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My hat today

• I am a mathematician: not a computer scientist.

• I am a categorical logician: type theory is a formal system for
reasoning internally to categories. Good formal properties of
type theory are valued but negotiable.

• I am a pragmatic constructivist: I use constructive logic when,
and only when, I have good reasons to.

No disrespect is meant to the wearers of other hats, including
myself on other days.
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Brouwer’s fixed-point theorem (classical version)

Theorem

Any continuous map f : D2 → D2 has a fixed point.

Proof.

f (z)

r(z)

z

Suppose f : D2 → D2 is continuous with
no fixed point. For any z ∈ D2, draw the
ray from f (z) through z to hit ∂D2 = S1 at
r(z). Then r is continuous, and retracts D2

onto S1. Hence π1(S1) = Z is a retract of
π1(D2) = 0, a contradiction.

• D2 and S1 are spaces “up to homeomorphism”.

• We still have to “do homotopy theory” with them.
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Cohesive ∞-groupoids

Idea

A continuous ∞-groupoid is an ∞-groupoid with compatible
topologies on the set of k-morphisms for all k.

Example

• An ordinary topological space of objects, with only identity
k-morphisms for k > 0.

• An ordinary ∞-groupoid, with the discrete topology in all
dimensions.

• An ordinary ∞-groupoid with the indiscrete topology.

• The delooping of a topological group G , with one object, with
G as the space of 1-morphisms, and only k-identities for k > 1.
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(Cohesive ∞-groupoids, really)

Technicality

To get a good ∞-category, instead of ∞-groupoids internal to
topological spaces, we use sheaves on the site of cartesian spaces
{Rn}n∈N with the Grothendieck topology of open covers.

(There are other interesting sites too: cohesion is more general than
Rn-detected continuity.)
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What is cohesive HoTT?

Answer #1

We “expand the universe” of HoTT to include cohesive
∞-groupoids in addition to ordinary ones.

Answer #2

We realize that the HoTT we’ve been doing all along might as well
have been talking about cohesive ∞-groupoids in addition to
ordinary ones.
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Adding homotopy to type theory

Ordinary type theory (for a mathematican)

• Intuition: types as sets, terms as functions.

Homotopy type theory

• New intuition: types as ∞-groupoids, terms as functors.

• Detect their ∞-groupoid structure with the identity type.

• The old intuition is still present in the 0-types.

• Some types that already existed turn out “automatically” to
have nontrivial ∞-groupoid structure (e.g. the universe is
univalent).
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Adding topology to type theory

Ordinary type theory

• Intuition: types as sets, terms as functions.

Synthetic topology

• New intuition: types as spaces, terms as continuous maps.

• Detect their topological structure in various ways.

• The old intuition is still present in the discrete spaces.

• Some types that already existed turn out “automatically” to
have nontrivial topological structure (e.g. the real numbers R
have their usual topology).
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Cohesive HoTT

Cohesive HoTT

New intuition: types as cohesive ∞-groupoids.

Every type has both ∞-groupoid structure and cohesive/topological
structure. Either, both, or neither can be trivial.

Example

• The higher inductive S1 has nontrivial higher structure
(ΩS1 = Z), but is cohesively discrete (no topology).

• S1 =
{

(x , y) : R2
∣∣ x2 + y2 = 1

}
has trivial higher structure

(is a 0-type), but nontrivial cohesion (its “usual topology”).

In a moment we will see that S1 is the shape of S1.



Cohesion Cohesive type theory Cohesive modalities Brouwer’s theorems

What does cohesive HoTT look like?

• HoTT with extra stuff. Everything you know about synthetic
homotopy theory is still true.

• Think of every type as having a cohesive structure (perhaps
discrete), and every map as continuous.

• HITs like S1 generally have discrete cohesion, whereas R and
types built from it have “their usual topologies”.

• Be careful with words:
• A (−1)-truncated map (HoTT Book “embedding”) need not be

a subspace inclusion; call it a “mono”.
• There are “identifications” p : x = y and “paths” c : R→ X .

• Detect and operate on cohesive structure with “modalities”
(in a moment).
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We do need to stick to constructive logic

• The strong law of excluded middle
∏

A:Type A + ¬A is
incompatible with univalence.

• The propositional law of excluded middle
∏

P:Prop P + ¬P is
consistent with univalence.

• Even the propositional law of excluded middle is incompatible
with cohesion.

Example

• Monos are “injective continuous maps”.

• If A→ B is a mono, its complement ¬A→ B is a subspace.

• Their union as monos has the disjoint union topology:
A ∪ ¬A 6= B.
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Axiomatic cohesion

Definition

• [X : the underlying ∞-groupoid of X retopologized discretely

• ]X : the underlying ∞-groupoid of X retopologized codiscretely

• Codiscrete types are a reflective subcategory, with reflector ].

“Every map into a codiscrete space is continuous”

• Discrete types are a coreflective subcategory, with coreflector [.

“Every map out of a discrete space is continuous”
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Axiomatic cohesion

Definition

• [X : the underlying ∞-groupoid of X retopologized discretely

• ]X : the underlying ∞-groupoid of X retopologized codiscretely

• sX : the shape∗ of X , topologized discretely

Discrete types are also reflective, with reflector s:

(sX → Y ) ' (X → Y )

whenever Y is discrete. Magically, this universal property
characterizes the classical fundamental ∞-groupoid.

∗ s is an “esh”, IPA for a voiceless postalveolar fricative (English sh)
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The problem of discrete coreflection

• ] and s are (idempotent, monadic) modalities in the sense of
§7.7 of the Book. They internalize as functions Type→ Type.
Semantically, they act on all slice categories.

• E.g. a mono is “fiberwise codiscrete” iff it is a subspace
inclusion, and fiberwise ] reflects monos into subspaces.

• [ is an “idempotent comonadic modality”, but it cannot
similarly be internalized or extended to slice categories.

Theorem

The only internal “coreflective subuniverses” are the “slice
categories” Type/U for some U : Prop.
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The solution to discrete coreflection

First Solution

[ can only be applied in the empty context.

Semantically: discrete objects are a coreflective subcategory of the
category of cohesive ∞-groupoids, but not of all its slice categories.

Better Solution

[ can only be applied when everything in the context is discrete.

Semantically: discrete objects are a coreflective subcategory of the
category of cohesive ∞-groupoids, considered as indexed over
ordinary ∞-groupoids.
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Modal type theory

x : [A ` C

x : [A ` [C
or

x :: A | · ` C

x :: A | y : B ` [C

Technicality

Literally requiring types in the context to be of the form [A breaks
the admissibility of substitution. Instead we “judgmental-ize” it with
a formalism of “crisp variables” x :: A that semantically mean the
same as x : [A.

Cf. Pfenning-Davies 2001, Reed 2009, Licata-Shulman 2016,
Licata-Shulman-Riley 2017
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Cohesive type theories

Type Theory Conjectural Semantics

HoTT ∞-toposes
Spatial type theory

([ and ])
local ∞-toposes

Cohesive type theory
([, ], and s)

cohesive ∞-toposes

Real-cohesive type theory
(s generated by R)

the ∞-topos of
continuous ∞-groupoids
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Real-cohesion

Let R be the Dedekind real numbers.

Axiom R[

A type A is discrete if and only if

const : A→ (R→ A)

is an equivalence. (“Every map R→ A is constant.”)

In particular, if A is discrete then

(R→ A) ' A ' (1→ A)

so that sR = 1.
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The shape of the circle

Theorem

sS1 = S1.

(Recall S1 =
{

(x , y) : R2
∣∣ x2 + y2 = 1

}
, while S1 is the HIT.)

Proof.

• S1 is the coequalizer of two maps 1 ⇒ 1.

• S1 is the coequalizer of two maps idR, (+1) : R ⇒ R.

• s is a left adjoint, hence preserves colimits.

• sR = 1.

• Discrete types in the empty context are coreflective, hence
closed under colimits; thus S1 is discrete.
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Brouwer’s fixed-point theorem (classical version)

Theorem

Any continuous map f : D2 → D2 has a fixed point.

Proof.

f (z)

r(z)

z

Suppose f : D2 → D2 is continuous with
no fixed point. For any z ∈ D2, draw the
ray from f (z) through z to hit ∂D2 = S1 at
r(z). Then r is continuous, and retracts D2

onto S1. Hence π1(S1) = Z is a retract of
π1(D2) = 0, a contradiction.



Cohesion Cohesive type theory Cohesive modalities Brouwer’s theorems

The real-cohesive version, first try

Theorem

Any function f : D2 → D2 has a fixed point.

Attempted proof.

f (z)

r(z)

z

Suppose f : D2 → D2 has no fixed point.
For any z : D2, draw the ray from f (z)
through z to hit ∂D2 = S1 at r(z). Then r
retracts D2 onto S1. Hence sS1 is a retract
of sD2. But D2 is a retract of R2, hence sD2

is contractible, while sS1 = S1, which is not
contractible.
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Problems

There are two problems with this:

1 It’s a proof by contradiction of a positive statement: the sort
that’s disallowed in constructive mathematics. But cohesive
homotopy type theory is incompatible with excluded middle.

2 Even disregarding that, the assumption “f has no fixed point”
tells us only that f (z) 6= z for all z , whereas constructively, in
order to draw the line connecting two points we need them to
be apart (have a positive distance), not merely unequal.



Cohesion Cohesive type theory Cohesive modalities Brouwer’s theorems

Classicality axioms for cohesion

Flat excluded middle ([LEM)

For all P : [Prop we have P + ¬P.

“We can use proof by contradiction in a fully discrete context.”

Analytic Markov’s Principle (AMP)

For x , y : R, if x 6= y then |x − y | > 0.

“Disequality implies apartness.”

Both hold in the topos of continuous ∞-groupoids.
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Digression: Omniscience principles in real-cohesion

Cauchy reals Dedekind reals
(standard) (analytic)

LPO: ∀x(x = 0 ∨ x 6= 0) 3 7

LLPO: ∀x(x ≤ 0 ∨ x ≥ 0) 3 7

MP: ∀x(x 6= 0 ∨ |x | > 0) 3 ?

3 = provable from [LEM

7 = disprovable from [LEM

? = consistent with [LEM; maybe provable?
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The real-cohesive version, second try

Theorem (Using [LEM and AMP)

Any function f : [(D2 → D2) has a fixed point.

Proof.

f (z)

r(z)

z

Since the context is discrete, we may use
proof by contradiction. Suppose f has no
fixed point. Then for any z : D2, we have
f (z) 6= z , hence d(z , f (z)) > 0. So we
can draw the ray from f (z) through z to hit
∂D2 = S1 at r(z). Then r retracts D2 onto
S1. Hence sS1 is a retract of sD2. But D2 is a
retract of R2, hence sD2 is contractible, while
sS1 = S1, which is not contractible.
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The real-cohesive version, second try

Recall, all types are “spaces” and all operations are “continuous”,
while [A means A retopologized discretely. Thus,

Theorem

Any function f : [(D2 → D2) has a fixed point.

means intuitively that

Any function f : D2 → D2 has a fixed point, but such
fixed points cannot be selected continuously as a function of f .

This is certainly true: a small deformation in f can cause its fixed
point to “jump” discontinuously.
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A constructive real-cohesive version

Theorem (NOT using [LEM or AMP)

For any function f : [(D2 → D2) and ε > 0, there exists a point
z : D2 with d(z , f (z)) < ε.

Proof.

• WLOG ε is rational. Since Q is discrete, so is the context.

• U =
{
z
∣∣ d(z , f (z)) > ε

2

}
and V = { z | d(z , f (z)) < ε }.

Then D2 = U ∪ V , since ∀x : R(x < ε ∨ x > ε
2).

• By shrinking f near S1, we may assume S1 ⊆ U.

• “Ray from f (z) to z” defines a retraction r : U → S1.

• Thus S1 is a retract of sU, so sU contains a nontrivial loop.

• D2 = U ∪ V = U tU∩V V , so sU ts(U∩V ) sV is contractible.
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Recall: the van Kampen theorem

Theorem

For P the pushout of f : A→ B and g : A→ C , and u, v : P,

‖u = v‖0 ' code(u, v).

code(inl(b), inl(b′)) is a set-quotient of the type of sequences

b
p0

B
// f (x1) , g(x1)

q0

C
// g(y1) , f (y1)

p1

B
// · · · pn

B
// b′

(or b
p0

B
// b′ when n = 0) by an equivalence relation generated by

(. . . , qk , yk , reflf (yk ), yk , qk+1, . . . ) = (. . . , qk � qk+1, . . . )

(. . . , pk , xk , reflg(xk ), xk , pk+1, . . . ) = (. . . , pk � pk+1, . . . ).
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Recall: the van Kampen theorem

Theorem

For P the pushout of f : A→ B and g : A→ C , and u, v : P,

‖u = v‖0 ' code(u, v).

Corollary

If p : b =B b′ and p′ : b =B b′ get identified in P, then ‖C‖.
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A constructive real-cohesive version
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For any function f : [(D2 → D2) and ε > 0, there exists a point
z : D2 with d(z , f (z)) < ε.

Proof.

• WLOG ε is rational. Since Q is discrete, so is the context.

• U =
{
z
∣∣ d(z , f (z)) > ε

2

}
and V = { z | d(z , f (z)) < ε }.

Then D2 = U ∪ V , since ∀x : R(x < ε ∨ x > ε
2).

• By shrinking f near S1, we may assume S1 ⊆ U.

• “Ray from f (z) to z” defines a retraction r : U → S1.

• Thus S1 is a retract of sU, so sU contains a nontrivial loop.

• D2 = U ∪ V = U tU∩V V , so sU ts(U∩V ) sV is contractible.
(s preserves colimits in discrete context.)

• By the van Kampen theorem, we have ‖sV ‖, hence ‖V ‖.
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