Semantics and syntax of higher inductive types

Michael Shulman¹ Peter LeFanu Lumsdaine²

¹University of San Diego

²Stockholm University

http://www.sandiego.edu/~shulman/papers/stthits.pdf

March 20, 2016

Overview	W-types	HITs	From semantics to syntax	Theories
Outline				

1 Overview

- 2 Semantics of W-types
- **3** Semantics of inductive types
- **4** Semantics of HITs
- **5** From semantics to syntax
- 6 Adding HITs to a theory

- I want to use ("formal") type theory as an internal language for higher categories.
- Therefore, I want a type theory that has semantics in a wide class of categories (not just one "intended" model).
- Today, we are semantically motivated: but the "intended semantics" is a large class of "good model categories", which suffice (for instance) to represent every ∞-topos.
- In the distant future, it would be nice to be able to construct new models of HoTT inside HoTT. But for now, we use set-math (e.g. ZFC) as the metatheory.

Overview	W-types	HITs	From semantics to syntax	Theories
The goal				

Original Goal

Every good model category models higher inductive types.

Overview	W-types	HITs	From semantics to syntax	Theories
The goal				

Original Goal

Every good model category models higher inductive types.

Basic idea is 5 years old. Why not published yet?

- 1 We are easily distracted.
- 2 There are a lot of details in making it precise.
- Seasy to construct models of particular HITs; harder to say what a general "HIT" is.

verview N	V-types	Inductive types	HITs	From semantics to syntax	Theories
Jutling					

1 Overview

2 Semantics of W-types

- **3** Semantics of inductive types
- **4** Semantics of HITs
- **5** From semantics to syntax
- 6 Adding HITs to a theory

Overview	W-types		HITs	From semantics to syntax	Theories
Seman	tics of W	-types			

The W-type of $(x : A) \vdash B(x)$ type is inductively generated by • sup : $\prod_{(x:A)} (B(x) \to W_{A,B}) \to W_{A,B}$ or equivalently

• sup :
$$\left(\sum_{(x:A)} (B(x) \to W_{A,B})\right) \to W_{A,B}$$

Overview	W-types		HITs	From semantics to syntax	Theories
Seman	tics of W-	types			

The W-type of $(x : A) \vdash B(x)$ type is inductively generated by • sup : $\prod_{(x:A)} (B(x) \to W_{A,B}) \to W_{A,B}$ or equivalently

• sup :
$$\left(\sum_{(x:A)} (B(x) \to W_{A,B})\right) \to W_{A,B}$$

Theorem (Classical)

 $W_{A,B}$ is the initial algebra for the polynomial endofunctor

$$P_{A,B}(X) :\equiv \left(\sum_{(x:A)} (B(x) \to X)\right)$$

Overview W-types Inductive types HITs From semantics to syntax Theories
Now in category theory

Definition

The polynomial endofunctor associated to an exponentiable map $f: B \rightarrow A$ is

$$\mathcal{C} \xrightarrow{B^*} \mathcal{C}/B \xrightarrow{\Pi_f} \mathcal{C}/A \xrightarrow{\Sigma} \mathcal{C}$$

Definition

An algebra for an endofunctor $S : C \to C$ is an object X equipped with a map $SX \to X$.

How can we construct an initial algebra for an endofunctor?

• G. M. Kelly, "A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on", Bull. Austral. Math. Soc. 22 (1980), 1–83

• G. M. Kelly, "A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on", Bull. Austral. Math. Soc. 22 (1980), 1–83

Theorem (Kelly)

Let \mathcal{A} be a cocomplete category with two cocomplete factorization systems $(\mathcal{E}, \mathcal{M})$ and $(\mathcal{E}', \mathcal{M}')$, let \mathcal{A} be \mathcal{E} - and \mathcal{E}' -cowellpowered, let S be a well-pointed endofunctor, and for some regular cardinal α let S preserve the \mathcal{E}' -tightness of (\mathcal{M}, α) -cones. Then S-Alg is constructively reflective in \mathcal{A} .

Theorem (Kelly?)

Let \mathcal{C} be a locally presentable category. Then:

- Every accessible endofunctor of C generates an algebraically-free monad.
- Every small diagram of accessible monads on C has an algebraic colimit.

Overview W-types Inductive types HITs From semantics to syntax Theories Review about monads Inductive types Inductive t

- Monad = endofunctor T with μ : $TT \rightarrow T, \eta$: Id $\rightarrow T$, axioms
- *T*-algebra = object *X* with $TX \rightarrow X$, axioms
- The forgetful functor U_T : T-Alg $\rightarrow C$ has a left adjoint

$$F_T X = (TX, \mu_X : TTX \to TX).$$

and in particular an initial object $F_T(\emptyset)$.

Overview W-types Inductive types HITs From semantics to syntax Theories Review about monads Inductive types Inductive t

- Monad = endofunctor T with μ : $TT \rightarrow T, \eta$: Id $\rightarrow T$, axioms
- *T*-algebra = object *X* with $TX \rightarrow X$, axioms
- The forgetful functor U_T : T-Alg $\rightarrow C$ has a left adjoint

$$F_T X = (TX, \mu_X : TTX \rightarrow TX).$$

and in particular an initial object $F_T(\emptyset)$.

• The assignation $T \mapsto T$ -Alg is a fully faithful embedding

$$\mathsf{Monads}^{\mathsf{op}} \hookrightarrow \mathsf{Cat}_{/\mathcal{C}}.$$

i.e. we have

$$\mathsf{Monads}(T_1, T_2) \cong \mathsf{Cat}_{/\mathcal{C}}(T_2 - \mathsf{Alg}, T_1 - \mathsf{Alg})$$

Overview	W-types	HITs	From semantics to syntax	Theories
Free m	onads			

Every monad has an underlying endofunctor; this defines a functor

monads on
$$\mathcal{C} \longrightarrow \mathsf{endofunctors}$$
 on $\mathcal{C}.$

A free monad on an endofunctor S is the value at S of a (partially defined) left adjoint to this:

 $Monads(\overline{S}, T) \cong Endofrs(S, T)$

A monad \overline{S} is algebraically-free on S if we have an equivalence of categories over C:

 \overline{S} monad-algebras $\xrightarrow{\simeq} S$ endofunctor-algebras

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C is locally small and complete.

 Overview
 W-types
 Inductive types
 HITs
 From semantics to syntax
 Theories

 Semantics of W-types, again

Idea

- Given $(x : A) \vdash B(x)$ type
- It interprets as a fibration $f : B \rightarrow A$, hence exponentiable
- The associated polynomial endofunctor S_f is accessible
- By Kelly's theorem, it generates an algebraically-free monad T_f

• Define
$$W_{A,B} = T_f(\emptyset)$$
.

Overview W-types Inductive types HITs From semantics to syntax Theories Semantics of W-types, again

Idea

- Given $(x : A) \vdash B(x)$ type
- It interprets as a fibration $f: B \rightarrow A$, hence exponentiable
- The associated polynomial endofunctor S_f is accessible
- By Kelly's theorem, it generates an algebraically-free monad T_f
- Define $W_{A,B} = T_f(\emptyset)$.

Subtleties (ignore for now)

- Pullback-stability
- Fibrancy in homotopical models

Overv		W-types	Inductive types	HITs	From semantics to syntax	Theories
~	. 11					
Οu	tline					

1 Overview

- 2 Semantics of W-types
- **3** Semantics of inductive types
- **4** Semantics of HITs
- **5** From semantics to syntax
- 6 Adding HITs to a theory

Example

Consider the inductive type H generated by

- $\sup_1 : \prod_{(x:A)} (B(x) \to H) \to H$
- $\sup_2 : \prod_{(x:C)} (D(x) \to H) \to H$

Expect *H* to be initial among objects *X* equipped with two maps $\left(\sum_{(x:A)} (B(x) \to X)\right) \to X$ and $\left(\sum_{(x:C)} (D(x) \to X)\right) \to X$.

Questions

- **1** Given endofunctors S_1, S_2 , is there a monad T whose algebras have (unrelated) S_1 -algebra and S_2 -algebra structures?
- **2** Given monads T_1 , T_2 , is there a monad T whose algebras have (unrelated) T_1 -algebra and T_2 -algebra structures?

Overview	W-types	Inductive types	HITs	From semantics to syntax	Theories
Algebraic	c colimits	of monads			

An algebraic colimit of a diagram $D: J \rightarrow Monads$ is a monad T with an equivalence of categories over C:

$$T ext{-}\operatorname{\mathsf{Alg}}\stackrel{\simeq}{\longrightarrow} \operatorname{\mathsf{lim}}_{j\in J}\ D_j ext{-}\operatorname{\mathsf{Alg}}$$

This is a limit in $Cat_{\mathcal{C}}$, so it means that

 $\begin{array}{rcl} T-algebra structures on X} & \longleftrightarrow & \mbox{compatible} & \mbox{families} & \mbox{of} \\ D_j-algebra structures on X.} \end{array}$

Theorem

Every algebraic colimit is a colimit in the category of monads, and the converse holds if C is locally small and complete.

Idea

- Each constructor yields a polynomial endofunctor, hence an algebraically-free monad T_c
- Take the algebraic coproduct $T = \sum_{c} T_{c}$ of all these monads
- The inductive type is $T(\emptyset)$.

Remark 1

The domains of constructors can be more general than in a W-type, but they can be reduced easily to that form using Σ -types.

Remark 2

The initial monad (the empty algebraic coproduct) is Id, whose algebras are just objects. Thus, the empty type — the inductive type generated by no constructors — is the initial object.

Overview	W-types	HITs	From semantics to syntax	Theories
Outling				
Outline				

1 Overview

- 2 Semantics of W-types
- **3** Semantics of inductive types
- **4** Semantics of HITs
- **5** From semantics to syntax
- 6 Adding HITs to a theory

Overview	W-types	HITs	From semantics to syntax	Theories
A first	example			

Example

Consider the propositional truncation ||A||, generated by

- $A \rightarrow ||A||$
- $\prod_{(x,y:||A||)} (x = y)$
- First constructor adds a point for every point of A
 → constant endofunctor S₁(X) = A
- Second constructor adds a path for every two points of ||A||
 → endofunctor S₂(X) = X × X × I
- How do we control the endpoints of those paths?

Define another endofunctor

$$\partial S_2(X) = X \times X \times \mathbf{2} = (X \times X) + (X \times X).$$

- A ∂S_2 -algebra is a type with two binary operations.
- Every S₂-algebra is a ∂S₂-algebra via 2 → I (i.e. "take the endpoints").
- Every object is also a ∂S₂-algebra via [π₁, π₂] (i.e. (x, y) → x and (x, y) → y).
- The endpoints of the paths in an S₂-algebra are correct iff these two ∂S₂-algebra structures are the same.

So we are interested in the pullback category on the left:

which corresponds to the algebraic colimit of monads on the right. We also need the S_1 -algebra structure (a map from A), so:

Conclusion

$$||A||$$
 is the initial $(\overline{S_1} + T_2)$ -algebra.

Example

The free group on A is generated by

• $A \rightarrow FA$

•
$$(_\cdot_)$$
 : FA \rightarrow FA \rightarrow FA

•
$$\prod_{(x,y,z:FA)} (x \cdot (y \cdot z) = (x \cdot y) \cdot z)$$

• . . .

NB: The source and target of the path in the third constructor (associativity) refer to the second constructor (multiplication).

•
$$S_1(X) = A$$

•
$$S_2(X) = X \times X$$

• $S_3(X) = X imes X imes X imes I$, but then...

 Overview
 W-types
 Inductive types
 HITs
 From semantics to syntax
 Theories

 Dependency
 between constructors

$$S_3(X) = X \times X \times X \times I$$

$$\partial S_3(X) = X \times X \times X \times \mathbf{2} = (X \times X \times X) + (X \times X \times X)$$

- Not every object is a ∂S_3 -algebra in the right way...
- ... only the S₂-algebras are!
- The functor S₂-Alg → ∂S₃-Alg equips an S₂-algebra (a "magma") with the two ternary operations "x · (y · z)" and "(x · y) · z".

For ||A||, instead of a pushout and then a coproduct, we could instead consider the outer pushout:

Similarly, for the free group we could incorporate S_1 from the beginning:

Question: What is special about $2 \rightarrow I$ that makes this work?

Answer: $\mathbf{2} \rightarrow \mathbf{I}$ is a cofibration.

Overview	W-types		HITs	From semantics to syntax	Theories
Other c	ofibratio	ns			

- If $C \to D$ is a cofib. & X is fibrant, $X^D \to X^C$ is a fibration.
- Hence we have types (its fibers) of "(strict) extensions of a given map $C \to X$ to a map $D \to X$."
- Other cofibrations give other kinds of constructors:

Overview	W-types	HITs	From semantics to syntax	Theories
Outline				

1 Overview

- 2 Semantics of W-types
- **3** Semantics of inductive types
- **4** Semantics of HITs
- **5** From semantics to syntax
- 6 Adding HITs to a theory

Overview	W-types	HITs	From semantics to syntax	Theories
_				

From semantics to syntax

Definition

A HIT spec consists of

- An ordered list of constructors.
- Each constructor has a domain, giving a polynomial endofunctor *S_n*.
- Each constructor has a shape, which is a cofibration $C_n \rightarrow D_n$ mapping the "boundary" into the "path".
- Finally, each constructor has a boundary, which has something to do with C_n .

• Each constructor yields a map of free monads

$$\overline{S_n \times C_n} \to \overline{S_n \times D_n}$$

• Starting from $T_0 = Id$, we build up monads successively:

A monad built in this way we call a cell monad.

• A HIT with *n* constructors is $T_n(\emptyset)$.

Question

What can the boundaries of a path-constructor be?

Answer

The semantics tells us! They have to be:

- monad morphisms $\overline{S_n \times C_n} \to T_{n-1}$, or equivalently
- endofunctor maps $S_n \times C_n \to T_{n-1}$.

But what are those?

Overview W-types Inductive types HITs From semantics to syntax Theories
Free endofunctors

Suppose S_n is polynomial on $(a : A_n) \vdash B_n(a)$:

$$S_n(X) = \sum_{a:A_n} X^{B_n(a)}$$
$$(S_n \times C_n)(X) = \left(\sum_{a:A_n} X^{B_n(a)}\right) \times C_n$$
$$= \sum_{(a,c):A_n \times C_n} X^{B_n(a)}$$

 Internally, this is a coproduct of the functors λX.X^{B_n(a)}. So S_n × C_n → T_{n-1} consists of "a map λX.X^{B_n(a)} → T_{n-1} for each (a, c) : A_n × C_n". Overview W-types Inductive types HITs From semantics to syntax Theories
Free endofunctors

Suppose S_n is polynomial on $(a : A_n) \vdash B_n(a)$:

$$S_n(X) = \sum_{a:A_n} X^{B_n(a)}$$
$$(S_n \times C_n)(X) = \left(\sum_{a:A_n} X^{B_n(a)}\right) \times C_n$$
$$= \sum_{(a,c):A_n \times C_n} X^{B_n(a)}$$

- Internally, this is a coproduct of the functors λX.X^{B_n(a)}. So S_n × C_n → T_{n-1} consists of "a map λX.X^{B_n(a)} → T_{n-1} for each (a, c) : A_n × C_n".
- But by (internal) Yoneda,

$$\mathsf{NatTrans}(\lambda X.X^{B_n(a)},\, T_{n-1})=\, T_{n-1}(B_n(a)).$$

• So natural transformations $S_n imes C_n o T_{n-1}$ are the same as

$$\prod_{(a,c):A_n\times C_n} T_{n-1}(B_n(a))$$

Overview	W-types		HITs	From semantics to syntax	Theories
Syntax	for boun	daries			

$\prod_{(a,c):A_n\times C_n} T_{n-1}(B_n(a))$

Overview	W-types		HITs	From semantics to syntax	Theories
Syntax	for boun	daries			

$$\prod_{a:A_n} \left(C_n \to T_{n-1}(B_n(a)) \right)$$

Overview	W-types		HITs	From semantics to syntax	Theories
Syntax	for boun	daries			

$$\prod_{a:A_n} \left(C_n \to T_{n-1}(B_n(a)) \right)$$

- $T_{n-1}(\emptyset)$ is the HIT generated by the first (n-1) constructors.
- $T_{n-1}(B_n(a))$ is the HIT generated by the first (n-1) constructors and one extra constructor with domain $B_n(a)$.

Thus, the boundary of a constructor $\prod_{a:A_n} \prod_{f:B_n(a)\to W} \cdots$ is

- For each a : A_n,
- ... a *C_n*-shaped picture (pair of points, parallel paths, etc.)
- ... in the HIT generated by the previous constructors and new symbols "f(b)" for all $b : B_n(a)$.

Overview	W-types	HITs	From semantics to syntax	Theories
Example	s			

loop : base = base	"base" is a term in the HIT generated by					
	"base" only					
merid : $\prod_{x} N = S$	N and S are terms in the HIT generated by					
	N and S only					
surf : $p \cdot q = q \cdot p$	$p \cdot q$ and $q \cdot p$ are terms in the HIT generated					
	by $b, p: b = b$, and $q: b = b$					
$\prod_{x,y: A } (x=y)$	x and y are interpreted as " $f(b)$ ": each is a					
55 H H	term in the HIT generated by A and ${f 1}$					
	(here $A=2,\ B(a)=1)$					

Overview	W-types		HITs	From semantics to syntax	Theories
A mor	e complic:	ated example	<u>م</u>		

In the localization $L_f(A)$ at $f: P \to Q$, we see:

$$\prod_{x:P}\prod_{g:P\to L_f(A)} \exp(g,f(x)) = g(x)$$

Here A = P, B(a) = P, and both ext(g, f(x)) and g(x) are (assuming x : P) terms in the HIT W' generated by $ext : \prod_{g:P \to W'} (Q \to L_f(A))$ and $g : P \to W'$.

Overview	W-types	HITs	From semantics to syntax	Theories
Stepping	back			

- In general, we expect some "grammar" describing what the boundary of a constructor can be.
- We are leveraging the type theory itself to be this grammar: the boundary simply consists of terms in a particular type.

Inductively, a HIT spec W is either empty, or consists of:

- A HIT spec W' (the previous constructors).
- A constructor domain $(a : A) \vdash B(a)$.
- A constructor shape, which is a cofibration $C \rightarrow D$.
- A constructor boundary $\prod_{a:A} (C \to W'_a)$, where W'_a is the HIT generated by W' together with a map $B(a) \to W'_a$.

Overview	W-types	HITs	From semantics to syntax	Theories
Rules for	^r HITs			

Given a HIT spec W, a W-algebra is a type X together with:

- A W'-algebra structure (inductively), and...
- For each a : A and f : B(a) → X, the W'-algebra structure and f make X a W'_a-algebra. So by recursion we have W'_a → X, hence a boundary composite C → W'_a → X. The additional data is an extension of this to D:

Overview	W-types	HITs	From semantics to syntax	Theories
Rules for	· HITs			

Given a HIT spec W, a W-algebra is a type X together with:

- A W'-algebra structure (inductively), and...
- For each a : A and f : B(a) → X, the W'-algebra structure and f make X a W'_a-algebra. So by recursion we have W'_a → X, hence a boundary composite C → W'_a → X. The additional data is an extension of this to D.
- Intro: "W is a W-algebra".
- Elim: "Any dependent W-algebra over W has a section."
- Comp: "The section is a W-algebra map."

Overview	W-types	HITs	From semantics to syntax	Theories
()IITIINA				

1 Overview

- 2 Semantics of W-types
- **3** Semantics of inductive types
- **4** Semantics of HITs
- **5** From semantics to syntax
- 6 Adding HITs to a theory

We could either

- Fix a particular set of cofibrations that exist in models of interest, like $\partial G_n \to G_n$ or $\partial \Box^n \to \Box^n$.
- Extend the type theory with a judgment for cofibrations, and a "type of extensions" of a given function along such a cofibration.
 - In the case $2 \rightarrow {\tt I}$ this will behave like cubical identity tyes.
 - NB: objects like I are not usually fibrant; put them in a separate context (like cubical "dimension variables") or use HTS-style "pretypes".

 Overview
 W-types
 Inductive types
 HITs
 From semantics to syntax
 Theories

 The type of extensions along a cofibration
 C

$$\frac{\Gamma \vdash i : A \rightarrowtail B \qquad \Gamma, y : B \vdash C \text{ type} \qquad \Gamma, x : A \vdash d : C[i(x)/y]}{\Gamma \vdash \text{Extn}_{i,y.C}(x.d) \text{ type}}$$

$$\frac{\Gamma, y : B \vdash c : C \qquad \Gamma, x : A \vdash c[i(x)/y] \equiv d}{\Gamma \vdash \mathring{\lambda}y. c : \text{Extn}_{i,y.C}(x.d)}$$

$$\frac{\Gamma \vdash f : \text{Extn}_{i,y.C(y)}(x.d(x)) \qquad \Gamma \vdash b : B}{\Gamma \vdash f@b : C(b) \qquad f@(i(a)) \equiv d[a/x]}$$

$$(\text{plus } \beta, \eta)$$

- For $1+1 \rightarrow \mathtt{I},$ reproduces cubical identity types.
- Semantically, represents the pullback corner map (Leibniz cotensor) of a cofibration against a fibration.

Overview W-types Inductive types HITs From semantics to syntax Theories

What's up with that induction?

Question

HITs are defined inductively. Where does that induction happen?

Answer #1

In the metatheory.

I.e. given any type theory containing some HITs, we can choose one of them, choose a domain, shape, and boundary to determine a new constructor, and obtain a new type theory containing one more HIT.

Answer #2

By defining a new judgment form inside the theory.

I.e. we have a judgment for "HIT specs", whose rule is "add a new constructor", and a rule that any HIT spec gives a HIT.

But now

Any judgment form in the theory must be interpreted by something in the semantics. What is a "semantic HIT spec"?

Answer #2

By defining a new judgment form inside the theory.

I.e. we have a judgment for "HIT specs", whose rule is "add a new constructor", and a rule that any HIT spec gives a HIT.

But now

Any judgment form in the theory must be interpreted by something in the semantics. What is a "semantic HIT spec"?

Þ	A	type	t	heorv	with	monads
۰.	÷.	5965		incory.	vvi ci i	mondas

Judgment	Meaning
$\Gamma \vdash A$ type	A is a type in type context Γ
Г⊢а: А	a is a term of type A in type context Γ
$\Gamma \vdash T$ monad	T is a monad in type context Γ
$\Gamma \mid \tau : T \vdash s : S$	au.s notates a monad morphism $T o S$
$\Gamma \mid au : T \parallel \Delta \vdash A$ type	A is a <i>T</i> -algebra
$\Gamma \mid au : T \parallel \Delta \vdash a : A$	$ $ a is a ${\mathcal T}$ -algebra morphism $\Delta o A$

A t	уре	theory	with	monads
-----	-----	--------	------	--------

Judgment	Meaning
$\Gamma \vdash A$ type	A is a type in type context Γ
Г⊢а: А	<i>a</i> is a term of type <i>A</i> in type context Γ
$\Gamma \vdash T$ monad	T is a monad in type context Γ
$\Gamma \mid \tau : T \vdash s : S$	au.s notates a monad morphism $ au o S$
$\Gamma \mid \tau : T \parallel \Delta \vdash A$ type	A is a <i>T</i> -algebra
$\Gamma \mid \tau : T \parallel \Delta \vdash a : A$	a is a $\mathit{T} ext{-algebra}$ morphism $\Delta o A$

- Substitution for type variables in monads ⇒ all monads are indexed
- Substitution for monad variables in algebras \Rightarrow a monad map $T \rightarrow S$ gives a functor S-Alg \rightarrow T-Alg
- Elimination of monad formers into all judgments
 ⇒ monad colimits are algebraic colimits

Part II

All the lies I just told you

Outline

8 Pullback-stability

9 Fibrancy in boundaries

Closure of universes

Problem #1: Fibrancy

Problem

 $T(\emptyset)$ may not be fibrant, hence may not represent a type.

- In non-recursive cases (e.g. empty type, coproduct type) we can just fibrantly replace it.
- But in recursive cases, its fibrant replacement may no longer be a *T*-algebra: the newly added fillers need a free *T*-action, which may produce new horns that need fillers, etc.

Building in fibrancy

Solution

- Let R be the fibrant replacement monad (Garner).
 Let T_R = T + R.
- A *T_R*-algebra is a *T*-algebra with an unrelated *R*-algebra structure.
- In particular, every T_R-algebra is fibrant!

Theorem (L-S)

 $T_R(\emptyset)$ satisfies the *T*-algebra induction principle: any fibration $p: Y \to T_R(\emptyset)$ that is a *T*-algebra map has a *T*-algebra section.

Outline

Fibrancy

8 Pullback-stability

9 Fibrancy in boundaries

Closure of universes

Problem #2: Pullback-stability

Problem

Everything in a model of type theory must be strictly stable under pullback.

- Use indexed endofunctors, monads, free monads, colimits of monads. Everything is pullback-stable up to iso...
- ... except *R*, which is not an indexed monad at all!
- Local universes mumbo-jumbo: form *T* + *R* in the "universal case."

Outline

7 Fibrancy

8 Pullback-stability

9 Fibrancy in boundaries

Closure of universes

Problem #3: Boundaries can't use fibrancy

Problem

 ${\it R}$ is not an indexed monad, but our algebraic colimits have to work on indexed monads.

- Therefore, we have to coproduct with *R* at the very end to obtain our HIT.
- Therefore, in the middle, the "previous constructors" HIT is not fibrant.
- Therefore, we can't use "fibrant operations" (like path concatenation and eliminators) in boundaries of constructors.

Problem #3: Boundaries can't use fibrancy

Problem

R is not an indexed monad, but our algebraic colimits have to work on indexed monads.

- Therefore, we have to coproduct with *R* at the very end to obtain our HIT.
- Therefore, in the middle, the "previous constructors" HIT is not fibrant.
- Therefore, we can't use "fibrant operations" (like path concatenation and eliminators) in boundaries of constructors.

Partial workaround(s)

- Hub and spoke does not help.
- Use cofibrations like $\partial \Box \to \Box$ whose domains implicitly involve "concatenations"

Outline

7 Fibrancy

8 Pullback-stability

9 Fibrancy in boundaries

(1) Closure of universes

Problem #4: Closure of universes

Problem

Even in the best model categories, we don't know how to show that any universes are closed under HITs.

- A universe $\widetilde{U} \to U$ classifies fibrations with "small fibers".
- For closure of *U*, the "universal HIT" over something built from *U* must be classified by *U*.
- But the (algebraic) fibrant replacement of a map with small fibers over a large base may no longer have small fibers!