A) → (x1 : A) → (x2 : IdA(x0, x1)) → IdB(f0(x0), f1(x1))

• This includes pointwise equality: apply to x , x , and reflx .

• Reflexivity proves that functions respect equality:

reflf : (x0 : A) → (x1 : A) → (x2 : IdA(x0, x1)) → IdB(f (x0), f (x1))

Identity types of the universe

Finally, univalence is now a definition in the same style:

Example

For types A : U and B : U , an element s : IdU (A,B) is a one-to-one
correspondence, consisting of:

• A correspondence ⌊s⌋ : A → B → U .
• For each a : A there is a unique pair of b : B and r : ⌊s⌋(a, b).
• For each b : B there is a unique pair of a : A and r : ⌊s⌋(a, b).

The reflexivity correspondence of a type is its identity type:

⌊reflA⌋(x , y) = IdA(x , y)

Dependent identity types

An element of ⌊s⌋(a, b) is a proof that a equals b “along” the
equality s between their types.

Example

For dependent functions, with A : U and B : A → B, we have

Id(x :A)→B(x)(f0, f1) =

(x0 : A) → (x1 : A) → (x2 : IdA(x0, x1)) →
⌊reflB(x0, x1, x2)⌋(f0(x0), f1(x1))

Square fillers

We have IdA : A → A → U , hence given a02 : IdA(a00, a01) and
a12 : IdA(a10, a11), we have

reflIdA(a00, a01, a02, a10, a11, a12) : IdU (IdA(a00, a10), IdA(a01, a11)).

In particular, for any a20 : IdA(a00, a10) we have a corresponding
element of IdA(a01, a11).

a10 a11

a00 a01

a12

a02

a20 ⇒

This specializes to:

• transitivity if a02 = refl, and

• symmetry if a20 = a12 = refl,

and generalizes to all the higher structure of an anima.

Summary: the basic principles of HOTT

1 A type is defined by prescribing what we have to do in order to
construct an object of that type, and what it means for two
elements of that type to be equal. This notion of equality,
being a binary predicate, is also a family of types, specified
coinductively in the same general class of types being defined.

2 Every element of a type is canonically equal to itself. These
reflexivity proofs must be specified along with the elements
when a type is defined.

3 Identifications between types are one-to-one correspondences.

4 The reflexivity one-to-one correspondence of a type consists of
its identity types.

Justifying HOTT

1 Like Book HoTT and CTT, HOTT is a complete formal system,
formulated without presupposing set-theoretic foundations.

2 The basic principles of HOTT do not refer to sets, anima,
cubical sets, or other concepts from advanced mathematics.
Thus, unlike CTT, it can be understood without presupposing
set-theoretic foundations.

3 Conjecturally, HOTT satisfies a canonicity property like MLTT:
every closed expression reduces to a canonical one.
Thus, unlike Book HoTT, it can be justified by logical harmony
like MLTT, without presupposing any set-theoretic foundations.

Summary

1 Philosophy helped motivate Higher Observational Type Theory,
a new foundation for higher structural mathematics that is
truly autonomous from set theory.

2 HOTT is unfinished, but its techniques have already
inspired the design of other new type theories.

3 Potential technical advantages of HOTT over CTT.

4 HOTT’s philosophical advantages may also be pedagogical
advantages for students, mathematicians, and programmers.

	Martin-Löf Type Theory
	Homotopy Type Theory
	Philosophical Autonomy
	Higher Observational Type Theory

