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1. Filters

Our slogan is topology is about convergence . Mostly we are familiar with convergence
of sequences. Recall the following definition.

Definition 1.1. If X is a topological space, (an) a sequence in X, and x ∈ X, we say that
(an) converges to x if for any open set U 3 x, there exists an N such that if n > N , then
an ∈ U .

We observe a few things about this definition.

• For some spaces, knowing which sequences converge is enough to determine the
topology, but not for all spaces. So we’d like a more generalized notion of conver-
gence.

• The definition only requires knowledge of the sets AN = {an : n > N} as N varies.
• More precisely, it only requires knowledge of which sets contain at least one of the
AN . For example, if we alter the sequence at finitely many places, it doesn’t change
its convergence properties because it doesn’t change which sets contain some AN .

With this in mind, we make the following definition.

Definition 1.2. Let X be a set. A filter on X is a subset F ⊂ PX of the power set of X
such that

(i) X ∈ F ;
(ii) ∅ 6∈ F ;
(iii) If A ∈ F and A ⊂ B, then B ∈ F ; and
(iv) If A,B ∈ F , then A ∩B ∈ F .

Example 1.3. If (an) is a sequence in X, the elementary filter associated to (an) is the set

E(an) = {A ⊂ X : ∃N s.t. if n > N then an ∈ A}

Note that if we change finitely many terms of a sequence, its elementary filter is un-
changed. Moreover, the elementary filter contains exactly the information required to talk
about convergence.

Definition 1.4. Let X be a topological space. We say that a filter F in X converges to
a point x ∈ X, and write F → x, if every open set containing x is in F .

Clearly a sequence converges to a point x if and only if its associated elementary filter
does; thus the elementary filter captures everything we need to know about the sequence to
discuss its convergence properties. We think of an arbitrary filter as a generalization of a
sequence; for example, if A ∈ F , we say that F is eventually in A. If A ∩ B 6= ∅ for all
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B ∈ F , we say that F is frequently in A. More philosophically, we may say that a filter
is the extensional essence of a limiting process.

Example 1.5. If X is any set and x ∈ X, the principal filter generated by x is

ηx = {A ⊂ X : x ∈ A}.
Clearly ηx → x in any topology.

Example 1.6. If X is a topological space and x ∈ X, its neighborhood filter is

Nx = {A ⊂ X : ∃U s.t. x ∈ U ⊂ A and U is open in X}.
The elements of Nx are called neighborhoods of x. Again, we have Nx → x in any topology.
Note also that a filter F converges to x if and only if Nx ⊂ F .

Often it is convenient to generate filters from smaller sets. We say that A ⊂ PX has
the finite intersection property (FIP) if the intersection of any finite subset of A is
nonempty. In this case we define the filter generated by A to be

[A] = {B ⊂ X : ∃A1, . . . , An ∈ A A1 ∩ · · · ∩ An ⊂ B}.
For example:

• The elementary filter E(an) of a sequence is generated by the sets AN = {an : n > N}.
• The principal filter ηx is generated by {{x}}.
• The neighborhood filter Nx is generated by the open sets containing x.

If F is a filter, we say that A is consistent with F if X rA 6∈ F . In this case F ∪ {A} has
the FIP and generates a filter, called the extension of F by A.

Example 1.7. A partially ordered set D is said to be directed if whenever d1, d2 ∈ D there is
a d3 ∈ D with d1 ≤ d3 and d2 ≤ d3. A function from a directed set D into a set X is called a
net in X. If X is a topological space, a net a : D → X is said to converge to a point x ∈ X
if for any open set U 3 x, there exists a d ∈ D such that whenever d ≤ e, we have a(e) ∈ U .

To every net a : D → X we can associate an elementary filter generated by the sets
Ae = {a(e) : d ≤ e} as e ∈ D varies. Clearly a net converges to x if and only if its associated
elementary filter does.

Example 1.8. Let f : [a, b] → R be a function. Then for any partition P of [a, b], we have
upper and lower sums U(f, P ) and L(f, P ). Let F be the filter on R generated by{[

L(f, P ), U(f, P )
]

: P partitions [a, b]
}
,

which has the FIP because any two partitions have a common refinement. A limit of this
filter (necessarily unique because R is Hausdorff) is a Riemann integral of f .

Unlike convergence of sequences, convergence of filters is sufficient to determine the topol-
ogy of a space.

Proposition 1.9. Let X be a topological space. A set U ⊂ X is open if and only if whenever
F → x with x ∈ U , we have U ∈ F .

Proof. The “only if” direction is by definition of filter convergence. The converse follows
since Nx → x for any x. �
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Moreover, convergence of filters also determines when a function is continuous. If F is
a filter on X and f : X → Y is a function, we write f∗F for the filter on Y generated by
{f(A) : A ∈ F}. Equivalently, we have

f∗F = {B ⊂ Y : f−1(B) ∈ F}.
Proposition 1.10. Let X and Y be topological spaces. A function f : X → Y is continuous
if and only if whenever F → x in X, we have f∗F → f(x) in Y .

Proof. For “if”, note that f∗Nx is the set of all subsets of Y whose preimage is a neighborhood
of x. Since Nx → x, we conclude that the preimage of any neighborhood of f(x) is a
neighborhood of x, hence f is continuous.

For “only if”, the continuity of f implies that Nf(x) ⊂ f∗Nx. Therefore, if F → x, then
Nx ⊂ F , hence Nf(x) ⊂ f∗Nx ⊂ f∗F , so f∗F → f(x). �

2. Ultrafilters

While powerful, the machinery of converging filters contains a good deal of redundancy.
For example, if F → x, then any filter containing F also converges to x. This suggests
restricting to those filters which are not propertly contained in any other.

Definition/Proposition 2.1. A filter F on X is an ultrafilter if it satisfies the following
equivalent conditions.

(i) For any A ⊂ X, either A ∈ F or (X r A) ∈ F .
(ii) F is not properly contained in any filter.

Proof. If we had an A such that A 6∈ F and (X rA) 6∈ F , then A would be consistent with
F and we could extend F by A to obtain a larger filter. Conversely, if F were properly
contained in a filter G, then for any A ∈ G r F we would have (X r A) 6∈ F either. �

Clearly the principal filters ηx are ultrafilters. Just as clearly, the explicit examples such
as elementary filters E(an) are not ultrafilters. Unfortunately, it is impossible to explicitly
describe any non-principal ultrafilters, but we know (assuming the axiom of choice) that
they exist.

Proposition 2.2. Any filter is contained in an ultrafilter.

Proof. Zornify. �

In less technical language, “Zornify” means that we start from a non-ultra filter F , pick
a set A such that neither A nor X r A is in F , and extend F by either A or X r A. We
then repeat, probably transfinitely many times. The need to choose either A or X r A
transfinitely many times is why we need the axiom of choice.

If F and G are filters with F ⊂ G, we say that G refines F . Thus a filter is an ultrafilter
if and only if it has no proper refinements, and every filter is refined by an ultrafilter.

Exercise 2.3. Show that any filter is the intersection of all the ultrafilters refining it. In
particular, two filters are equal if and only if they are refined by the same set of ultrafilters.

Since a filter converges to x in a topological space if and only if it refines the neighborhood
filter of x, any filter refining a filter converging to x must also converge to x. The purpose
of ultrafilters is that they allow us to reverse this implication and thereby capture all the
information about convergence of filters in a topological space.
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Proposition 2.4. A filter F converges to a point x in a topological space X if and only if
all ultrafilters refining F converge to x.

Proof. The “only if” direction is clear. For the “if” direction, suppose F does not converge
to x. Then there is an open set U 3 x such that U 6∈ F , and therefore we can add X r U
to F and generate a larger filter. Any ultrafilter refining this filter will also refine F , but
cannot converge to x. �

Exercise 2.5. Show that if F is an ultrafilter and f : X → Y is a function, then f∗F is an
ultrafilter.

Exercise 2.6. Show that if f : X → Y is surjective, then any ultrafilter G on Y is equal to
f∗F for some (generally non-unique) ultrafilter F on X.

Exercise 2.7. Show that a function f : X → Y between topological spaces is continuous if
and only if whenever F is an ultrafilter in X and F → x, we have f∗F → f(x).

Many more topological concepts can be expressed directly in terms of (ultra)filters, without
explicit reference to open sets. Here is a very important example.

Theorem 2.8. A topological space X is compact if and only if each ultrafilter on X converges
(to at least one point).

Proof. Recall that X is compact if and only if every family of closed sets with the FIP has
nonempty intersection. Suppose first that every ultrafilter converges and say we are given
a family A of closed sets with the FIP. Then A generates a filter, which is contained in an
ultrafilter F , which by assumption must converge to some point x. In particular, every open
set containing x is in F and thus has nonempty interesction with each element of A. Since
each element of A is closed, this implies that x is in each element of A, and hence in their
intersection.

Conversely, suppose X is compact, and let F be an ultrafilter. Then the collection of
closed elements of F has the FIP and thus its intersection contains a point x. Since x is in
every closed element of F , every open set U 3 x must intersect every closed element of F .
Therefore X r U cannot be in F , and so (since F is an ultrafilter) we must have U ∈ F ;
thus F converges to x. �

Here are some more examples, left as exercises. An introduction to topology making use
of filters can be found in [Jam99].

Exercise 2.9. Let X be a topological space and A ⊂ X with inclusion map i : A ↪→ X. Show
the following.

(i) X is T0 iff no two points are converged to by exactly the same sets of ultrafilters.
(ii) X is T1 iff no principal filter ηx converges to any point other than x.
(iii) X is Hausdorff (T2) iff no ultrafilter converges to more than one point.
(iv) A ⊂ X is closed iff for any (ultra)filter F on A, every limit of i∗F is in A.
(v) A ⊂ X is open iff whenever F is an (ultra)filter on X and F → x ∈ A, then A ∈ F .
(vi) An (ultra)filter F on A converges to x ∈ A in the subspace topology iff i∗F converges

to x in X.
(vii) If {Xα} is a family of topological spaces, then an ultrafilter F on the product

∏
αXα

converges to x = (xα) in the product topology iff (pα)∗F converges to xα in Xα for
each α (here pα is the projection

∏
αXα → Xα).
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(viii) Conclude Tychonoff’s Theorem as a corollary.

The next two results are due to [CH02].

Exercise 2.10. Recall that a continuous map f : X → Y is open if f(U) is open whenever
U ⊂ X is open. Show that f is open if and only if for any x ∈ X and any ultrafilter G which
converges to f(x) in Y , there exists an ultrafilter F on X which converges to x and such
that f∗F = G.

Exercise 2.11. Recall that a continuous map f : X → Y is closed if f(C) is closed whenever
C ⊂ X is closed, and proper if it is closed and the fiber f−1(y) is compact for all y ∈ Y .
Show that f is proper if and only if for any ultrafilter F on X and any point y ∈ Y such that
f∗F converges to y, there exists a point x ∈ X such that F converges to x and f(x) = y.

3. Pseudotopological spaces

The fact that so many aspects of topology can be captured by convergence naturally makes
us wonder whether convergence could be taken to be more fundamental than open sets.

Definition 3.1. A pseudotopological space, or pspace (the first “p” is silent, as in
“pseudo”), is a set X together with a relation between ultrafilters and points, called “con-
vergence”, with the property that the principal ultrafilter ηx converges to x for every x.

The definition refers only to ultrafilters, but it can easily be extended to all filters: if F is
an arbitrary filter on a pspace X, we say that F converges to x if every ultrafilter refining
F converges to x.

Exercise 3.2. Show that it would be equivalent to define a pspace by a convergence relation
between filters and points with the following three properties:

(i) Each principal filter ηx converges to x.
(ii) If F converges to x and G refines F , then G converges to x.
(iii) If F is a filter and x a point such that for any filter G refining F , there is another

filter H refining G such that H converges to x, then F converges to x.

All our theorems about topological spaces can now be extended to definitions about pseu-
dotopological ones. For example:

Definitions 3.3. Let X and Y be pspaces.

(i) X is Hausdorff if no ultrafilter converges to more than one point.
(ii) X is compact if every ultrafilter converges to at least one point.
(iii) A function f : X → Y is continuous if for any ultrafilter F on X, F → x implies

f∗F → f(x).
(iv) If {Xα} is a family of pspaces, then we define an ultrafilter F on the product

∏
αXα

to converge to x = (xα) if and only if (pα)∗F converges to xα in Xα for each α.1

Clearly every topological space gives rise to a pseudotopological one. Conversely, if X is
a pspace, we can define a subset U ⊂ X to be open if whenever F → x and x ∈ U , we
have U ∈ F . This collection of open sets clearly defines a topology on X such that every
filter converging to x in the original pseudotopology also converges in this topology. The
converse, however, is not necessarily true; we say that the pspace is topological if it is.

1The categorically minded reader can check that this is the categorical product in the category of pspaces
and continuous maps.
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Exercise 3.4. Show that a pseudotopology on a finite set is just a reflexive binary relation
on that set. When is it topological?

In categorical language, topological spaces embed fully and faithfully in pseudotopological
spaces, preserving limits and many other topological properties.2

Why would we want to make this generalization? It turns out that some natural construc-
tions on pspaces, even when applied to topological ones, give back non-topological ones.
The main example is function spaces. If X and Y are topological spaces, the problem of
putting a suitable topology on the set Y X of continuous maps from X to Y is important and
nontrivial. However, if we allow pseudotopologies, it becomes much easier.

If F and G are filters on sets X and Y , we write F × G for the filter on X × Y generated
by the sets {A × B : A ∈ F , B ∈ G}. Note that F × G may not be an ultrafilter even if F
and G are. Of course, not every filter on X × Y is of the form F ×G, but it is true that any
filter H on X × Y refines p∗H × q∗H, where p : X × Y → X and q : X × Y → Y are the
projections.

Definition 3.5. Let Y and Z be pspaces, let ZY be the set of continuous maps Y → Z,
and let F be an ultrafilter on ZY . We say that F converges continuously to a function
f ∈ ZY if whenever G → y in Y , we have ε∗(F × G) → f(y) in Z, where ε : ZY × Y → Z is
the evaluation map.

Continuous convergence defines a pseudotopology on ZY . Not only does the definition
of this pseudotopology look natural, but it has the following property which makes it the
“correct” pseudotopology in practically all possible ways.

Theorem 3.6. Let X, Y, Z be pspaces. A function g : X → ZY is continuous (with respect to
the pseudotopology of continuous convergence on ZY ) if and only if the function ĝ : X×Y →
Z defined by ĝ(x, y) = g(x)(y) is continuous (with respect to the product pseudotopology on
X × Y ).

Proof. If H is an ultrafilter on ZY × Y , then H refines p∗H× q∗H and converges to (f, y) if
and only if p∗H → f and q∗H → y. In this case, the definition of continuous convergence
implies that ε∗(p∗H × q∗H) → f(y), and therefore ε∗H → f(y) = ε(f, y) as well. Thus
ε : ZY × Y → Z is continuous. Hence, if g is continuous, so is ĝ, being the composite of ε
with g × 1Y .

Conversely, suppose that ĝ is continuous. Then if F → x in X and G → y in Y , we
have ĝ∗(F × G) → g(x)(y) in Z. But ĝ∗(F × G) = ε∗(g∗F × G). Since this is true for all
convergences G → y in Y , we see that g∗F converges continuously to g(x) by definition; thus
g is continuous, as desired. �

In categorical language, the category of pseudotopological spaces is cartesian closed, which
the category of topological spaces is not.

From this perspective, the “reason” that it’s hard to find good topologies on function
spaces is that even when Y and Z are topological spaces, continuous convergence on ZY

may not be topological. In some cases, however, it is, and this explains why sometimes
there do exist good function-space topologies, and why those topologies are given the odd
definitions they are.

2Some colimits are also preserved, but not all of them.
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Exercise 3.7. Show that if X and Y are topological spaces and X is locally compact Haus-
dorff, then the pseudotopology of continuous convergence on Y X is topological, and is iden-
tical to the well-known “compact-open” topology.

Pseudotopological spaces have further nice properties. For instance, not only is the cate-
gory PsTop cartesian closed, but so is the slice category PsTop/X for any pspace X. More
about pseudotopological spaces can be found in [Wyl91].

4. Discrete Stone-Čech compactification

Let’s think about compact Hausdorff pspaces a little more. Observe that a pspace is
compact and Hausdorff if and only if each ultrafilter converges to exactly one point; thus the
convergence relation is actually a function from ultrafilters to points. In other words, if we
write φX for the set of ultrafilters on X, a compact Hausdorff pseudotopology on X is given
by a function θ : φX → X such that θ ◦ η = 1X (where η : X → φX sends x ∈ X to ηx).

Similarly, a function f : X → Y between compact Hausdorff pspaces is continuous if and
only if θY ◦ φf = f ◦ θX , where φf : φX → φY sends F to f∗F .

Exercise 4.1. Show that a continuous bijection between compact Hausdorff pspaces is actu-
ally a homeomorphism (that is, its inverse is also continuous).

The world becomes even more interesting when we observe that for any set X, the set φX
has a natural pseudotopology on it. Things can get a little hairy here, because we’re now
talking about ultrafilters on a set of ultrafilters, but bear with me. First some notation: for
A ⊂ X we write

A∗ = {G ∈ φX : A ∈ G}.
We now define an ultrafilter Φ on φX to converge to the ultrafilter

µ(Φ) =
{
A ⊂ X : A∗ ∈ Φ

}
.

Theorem 4.2. µ(Φ), thus defined, is an ultrafilter, and µ : φφX → φX defines a compact
Hausdorff topology on φX.

Proof. Given A ⊂ X, the sets {G ∈ φX : A ∈ G} and {G ∈ φX : (X r A) ∈ G} are
complements in φX, since the elements of φX are all ultrafilters. Thus exactly one of them
is in the ultrafilter Φ, so exactly one of A and X rA is in µ(Φ). Thus µ(Φ) is an ultrafilter.

It is clear that µ(ηF) = F , so µ defines a compact Hausdorff pseudotopology. Moreover,
Φ → F if and only if A∗ ∈ Φ for all A ∈ F , so φX is topological and the sets A∗ form a base
for its open sets. �

Exercise 4.3. Show that the closed sets in φX are those of the form ↑F = {G : F ⊂ G},
where F is an arbitrary filter on X.

Exercise 4.4. Show that the image of η : X → φX is dense.

Exercise 4.5. Show that for any function f : X → Y , the induced function φf = f∗ : φX →
φY is continuous.

The natural question to ask now is whether θ is continuous.

Theorem 4.6. The function θ is continuous (when φX has the above pseudotopology and
X has the compact Hausdorff pseudotopology defined by θ) if and only if X is topological.
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Proof. First suppose that X is topological. Let Φ ∈ φ(φX) with φθ(Φ) = F and θ(F) = x.
We want to show that θ(µ(Φ)) = x; that is, that µ(Φ) → x. Since X is topological, this is
equivalent to U ∈ µ(Φ) for each open U 3 x. By definition of µ, this is equivalent to

U∗ = {G ∈ φX : U ∈ G} ∈ Φ.

Now, since F → x, we have U ∈ F for each open U 3 x. Since φθ(Φ) = θ∗(Φ) = F , this
implies that θ−1(U) ∈ Φ. But since U is open, any ultrafilter converging to a point of U
(that is, any G ∈ θ−1(U)) must contain U , and hence θ−1(U) ⊂ U∗. This implies U∗ ∈ Φ, as
desired.

Now suppose that θ is continuous, i.e. that θ ◦ φθ = θ ◦ µ. Recall that we define a set
U ⊂ X to be ‘open’ if whenever H → x with x ∈ U , we have U ∈ H. Let F be an ultrafilter
containing every open U 3 x; we want to show that F → x. Our goal is to build a Φ ∈ φφX
such that µ(Φ) = F and φθ(Φ) = ηx; the condition θ ◦ φθ = θ ◦ µ will then tell us that
θ(F) = θ(ηx) = x.

Define
B = {G ∈ φX : G → x}

and for every U ∈ F define
BU = {G ∈ φX : U ∈ G}

If U, V ∈ F , we have U ∩ V 6= ∅, and any ultrafilter containing U and V must also contain
U ∩ V . Thus we have

BU ∩ BV ⊃ BU∩V 6= ∅,
so the collection {BU : U ∈ F} of subsets of φX has the FIP. The definition of µ, and the
maximality of F , then tell us that µ(Φ) = F for any ultrafilter Φ containing all the sets
BU . If, moreover, the set B were consistent with all the sets BU , so that there existed an
ultrafilter Φ containing all of them, then since θ(B) = {x} we would have φθ(Φ) = ηx as
desired.

To show that B is consistent with BU we argue as follows. Choose U ∈ F ; we want to
find an ultrafilter G such that U ∈ G and G → x, as then G ∈ BU ∩ B. If x ∈ U then we
can choose G = ηx, so suppose x 6∈ U , and suppose, to the contrary, that such a G does not
exist. Then X r U is a set containing x such that every ultrafilter converging to x contains
X r U . We would like to conclude that therefore X r U is a neighborhood of x, and hence
contained in F by assumption, giving a contradiction. This is the content of the following
lemma, which completes the proof. �

Lemma 4.7. Let X be a compact Hausdorff pspace such that θ is continuous. If x ∈ U ⊂ X
and U is contained in every ultrafilter converging to x, then U contains an open set V
containing x.

Proof. Recall that an open set is defined to be a set which is contained in any ultrafilter which
converges to any of its points, so this is a statement about the compatibility of ultrafilters
converging to different points. Let A = XrU , let B be the set of all points which are limits
of ultrafilters containing A, and let V = X rB. Then V ⊂ U since any point of A is a limit
of its principal ultrafilter, and x ∈ V by our assumption on U .

We claim that V is open. For suppose F were an ultrafilter containing B and converging to
y ∈ V . By definition of B, the function θ : φA→ B is surjective, and therefore by Exercise 2.6
so is θ : φφA → φB. Thus F = φθ(Φ) for some ultrafilter Φ on φA, or equivalently on φX
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and containing the set A∗ = {G ∈ φX : A ∈ G}. Since θ is continuous, we have µ(Φ) → y as
well; but since A∗ ∈ Φ we have A ∈ µ(Φ). Thus y is the limit of an ultrafilter containing A,
hence y ∈ B, a contradiction. This shows that V is open. �

Remark 4.8. Let us define the closure of a subset A of a pspace X to be the set of all points
which are limits of ultrafilters containing A; note that a set is closed (in the sense that its
complement is open) if and only if it is equal to its closure. Then Lemma 4.7 can equivalently
be phrased as “the closure of a set is closed”. This is how it is phrased in [Bar70], from
which I took the essentials of this proof.

Therefore, a compact Hausdorff topological space is given by a set X together with a
function θ : φX → X such that θ ◦ η = 1X and θ ◦ φθ = θ ◦ µ.

The categorically sophisticated reader will have already recognized that φ is clearly a
monad on the category of sets whose algebras are compact Hausdorff spaces, and that there-
fore compact Hausdorff spaces are an “algebraic” category in the categorical sense. For the
reader who is not familiar with monads, rather than recount the definition here, we will
content ourselves with giving another example of a monad, which will hopefully make it
clear that there should be a common abstract structure underlying both.

For any set X, let FX denote the free group on X. Thus the elements of FX are words
such as xz−3y−1xy2 in elements of X. We have a function η : X → FX sending each x ∈ X
to the length-one word “x”.

We define a pseudogroup to be a set X together with a function θ : FX → X such that
θ ◦ η = 1X , and a pseudogroup homomorphism to be a function f : X → Y such that
θY ◦ Ff = f ◦ θX . Clearly every group is a pseudogroup; the map θ is given by multiplying
words with the given group multiplication. In particular, FX itself is a pseudogroup, so we
have a map µ : F (FX) → FX.

Exercise 4.9. Show that a pseudogroup is a group if and only if θ is a pseudogroup homo-
morphism.

In other words, a group is a set X together with a map θ : FX → X such that θ ◦ η = 1X

and θ ◦ Fθ = θ ◦ µ. The analogy between φ and F should be clear. In both cases we
describe a structure of some type (a topological space, resp. a group) as a set equipped with
“operations”. The functors φ and F , respectively, together with the natural transformations
η and µ, describe all possible ways of applying these operations; they are called monads.

More about monads can be learned in [ML98, Awo06], among other places. The monadicity
of compact Hausdorff spaces is shown in a more abstract way in [ML98], although of course
the monad is the same.

Exercise 4.10. Show that a function f : X → Y between compact Hausdorff pspaces is
continuous if and only if its graph is a closed subset of X × Y .

Exercise 4.11. Show that an arbitrary (not necessarily compact Hausdorff) pspace X is
topological if and only if the convergence relation is a closed subset of φX ×X. (This can
also be found in [Bar70].)

Remark 4.12. If you did Exercise 3.4, you may recognize that this characterization of topo-
logical spaces can be regarded as a transitivity condition on convergence, to go along with
the reflexivity imposed by ηx → x. In fact, there is a sense in which a topological space can
be regarded as a ‘generalized preorder’; see [CT03, CHT04].
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5. General Stone-Čech compactification

We now make the following observation.

Theorem 5.1. Let X be a set, Y a compact Hausdorff space and g : X → Y an arbitrary
function. Then there is a unique continuous map g̃ : φX → Y extending g.

Proof. Since η : X → φX is dense (Exercise 4.4) and Y is Hausdorff, the extension is unique
if it exists. But since Y is topological, θY : φY → Y is continuous (Theorem 4.6), and thus
so is g̃ = θY ◦ φg, which is easily checked to extend g. �

Now let X be any topological space. A Stone-Čech compactification of X is a compact
Hausdorff space βX with a continuous map η : X → βX such that any continuous map
from X to a compact Hausdorff space Y factors uniquely through η. Standard categorical
arguments show that such a βX is unique up to homeomorphism if it exists; in categorical
language, it is a reflection of X into the category of compact Hausdorff spaces.

Theorem 5.1 shows that the ultrafilter space φX we constructed in §4 is the Stone-Čech
compactification of the discrete topology on X. In this section we will construct the Stone-
Čech compactification of an arbitrary topological space X in an analogous way.

A natural way to start is the following. If X is a topological space, let ψX be be the set
of ultrafilters on X with the topology generated by sets of the form U∗, where U ⊂ X is
open. This construction retains many of the nice properties of the space φX from §4.

Exercise 5.2. Show the following.

(i) The map η : X → ψX is a continuous dense embedding.
(ii) If f : X → Y is continuous, then ψf : ψX → ψY is continuous.
(iii) If X is compact Hausdorff, then θ : ψX → X is continuous.
(iv) Every basic open set U∗ is compact in ψX. In particular, ψX is compact and has a

basis of compact open sets.

However, ψX is rarely Hausdorff. In fact, we already know all the cases in which it is.

Exercise 5.3. Show that ψX is Hausdorff if and only if X is discrete.

This is easily remedied; we define βX to be the maximal Hausdorff quotient (the ‘Haus-
dorffification’) of ψX. This is easily shown to exist; we simply take the quotient of ψX by
the equivalence relation generated by the pairs (x, y) where x and y are not separable by
disjoint open sets.

Theorem 5.4. For any compact Hausdorff space Y and any continuous map f : X → Y ,

there is a unique map f̃ : βX → Y extending f . Thus βX is the Stone-Čech compactification
of X.

Proof. Clearly βX is compact Hausdorff. Since X is dense in ψX, its image will be dense
in βX; thus a map f : X → Y can extend to at most one map βX → Y as long as Y is
Hausdorff. Now, the composite θ◦ψf : ψX → Y clearly extends f . But since Y is Hausdorff,

θ ◦ ψf factors through the Hausdorff quotient βX of ψX, giving the desired map f̃ . �

This construction of the Stone-Čech compactification is due to [Sal00]. While nice, it is
not maximally explicit; it would be nice to have a more concrete description of the points of
βX than equivalence classes under an abstractly defined relation.
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Consider first the following question: when is X → βX an embedding? Clearly X must be
Hausdorff, since this would make it a subspace of a Hausdorff space, but this is not enough;
it turns out that compact Hausdorff spaces automatically satisfy an extra separation axiom.

Definition 5.5. A topological space X is completely regular if for any closed set C and
point x ∈ X r C, there is a continuous map f : X → [0, 1] such that f(x) = 1 and f |C = 0.

Clearly, if a completely regular space is T1, then it is also Hausdorff. A completely regular
Hausdorff space is called a T

3
1
2
-space or a Tychonoff space.

Theorem 5.6. Every compact Hausdorff space is completely regular, hence Tychonoff.

Proof. This is a version of Urysohn’s lemma. �

Since a subspace of a completely regular space is completely regular, any space X which
embeds in a compact Hausdorff space (such as βX) must also be completely regular, hence
Tychonoff. It turns out that being Tychonoff is also sufficient for embeddability in a compact
Hausdorff space. For if we define PX to be the product of one copy of [0, 1] for each continuous
map X → [0, 1] and define ι : X → PX so that the component of ι(x) at g : X → [0, 1] is
g(x), then clearly PX is compact Hausdorff, and it is easy to show that ι is an embedding
when X is Tychonoff.

Of course, PX is much larger than βX, but it can be used to construct (a space homeo-
morphic to) βX. This construction is perhaps the most frequently seen one.

Theorem 5.7. Let β′X denote the closure of the image of ι : X → PX . Then β′X is a
Stone-Čech compactification of X.

Proof. Since β′X is a closed subspace of a compact Hausdorff space, it is compact Hausdorff.
It remains to show that for any compact Hausdorff space Y , any continuous map f : X → Y

has an extension f̃ : β′X → Y (which will be unique because the image of X is dense in
β′X by construction). But since Y is compact, its image in PY is also compact, hence
closed; thus its inverse image under Pf : PX → PY is a closed set containing ι(X), and hence
containing β′X. It follows that Pf maps β′X into ι(Y ), which is isomorphic to Y because

Y is completely regular. Thus, the restriction of Pf to β′X gives the desired f̃ . �

It follows that βX ∼= β′X in a canonical way. In fact, the induced map ψX → β′X is
easy to describe: it takes an ultrafilter F ∈ βX to the point of PX whose component at
g : X → [0, 1] is the unique limit of the ultrafilter g∗(F) on [0, 1].

The fact that this map induces an isomorphism βX ∼= β′X tells us that two ultrafilters
F and G are identified in the quotient βX precisely when g∗(F) and g∗(G) have the same
limit in [0, 1] for all continuous g : X → [0, 1]. Intuitively, this means that F and G ‘look the
same’ to the eyes of real-valued functions.

This leads to yet a third construction of the Stone-Čech compactification; this one is taken
from [SS95]. First we have to slightly generalize the notion of filter. Recall that a partially
ordered set is called a lattice if it has a least element 0 and a greatest element 1, and every
pair of elements a, b has a least upper bound (or join) a ∨ b and a greatest lower bound (or
meet) a ∧ b. A filter in a lattice L is a subset F ⊂ L such that (a) 1 ∈ F , (b) 0 6∈ F , (c) if
a ∈ F and a ≤ b, then b ∈ F , and (d) if a, b ∈ F then a ∧ b ∈ F . Thus a filter on a set X is
a filter in the lattice PX. A maximal filter is a filter not contained in any other filter.
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Given a space X, let ZX denote the set of zero-sets in X; that is, sets of the form
{x : g(x) = 0} for some continuous g : X → [0, 1] (or equivalently, g : X → R). Clearly ZX
is a sublattice of PX. Let β′′X denote the set of maximal filters in ZX, with a topology
whose basic closed sets are those the form A∗ = {F ∈ β′′X : A ∈ F}, where A is a zero-set.

Any point x ∈ X determines a filter ηx = {A ∈ ZX : x ∈ A} which it is easy to see
is maximal. Thus we have a map η : X → β′′X. Since η−1(A∗) = A, we see that η is
continuous. If X is completely regular, so that the zero-sets generate its topology, then η is
an embedding.

Theorem 5.8. β′′X is another Stone-Čech compactification of X.

Proof. To see that β′′X is compact, consider a collection of closed sets Fi with the FIP. Each
is an intersection of basic closed sets A∗

ij, so the whole collection {A∗
ij} has the FIP and

thus so does {Aij}. By Zorn’s lemma, this collection is contained in a maximal filter in ZX,
which is thus a point of β′′X contained in all the Fi; thus they have nonempty intersection.

To see that it is Hausdorff, suppose that F and G are distinct maximal filters in ZX.
Then there exists A ∈ F r G. Since G is maximal, A must be inconsistent with it; that
is, there is B ∈ G with A ∩ B = ∅. Then the disjoint open sets β′′X r A∗ and β′′X r B∗

separate F and G.
Moreover, since the only basic closed set A∗ containing η(X) is X∗, η(X) is dense in β′′X.

Thus it remains only to show that any continuous map f : X → Y , where Y is compact
Hausdorff, extends to β′′X.

Consider, for any F ∈ β′′X, the collection of zero-sets A in Y such that f−1(A) ∈ F .
This is a collection of closed sets with the FIP, so since Y is compact, it has a nonempty
intersection ∅ 6= F =

⋂
{A : f−1(A) ∈ F}. Moreover, if we have x, y ∈ F with x 6= y, then

since Y is itself completely regular (being compact Hausdorff), there exist zero-sets A and B
with x 6∈ B, y 6∈ A, and A∪B = Y . Thus f−1(A)∪ f−1(B) = X, so since F is maximal, one
of the zero-sets f−1(A) and f−1(B) must be in F , and so one of A or B must be in F . But
this is impossible since x and y are both in all elements of F . Thus F consists of just one

point, which we label f̃(F). It remains to check that f̃ is continuous; this follows because

f̃−1(A) = (f−1(A))∗ for any zero-set A ⊂ Y . �

Therefore, we have an isomorphism βX ∼= β′′X. The induced map ψX → β′′X is again
easy to describe. Given an ultrafilter F on X, we can consider the set of all zero-sets in F .
This is a filter in ZX, but not in general a maximal one. However, the above arguments
essentially show that it is contained in a unique maximal filter, which we define to be the
image of F .

Therefore, we can now say that two ultrafilters F and G become identified in βX precisely
when their intersections with ZX are contained in the same maximal filter. Clearly a
necessary condition for this is that A ∩ B 6= ∅ whenever A ∈ F and B ∈ G are zero-sets;
this is also sufficient, since then (F ∪ G) ∩ ZX generates a filter in ZX, which is contained
in a maximal one that must contain both F ∩ZX and G ∩ZX. This is about as concrete a
condition as we could hope for, given how un-concrete non-principal ultrafilters are anyway.

There are still other ways to construct the Stone-Čech compactification. We can consider
maximal completely regular filters of open sets, or maximal ideas of cozero-sets, or maximal
ideals in the ring C∗(X) of bounded continuous real-valued functions on X. See [Joh86].
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Exercise 5.9. Show that a space X is compact Hausdorff if and only if X ∼= βX, and in
particular that β(βX) ∼= βX for any X.
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