Real-cohesion: from connectedness to continuity

Michael Shulman

University of San Diego

March 26, 2017

My hat today

- I am a mathematician: not a computer scientist.
- I am a categorical logician: type theory is a formal system for reasoning internally to categories. Good formal properties of type theory are valued but negotiable.
- I am a *pragmatic constructivist*: I use constructive logic when, and only when, I have good reasons to.

No disrespect is meant to the wearers of other hats, including myself on other days.

Outline

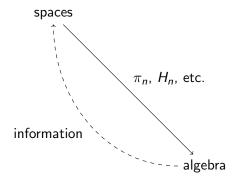
2 Cohesive type theory

3 Cohesive modalities

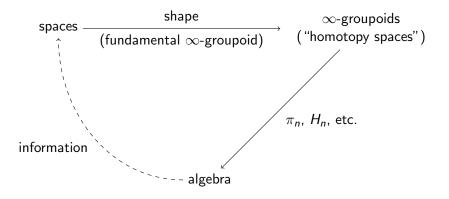
4 Brouwer's theorems

Brouwer's theorems

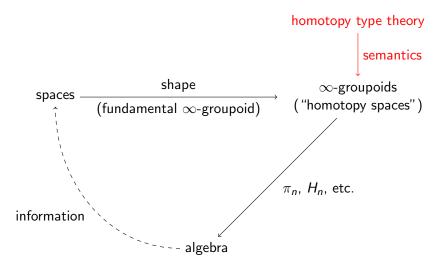
Classical algebraic topology



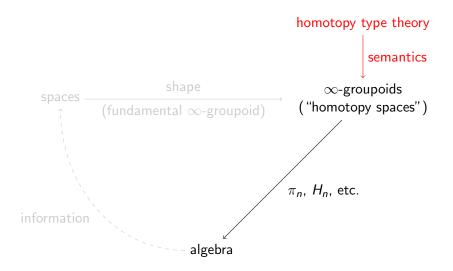
Modern algebraic topology



Homotopy type theory



Homotopy type theory

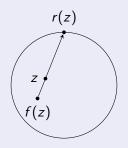


Brouwer's fixed-point theorem (classical version)

Theorem

Any continuous map $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point.

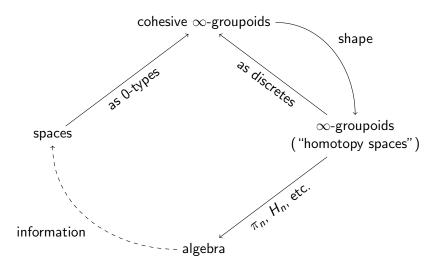
Proof.



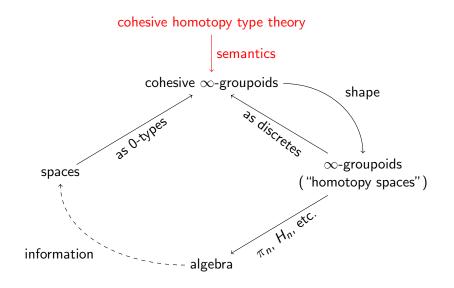
Suppose $f : \mathbb{D}^2 \to \mathbb{D}^2$ is continuous with no fixed point. For any $z \in \mathbb{D}^2$, draw the ray from f(z) through z to hit $\partial \mathbb{D}^2 = \mathbb{S}^1$ at r(z). Then r is continuous, and retracts \mathbb{D}^2 onto \mathbb{S}^1 . Hence $\pi_1(\mathbb{S}^1) = \mathbb{Z}$ is a retract of $\pi_1(\mathbb{D}^2) = 0$, a contradiction.

- \mathbb{D}^2 and \mathbb{S}^1 are spaces "up to homeomorphism".
- We still have to "do homotopy theory" with them.

Cohesive algebraic topology



Cohesive homotopy type theory



Cohesive ∞ -groupoids

Idea

A continuous ∞ -groupoid is an ∞ -groupoid with compatible topologies on the set of *k*-morphisms for all *k*.

Example

- An ordinary topological space of objects, with only identity k-morphisms for k > 0.
- An ordinary ∞ -groupoid, with the discrete topology in all dimensions.
- An ordinary ∞ -groupoid with the *indiscrete* topology.
- The delooping of a topological group G, with one object, with G as the space of 1-morphisms, and only k-identities for k > 1.

(Cohesive ∞ -groupoids, really)

Technicality

To get a good ∞ -category, instead of ∞ -groupoids internal to topological spaces, we use sheaves on the site of cartesian spaces $\{\mathbb{R}^n\}_{n\in\mathbb{N}}$ with the Grothendieck topology of open covers.

(There are other interesting sites too: cohesion is more general than \mathbb{R}^n -detected continuity.)

Outline

1 Cohesion

2 Cohesive type theory

3 Cohesive modalities

4 Brouwer's theorems

What is cohesive HoTT?

Answer #1

We "expand the universe" of HoTT to include cohesive ∞ -groupoids in addition to ordinary ones.

Answer #2

We realize that the HoTT we've been doing all along *might as well* have been talking about cohesive ∞ -groupoids in addition to ordinary ones.

Adding homotopy to type theory

Ordinary type theory (for a mathematican)

• Intuition: types as sets, terms as functions.

Adding homotopy to type theory

Ordinary type theory (for a mathematican)

• Intuition: types as sets, terms as functions.

Homotopy type theory

- New intuition: types as ∞ -groupoids, terms as functors.
- Detect their ∞ -groupoid structure with the identity type.
- The old intuition is still present in the 0-types.
- Some types that already existed turn out "automatically" to have nontrivial ∞-groupoid structure (e.g. the universe is univalent).

Adding topology to type theory

Ordinary type theory

• Intuition: types as sets, terms as functions.

Synthetic topology

- New intuition: types as spaces, terms as continuous maps.
- Detect their topological structure in various ways.
- The old intuition is still present in the discrete spaces.
- Some types that already existed turn out "automatically" to have nontrivial topological structure (e.g. the real numbers ℝ have their usual topology).

Cohesive HoTT

Cohesive HoTT

New intuition: types as cohesive ∞ -groupoids.

Every type has both ∞ -groupoid structure and cohesive/topological structure. Either, both, or neither can be trivial.

Example

- The higher inductive S^1 has nontrivial higher structure $(\Omega S^1 = \mathbb{Z})$, but is cohesively discrete (no topology).
- $\mathbb{S}^1 = \{ (x, y) : \mathbb{R}^2 \mid x^2 + y^2 = 1 \}$ has trivial higher structure (is a 0-type), but nontrivial cohesion (its "usual topology").

In a moment we will see that S^1 is the shape of \mathbb{S}^1 .

What does cohesive HoTT look like?

- HoTT with extra stuff. Everything you know about synthetic homotopy theory is still true.
- Think of every type as having a cohesive structure (perhaps discrete), and every map as continuous.
- HITs like S^1 generally have discrete cohesion, whereas \mathbb{R} and types built from it have "their usual topologies".
- Be careful with words:
 - A (-1)-truncated map (HoTT Book "embedding") need not be a subspace inclusion; call it a "mono".
 - There are "identifications" p: x = y and "paths" $c: \mathbb{R} \to X$.
- Detect and operate on cohesive structure with "modalities" (in a moment).

We do need to stick to constructive logic

- The strong law of excluded middle ∏_{A:Type} A + ¬A is incompatible with univalence.
- The propositional law of excluded middle $\prod_{P:Prop} P + \neg P$ is consistent with univalence.
- Even the *propositional* law of excluded middle is incompatible with cohesion.

Example

- Monos are "injective continuous maps".
- If $A \rightarrow B$ is a mono, its complement $\neg A \rightarrow B$ is a subspace.
- Their union as monos has the *disjoint union* topology: $A \cup \neg A \neq B$.

Outline

1 Cohesion

2 Cohesive type theory

3 Cohesive modalities

4 Brouwer's theorems

Axiomatic cohesion

Definition

- $\flat X$: the underlying ∞ -groupoid of X retopologized discretely
- $\sharp X$: the underlying ∞ -groupoid of X retopologized codiscretely
- Codiscrete types are a reflective subcategory, with reflector #.
 "Every map into a codiscrete space is continuous"
- Discrete types are a coreflective subcategory, with coreflector b.
 "Every map out of a discrete space is continuous"

Axiomatic cohesion

Definition

- $\flat X$: the underlying ∞ -groupoid of X retopologized discretely
- $\sharp X$: the underlying ∞ -groupoid of X retopologized codiscretely
- $\int X$: the shape* of X, topologized discretely

* \int is an "esh", IPA for a voiceless postalveolar fricative (English *sh*)

Axiomatic cohesion

Definition

- $\flat X$: the underlying ∞ -groupoid of X retopologized discretely
- $\sharp X$: the underlying ∞ -groupoid of X retopologized codiscretely
- $\int X$: the shape* of X, topologized discretely

Discrete types are also reflective, with reflector \int :

$$(\int X \to Y) \simeq (X \to Y)$$

whenever Y is discrete. Magically, this universal property characterizes the classical fundamental ∞ -groupoid.

* \int is an "esh", IPA for a voiceless postalveolar fricative (English *sh*)

The problem of discrete coreflection

- E.g. a mono is "fiberwise codiscrete" iff it is a subspace inclusion, and fiberwise \$\prescript{terms} reflects monos into subspaces.

The problem of discrete coreflection

- E.g. a mono is "fiberwise codiscrete" iff it is a subspace inclusion, and fiberwise # reflects monos into subspaces.
- b is an "idempotent comonadic modality", but it cannot similarly be internalized or extended to slice categories.

Theorem

The only internal "coreflective subuniverses" are the "slice categories" Type/U for some U: Prop.

The solution to discrete coreflection

First Solution

b can only be applied in the empty context.

Semantically: discrete objects are a coreflective subcategory of the category of cohesive ∞ -groupoids, but not of all its slice categories.

The solution to discrete coreflection

First Solution

b can only be applied in the empty context.

Semantically: discrete objects are a coreflective subcategory of the category of cohesive ∞ -groupoids, but not of all its slice categories.

Better Solution

b can only be applied when everything in the context is discrete.

Semantically: discrete objects are a coreflective subcategory of the category of cohesive ∞ -groupoids, considered as *indexed* over ordinary ∞ -groupoids.

Modal type theory

$$\frac{x: \flat A \vdash C}{x: \flat A \vdash \flat C} \quad \text{or} \quad \frac{x:: A \mid \cdot \vdash C}{x:: A \mid y: B \vdash \flat C}$$

Technicality

Literally requiring types in the context to be of the form $\flat A$ breaks the admissibility of substitution. Instead we "judgmental-ize" it with a formalism of "crisp variables" x :: A that semantically mean the same as $x : \flat A$.

Cf. Pfenning-Davies 2001, Reed 2009, Licata-Shulman 2016, Licata-Shulman-Riley 2017

Cohesive type theories

Type Theory	Conjectural Semantics
HoTT	∞ -toposes
Spatial type theory	local ∞ -toposes
(♭ and ♯) Cohesive type theory	
	cohesive ∞ -toposes
(♭, ♯, and ∫)	
Real-cohesive type theory	the ∞ -topos of
(f generated by $\mathbb R$)	continuous ∞ -groupoids

Real-cohesion

Let ${\mathbb R}$ be the Dedekind real numbers.

Axiom $R\flat$

A type A is discrete if and only if

const : $A \to (\mathbb{R} \to A)$

is an equivalence. ("Every map $\mathbb{R} \to A$ is constant.")

Real-cohesion

Let ${\mathbb R}$ be the Dedekind real numbers.

Axiom $R\flat$

A type A is discrete if and only if

$$\mathsf{const}: A \to (\mathbb{R} \to A)$$

is an equivalence. ("Every map $\mathbb{R} \to A$ is constant.")

In particular, if A is discrete then

$$(\mathbb{R} \to A) \simeq A \simeq (\mathbf{1} \to A)$$

so that $\int \mathbb{R} = 1$.

The shape of the circle

Theorem

$$\int \mathbb{S}^1 = S^1.$$

(Recall $\mathbb{S}^1 = \{ (x, y) : \mathbb{R}^2 \mid x^2 + y^2 = 1 \}$, while S^1 is the HIT.)

The shape of the circle

Theorem

$$\int \mathbb{S}^1 = S^1$$
.

(Recall $\mathbb{S}^1 = \left\{ (x, y) : \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\}$, while S^1 is the HIT.)

Proof.

- S^1 is the coequalizer of two maps $\mathbf{1}
 ightarrow \mathbf{1}$.
- \mathbb{S}^1 is the coequalizer of two maps $\mathrm{id}_{\mathbb{R}}, (+1) : \mathbb{R} \rightrightarrows \mathbb{R}$.
- \int is a left adjoint, hence preserves colimits.
- $\int \mathbb{R} = 1$.

The shape of the circle

Theorem

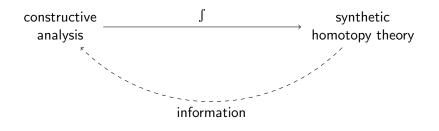
$$\int \mathbb{S}^1 = S^1$$
.

(Recall $\mathbb{S}^1 = \left\{ (x, y) : \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\}$, while S^1 is the HIT.)

Proof.

- S^1 is the coequalizer of two maps $\mathbf{1}
 ightarrow \mathbf{1}$.
- \mathbb{S}^1 is the coequalizer of two maps $\mathrm{id}_{\mathbb{R}}, (+1) : \mathbb{R} \rightrightarrows \mathbb{R}$.
- \int is a left adjoint, hence preserves colimits.
- $\int \mathbb{R} = 1$.
- Discrete types in the empty context are coreflective, hence closed under colimits; thus S¹ is discrete.

Cohesive homotopy type theory



Outline

1 Cohesion

2 Cohesive type theory

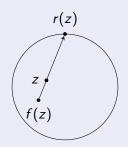
3 Cohesive modalities

Brouwer's fixed-point theorem (classical version)

Theorem

Any continuous map $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point.

Proof.



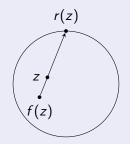
Suppose $f : \mathbb{D}^2 \to \mathbb{D}^2$ is continuous with no fixed point. For any $z \in \mathbb{D}^2$, draw the ray from f(z) through z to hit $\partial \mathbb{D}^2 = \mathbb{S}^1$ at r(z). Then r is continuous, and retracts \mathbb{D}^2 onto \mathbb{S}^1 . Hence $\pi_1(\mathbb{S}^1) = \mathbb{Z}$ is a retract of $\pi_1(\mathbb{D}^2) = 0$, a contradiction.

The real-cohesive version, first try

Theorem

Any function $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point.

Attempted proof.



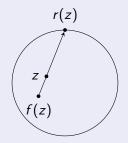
Suppose $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed point. For any $z : \mathbb{D}^2$, draw the ray from f(z) through z to hit $\partial \mathbb{D}^2 = \mathbb{S}^1$ at r(z). Then r retracts \mathbb{D}^2 onto \mathbb{S}^1 . Hence $\int \mathbb{S}^1$ is a retract of $\int \mathbb{D}^2$. But \mathbb{D}^2 is a retract of \mathbb{R}^2 , hence $\int \mathbb{D}^2$ is contractible, while $\int \mathbb{S}^1 = S^1$, which is not contractible.

The real-cohesive version, first try

Theorem

Any continuous function $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point.

Attempted proof.



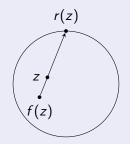
Suppose $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed point. For any $z : \mathbb{D}^2$, draw the ray from f(z) through z to hit $\partial \mathbb{D}^2 = \mathbb{S}^1$ at r(z). Then r is continuous, and retracts \mathbb{D}^2 onto \mathbb{S}^1 . Hence $\int \mathbb{S}^1$ is a retract of $\int \mathbb{D}^2$. But \mathbb{D}^2 is a retract of \mathbb{R}^2 , hence $\int \mathbb{D}^2$ is contractible, while $\int \mathbb{S}^1 = S^1$, which is not contractible.

The real-cohesive version, first try

Theorem

Any function $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point.

Attempted proof.



Suppose $f : \mathbb{D}^2 \to \mathbb{D}^2$ has no fixed point. For any $z : \mathbb{D}^2$, draw the ray from f(z) through z to hit $\partial \mathbb{D}^2 = \mathbb{S}^1$ at r(z). Then r retracts \mathbb{D}^2 onto \mathbb{S}^1 . Hence $\int \mathbb{S}^1$ is a retract of $\int \mathbb{D}^2$. But \mathbb{D}^2 is a retract of \mathbb{R}^2 , hence $\int \mathbb{D}^2$ is contractible, while $\int \mathbb{S}^1 = S^1$, which is not contractible.

Problems

There are two problems with this:

- It's a proof by contradiction of a positive statement: the sort that's disallowed in constructive mathematics. But *cohesive* homotopy type theory is incompatible with excluded middle.
- 2 Even disregarding that, the assumption "f has no fixed point" tells us only that $f(z) \neq z$ for all z, whereas constructively, in order to draw the line connecting two points we need them to be *apart* (have a positive distance), not merely *unequal*.

Classicality axioms for cohesion

Flat excluded middle (bLEM)

For all $P : \flat Prop$ we have $P + \neg P$.

"We can use proof by contradiction in a fully discrete context."

Analytic Markov's Principle (AMP)

For $x, y : \mathbb{R}$, if $x \neq y$ then |x - y| > 0.

"Disequality implies apartness."

Both hold in the topos of continuous ∞ -groupoids.

Digression: Omniscience principles in real-cohesion

	Cauchy reals	Dedekind reals
	(standard)	(analytic)
LPO: $\forall x (x = 0 \lor x \neq 0)$	1	×
LLPO: $\forall x (x \leq 0 \lor x \geq 0)$	1	X
$MP \colon \forall x (x \neq 0 \lor x > 0)$	1	?

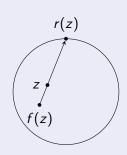
- \checkmark = provable from \flat LEM
- $\mathbf{X} = \mathsf{disprovable} \ \mathsf{from} \ \mathsf{b}\mathsf{LEM}$
- ? = consistent with \flat LEM; maybe provable?

The real-cohesive version, second try

Theorem (Using *b*LEM and AMP)

Any function $f : \flat(\mathbb{D}^2 \to \mathbb{D}^2)$ has a fixed point.

Proof.



Since the context is discrete, we may use proof by contradiction. Suppose f has no fixed point. Then for any $z : \mathbb{D}^2$, we have $f(z) \neq z$, hence d(z, f(z)) > 0. So we can draw the ray from f(z) through z to hit $\partial \mathbb{D}^2 = \mathbb{S}^1$ at r(z). Then r retracts \mathbb{D}^2 onto \mathbb{S}^1 . Hence $\int \mathbb{S}^1$ is a retract of $\int \mathbb{D}^2$. But \mathbb{D}^2 is a retract of \mathbb{R}^2 , hence $\int \mathbb{D}^2$ is contractible, while $\int \mathbb{S}^1 = S^1$, which is not contractible.

The real-cohesive version, second try

Recall, all types are "spaces" and all operations are "continuous", while $\flat A$ means A retopologized discretely. Thus,

Theorem

Any function $f : \flat(\mathbb{D}^2 \to \mathbb{D}^2)$ has a fixed point.

means intuitively that

Any function $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point, but such fixed points cannot be selected *continuously* as a function of f.

This is certainly true: a small deformation in f can cause its fixed point to "jump" discontinuously.

Theorem (NOT using bLEM or AMP)

For any function $f : \flat(\mathbb{D}^2 \to \mathbb{D}^2)$ and $\varepsilon > 0$, there exists a point $z : \mathbb{D}^2$ with $d(z, f(z)) < \varepsilon$.

Theorem (NOT using bLEM or AMP)

For any function $f : \flat(\mathbb{D}^2 \to \mathbb{D}^2)$ and $\varepsilon > 0$, there exists a point $z : \mathbb{D}^2$ with $d(z, f(z)) < \varepsilon$.

- WLOG ε is rational. Since \mathbb{Q} is discrete, so is the context.
- $U = \{ z \mid d(z, f(z)) > \frac{\varepsilon}{2} \}$ and $V = \{ z \mid d(z, f(z)) < \varepsilon \}$. Then $\mathbb{D}^2 = U \cup V$, since $\forall x : \mathbb{R}(x < \varepsilon \lor x > \frac{\varepsilon}{2})$.

Theorem (NOT using bLEM or AMP)

For any function $f : b(\mathbb{D}^2 \to \mathbb{D}^2)$ and $\varepsilon > 0$, there exists a point $z : \mathbb{D}^2$ with $d(z, f(z)) < \varepsilon$.

- WLOG ε is rational. Since \mathbb{Q} is discrete, so is the context.
- $U = \{ z \mid d(z, f(z)) > \frac{\varepsilon}{2} \}$ and $V = \{ z \mid d(z, f(z)) < \varepsilon \}$. Then $\mathbb{D}^2 = U \cup V$, since $\forall x : \mathbb{R}(x < \varepsilon \lor x > \frac{\varepsilon}{2})$.
- By shrinking f near \mathbb{S}^1 , we may assume $\mathbb{S}^1 \subseteq U$.

Theorem (NOT using bLEM or AMP)

For any function $f : \flat(\mathbb{D}^2 \to \mathbb{D}^2)$ and $\varepsilon > 0$, there exists a point $z : \mathbb{D}^2$ with $d(z, f(z)) < \varepsilon$.

- WLOG ε is rational. Since \mathbb{Q} is discrete, so is the context.
- $U = \{ z \mid d(z, f(z)) > \frac{\varepsilon}{2} \}$ and $V = \{ z \mid d(z, f(z)) < \varepsilon \}$. Then $\mathbb{D}^2 = U \cup V$, since $\forall x : \mathbb{R}(x < \varepsilon \lor x > \frac{\varepsilon}{2})$.
- By shrinking f near \mathbb{S}^1 , we may assume $\mathbb{S}^1 \subseteq U$.
- "Ray from f(z) to z" defines a retraction $r: U \to \mathbb{S}^1$.
- Thus S^1 is a retract of $\int U$, so $\int U$ contains a nontrivial loop.

Theorem (NOT using bLEM or AMP)

For any function $f : b(\mathbb{D}^2 \to \mathbb{D}^2)$ and $\varepsilon > 0$, there exists a point $z : \mathbb{D}^2$ with $d(z, f(z)) < \varepsilon$.

- WLOG ε is rational. Since \mathbb{Q} is discrete, so is the context.
- $U = \{ z \mid d(z, f(z)) > \frac{\varepsilon}{2} \}$ and $V = \{ z \mid d(z, f(z)) < \varepsilon \}$. Then $\mathbb{D}^2 = U \cup V$, since $\forall x : \mathbb{R}(x < \varepsilon \lor x > \frac{\varepsilon}{2})$.
- By shrinking f near \mathbb{S}^1 , we may assume $\mathbb{S}^1 \subseteq U$.
- "Ray from f(z) to z" defines a retraction $r: U \to \mathbb{S}^1$.
- Thus S^1 is a retract of $\int U$, so $\int U$ contains a nontrivial loop.
- $\mathbb{D}^2 = U \cup V = U \sqcup^{U \cap V} V$, so $\int U \sqcup^{\int (U \cap V)} \int V$ is contractible.

Recall: the van Kampen theorem

Theorem

For P the pushout of $f : A \rightarrow B$ and $g : A \rightarrow C$, and u, v : P,

$$\|u = v\|_0 \simeq \operatorname{code}(u, v).$$

code(inl(b), inl(b')) is a set-quotient of the type of sequences

$$b \xrightarrow{p_0}_B f(x_1), g(x_1) \xrightarrow{q_0}_C g(y_1), f(y_1) \xrightarrow{p_1}_B \cdots \xrightarrow{p_n}_B b'$$

(or $b \xrightarrow{\rho_0}_{B} b'$ when n = 0) by an equivalence relation generated by

$$(\dots, q_k, y_k, \operatorname{refl}_{f(y_k)}, y_k, q_{k+1}, \dots) = (\dots, q_k \cdot q_{k+1}, \dots)$$
$$(\dots, p_k, x_k, \operatorname{refl}_{g(x_k)}, x_k, p_{k+1}, \dots) = (\dots, p_k \cdot p_{k+1}, \dots).$$

Recall: the van Kampen theorem

Theorem

For P the pushout of $f : A \rightarrow B$ and $g : A \rightarrow C$, and u, v : P,

$$\|u = v\|_0 \simeq \operatorname{code}(u, v).$$

Corollary

If $p : b =_B b'$ and $p' : b =_B b'$ get identified in P, then ||C||.

Theorem (NOT using bLEM or AMP)

For any function $f : b(\mathbb{D}^2 \to \mathbb{D}^2)$ and $\varepsilon > 0$, there exists a point $z : \mathbb{D}^2$ with $d(z, f(z)) < \varepsilon$.

- WLOG ε is rational. Since \mathbb{Q} is discrete, so is the context.
- $U = \left\{ z \mid d(z, f(z)) > \frac{\varepsilon}{2} \right\}$ and $V = \left\{ z \mid d(z, f(z)) < \varepsilon \right\}$. Then $\mathbb{D}^2 = U \cup V$, since $\forall x : \mathbb{R}(x < \varepsilon \lor x > \frac{\varepsilon}{2})$.
- By shrinking f near \mathbb{S}^1 , we may assume $\mathbb{S}^1 \subseteq U$.
- "Ray from f(z) to z" defines a retraction $r: U \to \mathbb{S}^1$.
- Thus S^1 is a retract of $\int U$, so $\int U$ contains a nontrivial loop.
- $\mathbb{D}^2 = U \cup V = U \sqcup^{U \cap V} V$, so $\int U \sqcup^{\int (U \cap V)} \int V$ is contractible. (\int preserves colimits in discrete context.)
- By the van Kampen theorem, we have $||\int V||$, hence ||V||.