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1. Introduction

Remember in my talk first quarter, I told you about Nonstandard Analysis, a
way of incorporating infinitesimals into mathematics. We defined a number system
∗R called the ‘hyperreal numbers’ which included the real numbers, but also infini-
tesimal numbers. We could then do calculus this way: for example, we defined the
derivative by

f ′(x) ≈ f(x + d) − f(x)

d
for all infinitesimals d, where ≈ means ‘differs by an infinitesimal’.

Today I want to talk about a totally different way of dealing with infinitesimals
called synthetic differential geometry. This subject can be done in a very technical
(and beautiful) way, but it can also be done in a straightforward axiomatic way, as
long as you are willing to accept a little bit of strange behavior. I’ll take the latter
path for most of today, and say a little at the end about the technical underpinnings.
Experts are free to translate everything I say before then into their own language.

The basic idea is that we want to change the ≈ signs to equalities. Suppose we
want to take the derivative of f(x) = x2 at x = c. We argue as follows.
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Find f ′(c). Let d be so small that d2 = 0. Then

f(c + d) = (c + d)2

= c2 + 2cd + d2

= c2 + (2c)d

and so we define f ′(c) to be the linear part of this, f ′(c) = 2c.
This works for any polynomial. For example, if g(x) = x3, we have

g(c + d) = (c + d)3

= x3 + 3c2d + 3cd2 + d3

= x3 + 3c2d

so we take g′(c) = 3c2. The general idea is this: f ′(x) is the number such that
f(x + d) = f(x) + f ′(x)d for all d such that d2 = 0.

We can also argue heuristically for other functions, like f(x) = sin x. Draw a right

triangle whose hypoteneuse is 1 and whose angle is d with d2 = 0. Then its height is also

d, so its length is
√

12
− d2 = 1, and thus

sin d = d

cos d = 1.

Therefore, we have

sin(c + d) = sin c cos d + cos c sin d = sin c + (cos c)d

so f ′(c) = cos c, again the linear part of this.

What do we need to make this work? Well, we need there to always exist such
an f ′(x). Thus, we assume the following axiom.

Axiom Version 1. Let D = {d ∈ R : d2 = 0}. Then any function g : D → R is of
the form

g(d) = a + bd

for a unique a, b ∈ R.

Clearly a = g(0). We can then define the derivative of any f : R → R at c ∈ R
by considering the function

g(d) = f(c + d)

and write it as

g(d) = g(0) + bd = f(c) + bd.

We define f ′(c) = b.
Therefore our Axiom implies that every function has a derivative.

Remark 1.1. This is not the same as saying that every function is differentiable in
the usual εδ sense. But you actually can show that that’s true too.

What I want to do is explore the consequences of this axiom. Unfortunately, the
first consequence is a little unnerving.

Theorem 1.2. R = {0}.
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Proof. Consider the function

f(x) =

{
0 x = 0

1 x 6= 0

We have f(d) = f(0) + bd = bd for some b, by our Axiom.
Consider a d ∈ D. Either d = 0 or d 6= 0. If d 6= 0, then bd = 1. But multiplying

by d, we get 0 = bd2 = d, so d = 0. Thus any d ∈ D is zero, so D = {0}. But then
since 0 = 0.b for any b, the uniqueness in our axiom implies that R = {0}. �

Well. That’s not so good. (And somebody ought have been throwing things
at me already anyway, because we know perfectly well that not all functions are
differentiable.) Our theory of nilsquare infinitesimals has come to a crashing halt
before we even got going. Something must be done; our fundamental axiom is
contradictory. But we don’t want to throw it away, since we need it for everything
we’re going to do.

Solution 1: Restrict to considering only differentiable functions. This is the
classical thing to do (and also the nonstandard-analysis thing to do). But how do
you define differentiable? In some εδ sense. But the whole point of introducing
infinitesimals is to avoid using εδ arguments. And actually, it would be kind of
nice if all functions were differentiable. Maybe some analysts would be out of a job,
but for the rest of us, it would make a lot of things simpler.

Solution 2: weaken logic so that our axiom is no longer contradictory! The
weaker sort of logic we need is called constructive logic or intuitionistic logic
(its unintuitiveness notwithstanding).

2. Constructive logic

I’m not going to get much into constructive logic; maybe some other time I’ll
give a pizza seminar about that. But I need to say a little.

Historically, constructivists like Brouwer, Heyting, and Bishop were ideologically
motivated and rejected any proof that was not ‘constructive’. Of course this means
rejecting things like the axiom of choice, but it means much more than that as
well. Here’s a classic example of a nonconstructive proof, which I think all
mathematicians should meditate on for a while.

Theorem 2.1. There exist irrational numbers α, β such that αβ is rational.

Proof. Consider
√

2
√

2
. If

√
2
√

2
is rational, then take α = β =

√
2 and we’re done.

If not, then take α =
√

2
√

2
and β =

√
2, so that

αβ = (
√

2)
√

2
2

= (
√

2)2 = 2.

�

Classically this is a perfectly good proof, but there’s something unsatisfying
about it, since we don’t actually know which number it is! The constructivists
regarded this as a bogus proof because it asserts that something exists without
actually giving a construction. This, in a way, is the fundamental principle of
constructivism: To show that something exists, you must construct it.

For instance, constructivists reject the axiom of choice. But the above proof
doesn’t use AC, and it is still nonconstructive. One of the insights of the constructivists
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Classical Constructive
AC OK Not OK
PEM OK Not OK
DN OK Not OK

Table 1. Classical vs. Constructive

was that the culprit which makes this proof nonconstructive is the logical principle
of excluded middle (PEM):

A ∨ ¬A.

This is, of course, an axiom of classical logic, which we used in an indispensable

way in our nonconstructive proof: we said either
√

2
√

2
is rational or it isn’t. But

the constructivists refused to assert this without knowing which.
This seems a little less strange if you think about some more exotic statements.

For example, if R is the Riemann hypothesis, then classically

R ∨ ¬R

is true, even though we don’t know whether or not R is true. In fact, I believe
people have actually used this to prove theorems: they give one proof assuming R
and another proof assuming ¬R. So their theorem is true either way. But there’s
something unsatisfying about this; what if R turned out to be undecidable, like the
continuum hypothesis?

None of this may convince you to become a constructivist. It’s possible it might
at least convince you that the constructivists weren’t completely loony. But our
motivation is completely different; we need to use constructive logic in order to be
able to have our Axiom without a contradiction.

Why does using constructive logic solve our problem? We used the PEM all over
the place in reaching our contradiction. For instance, we supposed that for any
d ∈ D, either d = 0 or d 6= 0. But even more basically, we used it to define the
function f ! If we don’t know that every number is either zero or nonzero, we can’t
define a function case-wise—or if we do, it won’t be defined on all real numbers.

Basically the only way to understand constructive logic is to use it for a while,
so bear with me. I hope that you’ll at least let me have it for the moment and let
me try to convince you that the power of our Axiom is worth giving up PEM for.
I’ll leave you to ponder that while you get some more pizza.

3. Properties of nilsquare infinitesimals

What does the real line look like with these infinitesimals? I’m going to write R
instead of R for this line, to remind you that it behaves a bit differently from the
real numbers we’re used to.

3.1. R is a field. The first question is what sort of algebraic structure R has.
Clearly it has to be a ring. You might expect, since it contains nilpotents, that it’s
not a field any more, and that might make you a little sad. (Recall that in NSA, the
hyperreals ∗R were a field, because the infinitesimals were not literally nilsquare,
and had multiplicative inverses which were infinitely large. But our Axiom says
nothing about whether there are infinitely large numbers.)
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However, once again constructive logic comes to the rescue. While we certainly
can’t divide by anything nilsquare, we can still say that R is a field in the sense
that

x 6= 0 =⇒ x is invertible.

So we can divide by anything nonzero. Why does this not contradict our Axiom?
We still have the law of contrapositive, but all this tells us is that anything
noninvertible cannot be nonzero. Since our nilsquare infinitesimals are not
invertible, they are not nonzero. But this does not necessarily imply they are equal
to zero.

Since the law of double negative ¬¬A =⇒ A is equivalent to PEM, in
constructive logic something can be not false without necessarily being true. Thus
the infinitesimals are in sort of a ‘netherworld’ around zero: they aren’t all zero,
but we can’t single out any that are actually different from zero either. They ‘stick
together’ too much.

Formally speaking, what I’m doing is introducing the fact that R is a field as another

axiom. In fact, I’m going to use all sorts of algebraic properties of R without mentioning

where they come from; if I wanted to be completely rigorously formal, I would have to

state a bunch more axioms. But they’re all more or less intuitive, and the really important

one is our Axiom that I’ve already stated.

3.2. Microcancellation. We can’t divide by infinitesimals, but we can cancel
them if they appear in an equation universally quantified, which is almost as good.

Proposition 3.1. If ad = bd for all d ∈ D, then a = b.

Proof. Consider the function f(d) = ad = bd. By our Axiom, it is of the form
f(0) + cd = cd for a unique c. Hence, a = c = b. �

3.3. D is not zero. All the elements of D are not nonzero, so they’re ‘almost’
zero. But we also have

Proposition 3.2. D is not equal to {0}.

Proof. Suppose it were. Then f(d) = a + bd = a and g(d) = a + b′d = a would
be the same for any b and b′ in R. By the uniqueness clause of our Axiom, b = b′,
which is absurd. Thus D 6= {0}. �

This may look like a contradiction, but it isn’t. No particular infinitesimal can
ever be proved nonzero, but on the other hand we know for sure that zero isn’t the
only infinitesimal. Infinitesimals are slippery things.

You might object to the seeming use of proof by contradiction in that argument.
But it’s okay because what we were proving was a negative statement. It’s okay
constructively to prove ¬A by assuming A and deriving a contradiction. It’s even
okay to prove ¬¬A by assuming ¬A and deriving a contradiction; you just can’t
then conclude that A must be true.

3.4. D is not an ideal. Clearly if d2 = 0, then (ad)2 = a2d2 = 0, so D is closed
under multiplication by elements of R. But it is not closed under addition.

Proposition 3.3. It is not true that for all d1, d2 ∈ D, d1 + d2 ∈ D.
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Proof. Addition is the only thing that might fail. Since d2
1 = d2

2 = 0, we have

(d1 + d2)
2 = d2

1 + 2d1d2 + d2
2 = 2d1d2.

Thus, if (d1 + d2)
2 = 0 for all d1, d2 ∈ D, we would have d1d2 = 0 for all d1, d2 ∈ D

(since 2 6= 0, we can divide by it). But by universal microcancellation, this implies
d2 = 0 for all d2 ∈ D, which we know is false. �

Note we have also proven that although the elements of D square to zero, the
product of two different nilsquares does not always vanish.

On the other hand, d1 + d2 does cube to zero:

(d1 + d2)
3 = d3

1 + 3d2
1d2 + 3d1d

2
2 + d3

2 = 0

So it is a ‘nilcube’ infinitesimal. We can use these nilcube infinitesimals to talk
about higher order derivatives.

4. Taylor series

I already told you how to define the derivative. What about the second deriva-
tive? Well, naively, we take the derivative of the derivative. What does this mean
in terms of f? We have

f(x + d) = f(x) + f ′(x)d

and now we want to ask about f ′(x+ d). Let’s make the two ds different and write

f(x + d1 + d2) = f(x + d1) + f ′(x + d1)d2

= f(x) + f ′(x)d1 + f ′(x)d2 + f ′′(x)d1d2

= f(x) + f ′(x)(d1 + d2) + 1
2f ′′(x)(d1 + d2)

2

recalling what we just proved. So we have an ‘infinitesimal Taylor formula’ for
these nilcube infinitesimals. I’ll let you write down the version for d1 + d2 + d3 and
check it; clearly the pattern continues.

What we don’t know, however, is a Taylor formula for any nilcube infinitesimal;
only the nilcubes of the particular form d1 + d2. Obviously, since our axiom only
refers to nilsquares, it won’t tell us anything about arbitrary nilcubes. But this is a
bit unsatisfying; if all functions on the nilsquares are uniquely affine, all functions
on the nilcubes should be uniquely quadratic, and so on. So we can add this as an
improvement to our axiom:

Axiom Version 2. Let Dn = {d ∈ R : dn+1 = 0} (so D = D1). Then any function
f : Dn → R has the form

f(d) = a0 + a1d + a2d
2 + · · · + andn

for unique ai ∈ R.

This shouldn’t be much of a stretch, conceptually. Once we introduce nilsquares
that behave this way, it should be clear that nilcubes and so on should behave in a
similar way; what’s special about 2?

We can write

D∞ = {d ∈ R : (∃n)dn = 0} =
⋃

n≥1

Dn

for the set of all nilpotent infinitesimals. Thus, from the above axiom, we conclude
that all functions on D∞ are given by a unique (formal) power series.
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Note that any formal power series converges on D∞, since it reduces to a finite
polynomial on anything nilpotent.

There are more general axioms, introducing sets of infinitesimals on which functions
are determined by germs, but we won’t need them today.

5. Multivariable calculus

What about multivariable calculus? It’s easy to define partial derivatives:

f(x + d, y) = f(x, y) +
∂f

∂x
(x, y)d

f(x, y + d) = f(x, y) +
∂f

∂y
(x, y)d

And so on. Now suppose we wanted to talk about the gradient of a function, which
includes all the partial derivatives at once. We can consider

f(x + d1, y + d2) = f(x, y + d2) +
∂f

∂x
(x, y + d2)d1

= f(x, y) +
∂f

∂y
(x, y)d2 +

∂f

∂x
(x, y)d1 +

∂2f

∂x∂y
(x, y)d1d2

which includes the gradient, but also the mixed second partial. Sometimes we might
want that, but sometimes we don’t.

But note that if d1d2 = 0, then we would just get the gradient. Of course, we
know that we don’t have d1d2 = 0 for all d1, d2, but we can just cut down to the
set of pairs for which this is true. If we let

D(2) = {(d1, d2) ∈ R2 : d2
1 = d2

2 = d1d2 = 0}

(apologies for the notation! It’s standard) then functions on D(2) should be
uniquely of the form

f(d1, d2) = a + bd1 + cd2.

At this point we start to suspect that there should be a more general version of
our axiom. I’m not going to give a formal statement, but here’s an informal one.

Definition 5.1. An infinitesimal object is a subset C ⊂ Rn defined by polynomial
equations which (among other things) force every component to be nilpotent.

If you like fancy words, you can call an infinitesimal object the ‘spectrum of a
Weil algebra’.

Axiom Version 3. If C is an infinitesimal object, then every function f : C → R
is uniquely determined by a suitable polynomial or power series.

This is the final version of our axiom I’m going to introduce today. Infinitesimal
objects include D, Dn, D(2), also

D(n) = {(d1, . . . , dn) : (∀ij)d2
i = didj = 0}

and so on.
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6. Microlinearity

So far, we have axioms that let us study the structure of R by mapping into it
from infinitesimal objects. To do differential geometry with these things, we’ll need
to map them into other things too. Functions landing in Rn are easy; we just do it
componentwise. But what about more complicated things, manifolds and suchlike?
If our manifolds are all embedded in some Rn, we could work in coordinates there,
but this is kind of a messy way to do things, and not all our spaces will be embedded
in Rn. I’m going to have to push your head through a little bit of abstraction, but
it’s necessary and not that bad, I think. I’ll try to keep it as concrete as possible.

I’m going to be working with things that I’ll call ‘sets’. From our axiomatic
point of view they are just sets: remember that once we assumed our Axiom, we
didn’t have to impose any ‘topology’ or ‘differentiable structure’ on R in order to
get that all functions are differentiable. R is just a set of numbers, that happens to
include some infinitesimals, and the way those infinitesimals behave means that as
a set, R behaves ‘cohesively’ in some way. So in our alternate universe, arbitrary
sets behave more like ‘spaces’ or ‘manifolds’ do in the world that we’re used to.
But since they’re just sets, we can do all sorts of things with them that we can’t
necessarily do with manifolds; we’ll see an example later.

Anyway, we’d like some property similar to our Axiom for more general sets,
but those sets may not have any notion of ‘addition’ or ‘multiplication’ that we
could use to formulate such a notion. It turns out that the right thing to generalize
is not the absolute characterization of maps from micro-objects, but the relative

relationships between maps out of different micro-objects.

For example, consider the map D×D
+−→ D2. As we remarked above, not every

nilcube need be the sum of two nilsquares, so this map need not be surjective. But
our Axiom essentially tells us that they might as well be, from the perspective of
the reals, since they are characterized by the same polynomial functions. Even
more precisely, we can say this:

Proposition 6.1. Any function f : D × D → R such that f(d, 0) = f(0, d) is of

the form f(d1, d2) = g(d1 + d2) for a unique g : D2 → R.

Proof. Clearly any g determines an f with the given property. Conversely, we know
that any f : D × D → R has the form

f(d1, d2) = a + b1d1 + b2d2 + cd1d2

and the assumption tells us that a + b1d = a + b2d, so by microcancellation, b1 =
b2 = b. Therefore,

f(d1, d2) = a + b(d1 + d2) + cd1d2

= a + b(d1 + d2) + c(d1 + d2)
2

so g(d) = a + bd + cd2 is the unique function that does the trick. �

I’ve been trying to keep the category theory to a minimum, but really the best
way to think about this is that the diagram

D ⇉ D × D
+−→ D2

is not necessarily a coequalizer (in our category of ‘sets’), but ‘R thinks it is’. If it
were a coequalizer, then the above would be true for maps into any set X , but we
have it only (so far) for maps into R.
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Note that this property of maps into R can be stated without reference to
addition or multiplication in R (only addition and multiplication in the infinitesimal
objects), although its proof requires algebra in R.

Here’s another similar result:

Proposition 6.2. For any pair of functions f1, f2 : D → R such that f1(0) = f2(0),
there is a unique function g : D(2) → R such that f1(d) = g(d, 0) and f2(d) =
g(0, d).

Proof. Clearly given g, we can define f1, f2 as shown and they will have that
property. Conversely, given f1, f2, we have

f1(d) = a1 + b1d

f2(d) = a2 + b2d

but by assumption a1 = a2 = a, so define

g(d1, d2) = a + b1d1 + b2d2.

This works, and clearly is the unique function which does. �

In categorical language, this says that while the diagram

0 //

��

D

��

D // D(2)

is not necessarily a pushout, ‘R thinks it is’. Again, note that this property can be
stated without reference to the arithmetic on R.

This sort of example can be multiplied indefinitely. In a minute we’ll see why
these properties are so useful, but for now you can think of them, as I’ve been saying,
as a way of saying “R is well-behaved with respect to maps out of infinitesimal
objects” without invoking the arithmetic on R. Thus we can extend this notion to
more general sets as follows.

Definition 6.3. A set M is microlinear if any diagram of infinitesimal objects
which is percieved by R as a colimit is also perceived by M as a colimit.

If you aren’t comfortable with the idea of ‘colimit’, just think of the two examples
I gave; this says that they remain true if we replace R by M .

Microlinearity is a property of a set. It essentially measures whether the set is
‘cohesive’ in ‘the same way that R is’.

What are some examples of microlinear objects?

• Clearly R is microlinear.
• Also, Rn is microlinear, since we can argue componentwise.
• More generally, any product of microlinear sets is microlinear, since we

can again argue componentwise.
• Even more generally than that, any limit of microlinear sets is microlinear.

The last includes, for example, equalizers, which allow us to show that the zero-
set of any function is microlinear. For the non-categorically minded, this goes
as follows. Let ϕ : Rn → R be a function and define M = {x ∈ Rn : ϕ(x) = 0}. I
claim that M is microlinear.
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Proof by example; skip if time short. Let’s just prove it for that pushout. Suppose
we have two maps f1, f2 : D → M with f1(0) = f2(0). Then composing with the
inclusion, we have f1, f2 : D → Rn, and hence, since Rn is microlinear, there is a
unique g : D(2) → Rn with f1(d) = g(d, 0) and f2(d) = g(0, d).

0 //

��

D

��

��

D //

00

D(2)

"" ((
M // Rn

0
//

ϕ
//
R

It remains to show that g lands in M , in other words that ϕ ◦ g = 0. Observe
that

ϕ(g(d, 0)) = ϕ(f1(d)) = 0

ϕ(g(0, d)) = ϕ(f2(d)) = 0

But since R is also microlinear, there is a unique map D(2) → R which restricts to
zero on both copies of D, namely the zero map. Therefore ϕ ◦ g = 0. �

So any manifold that we can define as a zero-set in some Rn is microlinear.
Moreover, lots of ‘infinite-dimensional’ things are microlinear.

Proposition 6.4. If M is microlinear and X is any set, then

MX = {ϕ : X → M}
is microlinear.

Proof by example. Let’s just do the pushout again. Suppose we have two maps
f1, f2 : D → MX with f1(0) = f2(0). Then for any x ∈ X , we have two functions

f1(−)(x) and f2(−)(x)

from D → M which agree at 0, so since M is microlinear, there is a unique
gx : D(2) → M extending them. Define g(d)(x) = gx(d); then g : D → MX is
our desired function. I’ll let you check that it works and is unique. �

So the class of microlinear sets is closed under ‘function spaces’. This is quite an
improvement over the classical notion of ‘smooth manifold’, which becomes much
messier when you try to pass to infinite-dimensional function spaces.

7. Differential Geometry

Here’s where the payoff comes.

7.1. Tangent vectors.

Definition 7.1. Let M be microlinear, m ∈ M . A tangent vector to M at m is a
map t : D → M with t(0) = m. The set of tangent vectors at m is denoted TmM .

You should think of D as a ‘microsegment’: a line so short that you can’t bend
it, but long enough to point in a definite direction (thus its definining property).
So this says that a tangent vector is given by drawing a microsegment on M .
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Proposition 7.2. TmM is a vector space.

Proof. Let’s construct the operations. For a ∈ R, we let

(at)(d) = t(ad)

That was easy. In particular, we have the additive inverse defined by

(−t)(d) = t(−d).

Now let t1, t2 ∈ TmM . Then they are both maps from D into M , which agree on
0. Since M is microlinear, they induce a unique map D(2) → M .

0 //

��

D

��

��
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

D //

((R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R
D(2)

t1⊕t2

""

M

We define

(t1 + t2)(d) = (t1 ⊕ t2)(d, d)

Checking that this gives a vector space structure is an exercise for the reader. The
most interesting one is the associativity of addition, for which you use D(3) and
another diagram that R thinks is a colimit. �

Definition 7.3. Let f : M → N be a map between microlinear sets, and m ∈ M .
The differential of f at m is dmf : TmM → Tf(m)N defined by

(dmf(t))(d) = f(t(d))

This is just composition!

Proposition 7.4. dmf is a linear map.

Proof. Exercise. �

Definition 7.5. If M is microlinear, its tangent bundle is TM = MD.

This is just the set of all tangent vectors to M . It comes with a map p : MD → M
which is just evaluation at zero, t 7→ t(0), and the fiber over any m ∈ M is just
TmM .

Finally, if f : M → N , we have df : TM → TN which is, again, just composition.
We can define the action of a tangent vector on smooth functions by derivations

easily too. Let t ∈ TmM and f : M → R; then f ◦ t : D → R; thus we have

f ◦ t(d) = f(t(0)) + bd = f(m) + bd

for a unique b ∈ R, which we define to be t(f).
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7.2. Lie Groups.

Definition 7.6. A Lie group is a microlinear group.

This includes the classical notion of Lie group, but also many ‘infinite-dimensional’
things, as we’ll see later. But we can do most of the things with it that we would
want to.

Definition 7.7. Let G be a Lie group. Its Lie algebra is G = TeG.

For this to make sense, of course, there should be a Lie bracket, which should be
the ‘infinitesimal’ version of a commutator in G. Let X, Y ∈ G , so X, Y : D → G
with X(0) = Y (0) = e, and consider the map

X ⋆ Y : D × D −→ G

given by
(d1, d2) 7→ X(d1)Y (d2)X(−d1)Y (−d2)

(using multiplication in the group.
Now it turns out that

D ⇉ D × D
m−→ D

is thought by R to be a colimit, where m(d1, d2) = d1d2, and the two left maps
send d to (d, 0) and (0, d), respectively. You can check this at home. Since G is
microlinear, it also thinks this diagram is a colimit, and we have (X ⋆ Y )(d, 0) =
(X ⋆ Y )(0, d) = e; thus we get a unique [X, Y ] : D → G with [X, Y ](0) = e. I’ll
leave it as an exercise for you to check that this is, in fact, a Lie bracket.

7.3. Vector fields.

Definition 7.8. A vector field on M is a section of TM , i.e. a map X : M → TM
such that p ◦ X = idM .

In other words, for each m ∈ M , we are given a tangent vector X(m) ∈ TmM .
We write X (M) for the set of vector fields on M .

Now, we can rephrase this in some very illuminating ways. A vector field is a
map

X : M → MD

satisfying the property that X(m)(0) = m.
But to give a map into a set of functions is the same as to give a map

X̃ : M × D → M ;

a category theorist would call this an adjointness property. Thus a vector field can

also be thought of as a map X̃ such that X̃(m, 0) = m. This is an infinitesimal

deformation of M . It is straightforward to check that addition of vector fields
corresponds to composition of deformations:

X̃ + Y (m, d) = Ỹ (X̃(m, d), d).

In particular, every infinitesimal deformation is invertible, since we have

−̃X((X̃(m, d), d) = X̃(X̃(m, d),−d) = m.

Finally, we can use the adjointness property again to see that this is the same
as a map

X̂ : D → MM
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such that X̂(0) = idM . This is a tangent vector to the set of self-maps of M !
(Observe that MM , although ‘infinite-dimensional’, is microlinear because M is.)
Thus we have proven

X (M) = Tid(M
M ).

In fact, since every infinitesimal deformation is invertible, all these tangent vectors
land in the subset

Aut(M) = {f ∈ MM : f is invertible.}
which is a group, and in fact a Lie group, since can be defined as a limit from MM ,
which is microlinear as M is. Thus we have

Theorem 7.9. X (M) is the Lie algebra of the Lie group Aut(M).

We could, if we wanted, define the commutator of two vector fields independently
and show that it agrees with that induced by Aut(M), but I’ll leave that to you as
well.

8. Sheaf Models

Now we’ve seen all this wonderful stuff that follows from our Axiom, once we
agree to use constructive logic. But how do we know this axiom is consistent? All
sorts of wonderful stuff can follow from a contradiction.

Of course, we have to take some axioms as basic, so we might as well start with
this Axiom. But some people are more comfortable starting with the axioms of set
theory, so let’s construct a model of our Axiom using set theory. And unfortunately,
here I have to stop putting off the category theory.

The main idea is that if we have a nice enough category C , we can
interpret logic in that category, taking the objects of that category
to be ‘sets’. Constructions such as limits and colimits in C provide the logical
and set-theoretic operations we are used to. For example, for arrows (‘functions’)
f, g : M → N in our category, the ‘set’ {m ∈ M : f(m) = g(m)} is represented by
the equalizer, in C , of f and g. This is called the internal logic of C . If C is the
category of sets, what we get is the usual logic we are used to.

To interpret all of logic in the best possible way, what we need is for the category
to be a topos. I’m not going to say any more about that, except to note that the
internal logic of a topos is, in general, constructive rather than classical.
Thus we are forced to constructivism, even if we have no philosophical inclination
towards it, if we want to do mathematics in a topos.

Now I want to say a few words about how to construct a topos in which our
Axiom is true. We want all classical manifolds in it, so let’s start with the category
Mfd of manifolds. But we also want infinitesimal objects. No algebraic geometer
is going to be surprised by what we do, which is to represent spaces by the rings of

functions on them.

Definition 8.1. A C∞-ring is a ring A equipped with, for every smooth function

f : Rn → R, a map f̂ : An → A, with obvious compatibility conditions.

Examples:

• A manifold M determines a C∞-ring C∞(M), the set of smooth functions
M → R, and conversely is uniquely determined by it.
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• Moreover, a map of manifolds f : M → N is uniquely determined by the
map of C∞-rings f∗ : C∞(N) → C∞(M) given by composition with f .

In particular, the points of M , which are precisely the smooth maps ∗ → M ,
are the same as C∞-ring maps C∞(M) → C∞(∗) = R, which can be identified
with certain maximal ideals of C ∞(M). In categorical language, we have a full and
faithful embedding

Mfd →֒ C∞Rngop .

• In fact, if M is a smooth manifold, any subset X ⊂ M gives a C∞-ring
C ∞(X).

• The ‘ring of dual numbers’ R[ε] = R[x]/(x2) is a C∞-ring; for a smooth
function f : R→ R, we define

f̂(a + bε) = f(a) + f ′(a)bε.

This ring is what will represent D.

Exercise: (if you’ve never done this) check that C∞-ring homomorphisms
C∞(M) → R[ε] are the same as tangent vectors to M .

Thus, the category C∞Rngop is a nice one that includes all manifolds, and also
infinitesimal objects. (It should be obvious how to define C∞-rings to represent
Dn, D(n), and so on.) But it isn’t yet a topos: in particular, it doesn’t have
‘exponentials’ like MM .

Unfortunately, anyone who is likely to understand this last bit is already thinking
it and doesn’t need me to say it, but I’ll say it anyway: we equip C∞Rngop

(or maybe the finitely-generated ones) with a suitable coverage, or ‘Grothendieck
topology’, and take sheaves on it to get a topos. And one can then prove that our
Axiom (and other axioms) is in fact true, in the internal logic of that topos.

I hope that maybe I’ve whetted your appetite to learn more about this stuff. At
least maybe I’ve given you something to be confused about over summer vacation.


