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My hat today

e | am a mathematician: not a computer scientist.

e | am a categorical logician: type theory is a formal system for
reasoning internally to categories. Good formal properties of
type theory are valued but negotiable.

e | am a pragmatic constructivist: | use constructive logic when,
and only when, | have good reasons to.

No disrespect is meant to the wearers of other hats, including
myself on other days.
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Cohesion

Brouwer's fixed-point theorem (classical version)

Theorem

Any continuous map f : D?> — D? has a fixed point.

Proof.

r(2) Suppose f : D?> — D? is continuous with
no fixed point. For any z € D2, draw the
ray from f(z) through z to hit OD? = S! at
r(z). Then r is continuous, and retracts D?
onto S'. Hence m1(S!) = Z is a retract of
71(D?) = 0, a contradiction.

e D? and S are spaces “up to homeomorphism”.
e We still have to “do homotopy theory” with them.
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Cohesion

Cohesive oco-groupoids

Idea

A continuous oco-groupoid is an oco-groupoid with compatible
topologies on the set of k-morphisms for all k.

Example

e An ordinary topological space of objects, with only identity
k-morphisms for k > 0.

e An ordinary co-groupoid, with the discrete topology in all
dimensions.
e An ordinary co-groupoid with the indiscrete topology.

e The delooping of a topological group G, with one object, with
G as the space of 1-morphisms, and only k-identities for k > 1.



Cohesion

(Cohesive oo-groupoids, really)

Technicality

To get a good oco-category, instead of co-groupoids internal to
topological spaces, we use sheaves on the site of cartesian spaces
{R"} ,en with the Grothendieck topology of open covers.

(There are other interesting sites too: cohesion is more general than
R"-detected continuity.)
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Cohesive type theory

What is cohesive HoTT?

Answer #1

We “expand the universe” of HoTT to include cohesive
oo-groupoids in addition to ordinary ones.

Answer #2

We realize that the HoTT we've been doing all along might as well
have been talking about cohesive co-groupoids in addition to
ordinary ones.



Cohesive type theory

Adding homotopy to type theory

Ordinary type theory (for a mathematican)

e Intuition: types as sets, terms as functions.



Cohesive type theory

Adding homotopy to type theory

Ordinary type theory (for a mathematican)

e Intuition: types as sets, terms as functions.

Homotopy type theory

e New intuition: types as co-groupoids, terms as functors.
e Detect their oco-groupoid structure with the identity type.
e The old intuition is still present in the 0-types.

e Some types that already existed turn out “automatically” to
have nontrivial co-groupoid structure (e.g. the universe is
univalent).



Cohesive type theory

Adding topology to type theory

Ordinary type theory

e Intuition: types as sets, terms as functions.

Synthetic topology

New intuition: types as spaces, terms as continuous maps.

Detect their topological structure in various ways.

The old intuition is still present in the discrete spaces.

Some types that already existed turn out “automatically” to
have nontrivial topological structure (e.g. the real numbers R
have their usual topology).



Cohesive type theory

Cohesive HoTT

Cohesive HoTT

New intuition: types as cohesive co-groupoids.

Every type has both oco-groupoid structure and cohesive/topological
structure. Either, both, or neither can be trivial.

Example

e The higher inductive S' has nontrivial higher structure
(QS! = 7Z), but is cohesively discrete (no topology).

e St ={(x,y) :R?| x*+ y? =1} has trivial higher structure
(is a 0-type), but nontrivial cohesion (its “usual topology”).

In a moment we will see that S is the shape of S!.



Cohesive type theory

What does cohesive HoTT look like?

e HoTT with extra stuff. Everything you know about synthetic
homotopy theory is still true.

e Think of every type as having a cohesive structure (perhaps
discrete), and every map as continuous.

e HITs like S generally have discrete cohesion, whereas R and
types built from it have “their usual topologies”.
e Be careful with words:
e A (—1)-truncated map (HoTT Book “embedding”) need not be
a subspace inclusion; call it a “mono”.
e There are “identifications” p: x =y and “paths” c: R — X.
e Detect and operate on cohesive structure with “modalities”
(in a moment).



Cohesive type theory

We do need to stick to constructive logic

e The strong law of excluded middle [[1ype A+ A is
incompatible with univalence.

e The propositional law of excluded middle szpmp P+ =Pis
consistent with univalence.

e Even the propositional law of excluded middle is incompatible
with cohesion.

Example

e Monos are “injective continuous maps”.
e If A— B is a mono, its complement =A — B is a subspace.

e Their union as monos has the disjoint union topology:
AU-A # B.
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Cohesive modalities

Axiomatic cohesion

Definition

pX: the underlying co-groupoid of X retopologized discretely

#X: the underlying co-groupoid of X retopologized codiscretely

o Codiscrete types are a reflective subcategory, with reflector f.
“Every map into a codiscrete space is continuous”
e Discrete types are a coreflective subcategory, with coreflector b.

“Every map out of a discrete space is continuous”



Cohesive modalities

Axiomatic cohesion

Definition

e bX: the underlying co-groupoid of X retopologized discretely
e #X: the underlying co-groupoid of X retopologized codiscretely
e [X: the shape* of X, topologized discretely

* ['is an “esh”, IPA for a voiceless postalveolar fricative (English sh)



Cohesive modalities

Axiomatic cohesion

Definition

e bX: the underlying co-groupoid of X retopologized discretely
e #X: the underlying co-groupoid of X retopologized codiscretely
e [X: the shape* of X, topologized discretely

Discrete types are also reflective, with reflector |
IX=Y)=(X=Y)

whenever Y is discrete. Magically, this universal property
characterizes the classical fundamental co-groupoid.

* ['is an “esh”, IPA for a voiceless postalveolar fricative (English sh)



Cohesive modalities

The problem of discrete coreflection

e # and [ are (idempotent, monadic) modalities in the sense of
§7.7 of the Book. They internalize as functions Type — Type.
Semantically, they act on all slice categories.

e E.g. a mono is “fiberwise codiscrete” iff it is a subspace
inclusion, and fiberwise § reflects monos into subspaces.



Cohesive modalities

The problem of discrete coreflection

e # and [ are (idempotent, monadic) modalities in the sense of
§7.7 of the Book. They internalize as functions Type — Type.
Semantically, they act on all slice categories.

e E.g. a mono is “fiberwise codiscrete” iff it is a subspace
inclusion, and fiberwise § reflects monos into subspaces.

e b is an “idempotent comonadic modality”, but it cannot
similarly be internalized or extended to slice categories.

Theorem

The only internal “coreflective subuniverses” are the “slice
categories” Type/U for some U : Prop.



Cohesive modalities

The solution to discrete coreflection

First Solution

b can only be applied in the empty context.

Semantically: discrete objects are a coreflective subcategory of the
category of cohesive oo-groupoids, but not of all its slice categories.



Cohesive modalities

The solution to discrete coreflection

First Solution

b can only be applied in the empty context.

Semantically: discrete objects are a coreflective subcategory of the
category of cohesive oo-groupoids, but not of all its slice categories.
Better Solution

b can only be applied when everything in the context is discrete.
Semantically: discrete objects are a coreflective subcategory of the

category of cohesive co-groupoids, considered as indexed over
ordinary oo-groupoids.



Cohesive modalities
Modal type theory

x:bAFC x:A|l-FC
_ o
x:bAEDC ' x:Aly:BEDHC

Technicality

Literally requiring types in the context to be of the form bA breaks
the admissibility of substitution. Instead we “judgmental-ize” it with
a formalism of “crisp variables” x :: A that semantically mean the
same as x : bA.

Cf. Pfenning-Davies 2001, Reed 2009, Licata-Shulman 2016,
Licata-Shulman-Riley 2017



Cohesive type theories

Type Theory

Cohesive modalities

Conjectural Semantics

HoTT oo-toposes
Spatial type theory
(b and 1) local co-toposes
Cohesive type theory )
(b, #, and J) cohesive co-toposes

Real-cohesive type theory
(/' generated by R)

the oco-topos of
continuous oco-groupoids



Cohesive modalities

Real-cohesion

Let R be the Dedekind real numbers.

Axiom Rb
A type A is discrete if and only if

const: A— (R — A)

is an equivalence. (“Every map R — A is constant.”)



Cohesive modalities

Real-cohesion

Let R be the Dedekind real numbers.

Axiom Rb
A type A is discrete if and only if

const: A— (R — A)
is an equivalence. (“Every map R — A is constant.”)
In particular, if A is discrete then
R=A~A~(1—A)

so that [R = 1.



Cohesive modalities
The shape of the circle

Theorem
J‘Sl — 51.
(Recall S' = { (x,y) : R? | x> + y? = 1 }, while S is the HIT.)



Cohesive modalities

The shape of the circle

Theorem
JSt = st
(Recall S' = { (x,y) : R? | x> + y? = 1 }, while S is the HIT.)
Proof.
e Sl is the coequalizer of two maps 1 = 1.

o St is the coequalizer of two maps idg, (+1) : R = R.

e [is a left adjoint, hence preserves colimits.

e [R=1.



Cohesive modalities

The shape of the circle

Theorem

JSt = st
(Recall S' = { (x,y) : R? | x> + y? = 1 }, while S is the HIT.)
Proof.

e Sl is the coequalizer of two maps 1 = 1.

o S!is the coequalizer of two maps idg, (+1) : R = R.

e [is a left adjoint, hence preserves colimits.

° JR =1.

e Discrete types in the empty context are coreflective, hence
closed under colimits; thus S! is discrete. [



Cohesive modalities

Cohesive homotopy type theory

constructive J synthetic
analysis homotopy theory

information
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Brouwer's theorems

Brouwer's fixed-point theorem (classical version)

Theorem

Any continuous map f : D? — D? has a fixed point.

Proof.

r(2) Suppose f : D?> — D? is continuous with
no fixed point. For any z € D2, draw the
ray from f(z) through z to hit OD? = S! at
r(z). Then r is continuous, and retracts D?
onto S. Hence 71(S) = Z is a retract of
71(D?) = 0, a contradiction.



Brouwer's theorems

The real-cohesive version, first try

Theorem

Any function f : D?> — D? has a fixed point.

Attempted proof.

r(z) Suppose f : D? — D? has no fixed point.
For any z : D?, draw the ray from f(z)
through z to hit OD? = S at r(z). Then r
retracts D? onto S!. Hence [S! is a retract
of JD?. But D? is a retract of R?, hence [ID?
is contractible, while [St = S, which is not
contractible.



Brouwer's theorems

The real-cohesive version, first try

Theorem
Any contintrotrs function f : D?> — D? has a fixed point.

Attempted proof.

r(z) Suppose f : D? — D? has no fixed point.
For any z : D?, draw the ray from f(z)
through z to hit 9D? = S! at r(z). Then
r {s-eentintous—and retracts D? onto S
Hence [S! is a retract of [D2. But D? is
a retract of R?, hence [D? is contractible,

while ST = S, which is not contractible.
L]



Brouwer's theorems

The real-cohesive version, first try

Theorem

Any function f : D?> — D? has a fixed point.

Attempted proof.

r(z) Suppose f : D? — D? has no fixed point.
For any z : D?, draw the ray from f(z)
through z to hit OD? = S at r(z). Then r
retracts D? onto S!. Hence [S! is a retract
of /D?. But D? is a retract of R?, hence JD?
is contractible, while [St = S, which is not
contractible.



Brouwer's theorems

Problems

There are two problems with this:
@ It's a proof by contradiction of a positive statement: the sort
that's disallowed in constructive mathematics. But cohesive
homotopy type theory is incompatible with excluded middle.

® Even disregarding that, the assumption “f has no fixed point”
tells us only that 7(z) # z for all z, whereas constructively, in
order to draw the line connecting two points we need them to
be apart (have a positive distance), not merely unequal.



Brouwer's theorems

Classicality axioms for cohesion

Flat excluded middle (hLEM)
For all P : bProp we have P + —P.

“We can use proof by contradiction in a fully discrete context.”

Analytic Markov's Principle (AMP)
For x,y : R, if x # y then [x — y| > 0.

“Disequality implies apartness.”

Both hold in the topos of continuous co-groupoids.



Brouwer's theorems

Digression: Omniscience principles in real-cohesion

Cauchy reals | Dedekind reals

(standard) (analytic)
LPO: Vx(x =0V x #0) v X
LLPO: Vx(x <0V x > 0) v X
MP: Vx(x # 0V |x| > 0) v ?

= provable from bLEM
= disprovable from bLEM
= consistent with bLEM; maybe provable?

~ X N



Brouwer's theorems

The real-cohesive version, second try

Theorem (Using bLEM and AMP)
Any function f : b(D? — D?) has a fixed point.

Proof.
Since the context is discrete, we may use
r(z) proof by contradiction. Suppose f has no
fixed point. Then for any z : D?, we have
f(z) # z, hence d(z,f(z)) > 0. So we
can draw the ray from f(z) through z to hit
OD? = St at r(z). Then r retracts D? onto
St. Hence JS! is a retract of /D?. But D?is a
retract of R?, hence [D? is contractible, while
JSt = S, which is not contractible. ]



Brouwer's theorems

The real-cohesive version, second try

Recall, all types are “spaces” and all operations are “continuous”,
while bA means A retopologized discretely. Thus,

Theorem
Any function f : b(D? — D?) has a fixed point.

means intuitively that

Any function f : D? — D? has a fixed point, but such
fixed points cannot be selected continuously as a function of f.

This is certainly true: a small deformation in f can cause its fixed
point to “jump” discontinuously.



Brouwer's theorems

A constructive real-cohesive version

Theorem (NOT using bLEM or AMP)

For any function f : b(D? — D?) and ¢ > 0, there exists a point
z : D? with d(z, f(z)) < e.



Brouwer's theorems

A constructive real-cohesive version

Theorem (NOT using bLEM or AMP)

For any function f : b(D? — D?) and ¢ > 0, there exists a point
z:D? with d(z, f(z)) < e.

Proof.

e WLOG ¢ is rational. Since Q is discrete, so is the context.

e U={z|d(z,f(z))>5}and V={z|d(z,f(z)) <e}.
Then D?> = UU V, since Vx : R(x <&V x > £).



Brouwer's theorems

A constructive real-cohesive version

Theorem (NOT using bLEM or AMP)

For any function f : b(D? — D?) and ¢ > 0, there exists a point
z:D? with d(z, f(z)) < e.

Proof.

e WLOG ¢ is rational. Since Q is discrete, so is the context.

e U={z|d(z,f(z))>5}and V={z|d(z,f(z)) <e}.
Then D?> = UU V, since Vx : R(x <&V x > £).

e By shrinking f near S!, we may assume S* C U.



Brouwer's theorems

A constructive real-cohesive version

Theorem (NOT using bLEM or AMP)

For any function f : b(D? — D?) and ¢ > 0, there exists a point
z:D? with d(z, f(z)) < e.

Proof.

e WLOG ¢ is rational. Since Q is discrete, so is the context.
U={z|d(z,f(z))>5}and V={z]|d(z,f(z)) <e}.
Then D?> = UU V, since Vx : R(x <&V x > £).

By shrinking f near S', we may assume S! C U.

“Ray from f(z) to z" defines a retraction r: U — S!.

Thus St is a retract of U, so JU contains a nontrivial loop.



Brouwer's theorems

A constructive real-cohesive version

Theorem (NOT using bLEM or AMP)

For any function f : b(D? — D?) and ¢ > 0, there exists a point
z:D? with d(z, f(z)) < e.

Proof.

e WLOG ¢ is rational. Since Q is discrete, so is the context.
U={z|d(z,f(z))>5}and V={z]|d(z,f(z)) <e}.
Then D?> = UU V, since Vx : R(x <&V x > £).
By shrinking f near S', we may assume S! C U.

“Ray from f(z) to z" defines a retraction r: U — S!.

Thus St is a retract of U, so JU contains a nontrivial loop.
D2=UUuV=U0uY"VV, s U I_II(U”V)IV is contractible.



Brouwer's theorems

Recall: the van Kampen theorem

Theorem
For P the pushout of f : A— B andg: A— C, and u,v : P,

|lu= v, ~ code(u, v).

code(inl(b),inl(b")) is a set-quotient of the type of sequences

b’\eBO\> f(Xl) ) g(Xl) «%ng(yl) , f(yl)'%1\> %bl

(or b«%?» b’ when n = 0) by an equivalence relation generated by

Gkt kst

Cs Pk Pkl )

(' . ‘7qk)yk7reﬂf(yk)7yk7 qk+1, - - )

(' . '7pk7Xk7reﬂg(xk)vxkapk+17 . )

= (..
— (..



Brouwer's theorems
Recall: the van Kampen theorem

Theorem
For P the pushout of f : A— B andg: A— C, and u,v : P,

|lu= v, ~ code(u, v).

Corollary

Ifp:b=pg b and p' : b=pg b’ get identified in P, then ||C||.



Brouwer's theorems

A constructive real-cohesive version

Theorem (NOT using bLEM or AMP)

For any function f : b(D? — D?) and ¢ > 0, there exists a point
z:D? with d(z, f(z)) < e.

Proof.

e WLOG ¢ is rational. Since Q is discrete, so is the context.

U={z|d(z,f(z))>5}and V={z|d(z,f(z)) <e}.
Then D? = UU V, since Vx : R(x <&V x > 3).
By shrinking f near S!, we may assume S! C U.

“Ray from f(z) to z" defines a retraction r : U — S*.

Thus S is a retract of [U, so [U contains a nontrivial loop.

D2=UuV=U0UYVYYV, s U I_J(Um/)fv is contractible.
(I preserves colimits in discrete context.)

e By the van Kampen theorem, we have ||[V]], hence ||V|. O
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