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My philosophy

• I want to use (“formal”) type theory as an internal language
for higher categories.

• Therefore, I want a type theory that has semantics in a wide
class of categories (not just one “intended” model).

• Today, we are semantically motivated: but the “intended
semantics” is a large class of “good model categories”, which
suffice (for instance) to represent every ∞-topos.

• In the distant future, it would be nice to be able to construct
new models of HoTT inside HoTT. But for now, we use
set-math (e.g. ZFC) as the metatheory.
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The goal

Original Goal

Every good model category models higher inductive types.

Basic idea is 5 years old. Why not published yet?

1 We are easily distracted.

2 There are a lot of details in making it precise.

3 Easy to construct models of particular HITs; harder to say
what a general “HIT” is.
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Semantics of W-types

Definition

The W-type of (x : A) ` B(x) type is inductively generated by

• sup :
∏

(x :A)(B(x)→WA,B)→WA,B

or equivalently

• sup :
(∑

(x :A)(B(x)→WA,B)
)
→WA,B

Theorem (Classical)

WA,B is the initial algebra for the polynomial endofunctor

PA,B(X ) :≡
(∑

(x :A)(B(x)→ X )
)
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Now in category theory

Definition

The polynomial endofunctor associated to an exponentiable map
f : B → A is

C B∗−−→ C/B
Πf−→ C/A

Σ−→ C

Definition

An algebra for an endofunctor S : C → C is an object X equipped
with a map SX → X .

How can we construct an initial algebra for an endofunctor?
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Some categorical technology

• G. M. Kelly, “A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on”, Bull. Austral. Math. Soc. 22 (1980), 1–83

Theorem (Kelly)

Let A be a cocomplete category with two cocomplete factorization
systems (E ,M) and (E ′,M′), let A be E- and E ′-cowellpowered,
let S be a well-pointed endofunctor, and for some regular cardinal α
let S preserve the E ′-tightness of (M, α)-cones. Then S-Alg is
constructively reflective in A.
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The high technology: user-friendly version

Theorem (Kelly?)

Let C be a locally presentable category. Then:

• Every accessible endofunctor of C generates an
algebraically-free monad.

• Every small diagram of accessible monads on C has an
algebraic colimit.
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Review about monads

• Monad = endofunctor T with µ : TT → T , η : Id→ T , axioms

• T -algebra = object X with TX → X , axioms

• The forgetful functor UT : T -Alg→ C has a left adjoint

FTX = (TX , µX : TTX → TX ).

and in particular an initial object FT (∅).

• The assignation T 7→ T -Alg is a fully faithful embedding

Monadsop ↪→ Cat/C .

i.e. we have

Monads(T1,T2) ∼= Cat/C(T2-Alg,T1-Alg)



Overview W-types Inductive types HITs From semantics to syntax Theories

Review about monads

• Monad = endofunctor T with µ : TT → T , η : Id→ T , axioms

• T -algebra = object X with TX → X , axioms

• The forgetful functor UT : T -Alg→ C has a left adjoint

FTX = (TX , µX : TTX → TX ).

and in particular an initial object FT (∅).

• The assignation T 7→ T -Alg is a fully faithful embedding

Monadsop ↪→ Cat/C .

i.e. we have

Monads(T1,T2) ∼= Cat/C(T2-Alg,T1-Alg)



Overview W-types Inductive types HITs From semantics to syntax Theories

Free monads

Definition

Every monad has an underlying endofunctor; this defines a functor

monads on C −→ endofunctors on C.

A free monad on an endofunctor S is the value at S of a (partially
defined) left adjoint to this:

Monads(S ,T ) ∼= Endofrs(S ,T )

S //

��

S

��

T
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Algebraically-free monads

Definition

A monad S is algebraically-free on S if we have an equivalence of
categories over C:

S monad-algebras
'−→ S endofunctor-algebras

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C is
locally small and complete.
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Semantics of W-types, again

Idea

• Given (x : A) ` B(x) type

• It interprets as a fibration f : B → A, hence exponentiable

• The associated polynomial endofunctor Sf is accessible

• By Kelly’s theorem, it generates an algebraically-free monad Tf

• Define WA,B = Tf (∅).

Subtleties (ignore for now)

• Pullback-stability

• Fibrancy in homotopical models
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Semantics of inductive types

Example

Consider the inductive type H generated by

• sup1 :
∏

(x :A)(B(x)→ H)→ H

• sup2 :
∏

(x :C)(D(x)→ H)→ H

Expect H to be initial among objects X equipped with two maps(∑
(x :A)(B(x)→ X )

)
→ X and

(∑
(x :C)(D(x)→ X )

)
→ X .

Questions

1 Given endofunctors S1, S2, is there a monad T whose algebras
have (unrelated) S1-algebra and S2-algebra structures?

2 Given monads T1,T2, is there a monad T whose algebras
have (unrelated) T1-algebra and T2-algebra structures?
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Algebraic colimits of monads

Definition

An algebraic colimit of a diagram D : J → Monads is a monad T
with an equivalence of categories over C:

T -Alg
'−→ limj∈J Dj -Alg

This is a limit in Cat/C , so it means that

T -algebra structures on X ←→ compatible families of
Dj -algebra structures on X .

Theorem

Every algebraic colimit is a colimit in the category of monads, and
the converse holds if C is locally small and complete.
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Semantics of inductive types, again

Idea

• Each constructor yields a polynomial endofunctor, hence an
algebraically-free monad Tc

• Take the algebraic coproduct T =
∑

c Tc of all these monads

• The inductive type is T (∅).

Remark 1

The domains of constructors can be more general than in a W -type,
but they can be reduced easily to that form using Σ-types.

Remark 2

The initial monad (the empty algebraic coproduct) is Id, whose
algebras are just objects. Thus, the empty type — the inductive
type generated by no constructors — is the initial object.
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A first example

Example

Consider the propositional truncation ‖A‖, generated by

• A→ ‖A‖
•
∏

(x ,y :‖A‖)(x = y)

• First constructor adds a point for every point of A
 constant endofunctor S1(X ) = A

• Second constructor adds a path for every two points of ‖A‖
 endofunctor S2(X ) = X × X × I

• How do we control the endpoints of those paths?
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The boundary endofunctor

Define another endofunctor

∂S2(X ) = X × X × 2 = (X × X ) + (X × X ).

• A ∂S2-algebra is a type with two binary operations.

• Every S2-algebra is a ∂S2-algebra via 2→ I

(i.e. “take the endpoints”).

• Every object is also a ∂S2-algebra via [π1, π2]
(i.e. (x , y) 7→ x and (x , y) 7→ y).

• The endpoints of the paths in an S2-algebra are correct iff
these two ∂S2-algebra structures are the same.
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Gluing intervals onto monads

So we are interested in the pullback category on the left:

• //

��

C

��

S2-Alg // ∂S2-Alg

∂S2
//

��

Id

��

S2
// T2

which corresponds to the algebraic colimit of monads on the right.
We also need the S1-algebra structure (a map from A), so:

Conclusion

‖A‖ is the initial (S1 + T2)-algebra.



Overview W-types Inductive types HITs From semantics to syntax Theories

Dependency between constructors

Example

The free group on A is generated by

• A→ FA

• ( · ) : FA→ FA→ FA

•
∏

(x ,y ,z:FA)

(
x · (y · z) = (x · y) · z

)
• . . .

NB: The source and target of the path in the third constructor
(associativity) refer to the second constructor (multiplication).

• S1(X ) = A

• S2(X ) = X × X

• S3(X ) = X × X × X × I, but then. . .
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Dependency between constructors

S3(X ) = X × X × X × I

∂S3(X ) = X × X × X × 2 = (X × X × X ) + (X × X × X )

∂S3
//

��

S2

��
S3

// •

• Not every object is a ∂S3-algebra in the right way. . .

• . . . only the S2-algebras are!

• The functor S2-Alg→ ∂S3-Alg equips an S2-algebra
(a “magma”) with the two ternary operations
“x · (y · z)” and “(x · y) · z”.
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Trivial dependency

For ‖A‖, instead of a pushout and then a coproduct, we could
instead consider the outer pushout:

∂S2
//

��

Id //

��

S1

��

S2
// T2

// S1 + T2

Similarly, for the free group we could incorporate S1 from the
beginning:

Id //

��

S1

��

∂S3
//

��

S2

��

// S1 + S2

��
S3

// • // •
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Cofibrations

Question: What is special about 2→ I that makes this work?

S(X )× 2
u,v

//

��

X

S(X )× I

99

⇐⇒

X I

fibration
����

S(X ) u,v
//

::

X 2

⇐⇒
∏

s:S(X )

(u(s) =X v(s))

Answer: 2→ I is a cofibration.
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Other cofibrations

• If C → D is a cofib. & X is fibrant, XD → XC is a fibration.

• Hence we have types (its fibers) of “(strict) extensions of a
given map C → X to a map D → X .”

• Other cofibrations give other kinds of constructors:

∅ → 1  X
2→ I  x =A y

∂G2 → G2  p =x=y q
∂�2 → �2  Square(p, q, r , s)

...
...
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From semantics to syntax

Definition

A HIT spec consists of

• An ordered list of constructors.

• Each constructor has a domain, giving a polynomial
endofunctor Sn.

• Each constructor has a shape, which is a cofibration Cn → Dn

mapping the “boundary” into the “path”.

• Finally, each constructor has a boundary, which has something
to do with Cn.
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The semantics of a HIT spec

• Each constructor yields a map of free monads

Sn × Cn → Sn × Dn

• Starting from T0 = Id, we build up monads successively:

Sn × Cn
//

��

Tn−1

��

Sn × Dn
// Tn

A monad built in this way we call a cell monad.

• A HIT with n constructors is Tn(∅).
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Those pesky boundaries

Question

What can the boundaries of a path-constructor be?

Answer

The semantics tells us! They have to be:

• monad morphisms Sn × Cn → Tn−1, or equivalently

• endofunctor maps Sn × Cn → Tn−1.

But what are those?
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Free endofunctors

Suppose Sn is polynomial on (a : An) ` Bn(a):

Sn(X ) =
∑

a:An
XBn(a)

(Sn × Cn)(X ) =
(∑

a:An
XBn(a)

)
× Cn

=
∑

(a,c):An×Cn
XBn(a)

• Internally, this is a coproduct of the functors λX .XBn(a).
So Sn × Cn → Tn−1 consists of “a map λX .XBn(a) → Tn−1 for
each (a, c) : An × Cn”.

• But by (internal) Yoneda,

NatTrans(λX .XBn(a),Tn−1) = Tn−1(Bn(a)).

• So natural transformations Sn × Cn → Tn−1 are the same as∏
(a,c):An×Cn

Tn−1(Bn(a))
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Syntax for boundaries

∏
(a,c):An×Cn

Tn−1(Bn(a))

• Tn−1(∅) is the HIT generated by the first (n − 1) constructors.

• Tn−1(Bn(a)) is the HIT generated by the first (n − 1)
constructors and one extra constructor with domain Bn(a).

Thus, the boundary of a constructor
∏

a:An

∏
f :Bn(a)→W · · · is

• For each a : An,

• . . . a Cn-shaped picture (pair of points, parallel paths, etc.)

• . . . in the HIT generated by the previous constructors and new
symbols “f (b)” for all b : Bn(a).
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Examples

loop : base = base “base” is a term in the HIT generated by
“base” only

merid :
∏

x N = S N and S are terms in the HIT generated by
N and S only

surf : p · q = q · p p ·q and q ·p are terms in the HIT generated
by b, p : b = b, and q : b = b∏

x ,y :‖A‖(x = y) x and y are interpreted as “f (b)”: each is a
term in the HIT generated by A and 1
(here A = 2, B(a) = 1)
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A more complicated example

In the localization Lf (A) at f : P → Q, we see:∏
x :P

∏
g :P→Lf (A) ext(g , f (x)) = g(x)

Here A = P, B(a) = P, and both ext(g , f (x)) and g(x) are
(assuming x : P) terms in the HIT W ′ generated by
ext :

∏
g :P→W ′(Q → Lf (A)) and g : P →W ′.
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Stepping back

• In general, we expect some “grammar” describing what the
boundary of a constructor can be.

• We are leveraging the type theory itself to be this grammar:
the boundary simply consists of terms in a particular type.
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HIT specs, again

Definition

Inductively, a HIT spec W is either empty, or consists of:

• A HIT spec W ′ (the previous constructors).

• A constructor domain (a : A) ` B(a).

• A constructor shape, which is a cofibration C → D.

• A constructor boundary
∏

a:A

(
C →W ′

a

)
, where W ′

a is the

HIT generated by W ′ together with a map B(a)→W ′
a.
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Rules for HITs

Definition

Given a HIT spec W , a W -algebra is a type X together with:

• A W ′-algebra structure (inductively), and. . .

• For each a : A and f : B(a)→ X , the W ′-algebra structure
and f make X a W ′

a-algebra. So by recursion we have
W ′

a → X , hence a boundary composite C →W ′
a → X . The

additional data is an extension of this to D:

C //

��

W ′
a

// X

D

77

• Intro: “W is a W -algebra”.
• Elim: “Any dependent W -algebra over W has a section.”
• Comp: “The section is a W -algebra map.”
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What are these cofibrations, anyway?

We could either

1 Fix a particular set of cofibrations that exist in models of
interest, like ∂Gn → Gn or ∂�n → �n.

2 Extend the type theory with a judgment for cofibrations, and a
“type of extensions” of a given function along such a
cofibration.

• In the case 2→ I this will behave like cubical identity tyes.
• NB: objects like I are not usually fibrant; put them in a

separate context (like cubical “dimension variables”) or use
HTS-style “pretypes”.
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The type of extensions along a cofibration

Γ ` i : A� B Γ, y : B ` C type Γ, x : A ` d : C [i(x)/y ]

Γ ` Extni ,y .C (x .d) type

Γ, y : B ` c : C Γ, x : A ` c[i(x)/y ] ≡ d

Γ ` λ̊y . c : Extni ,y .C (x .d)

Γ ` f : Extni ,y .C(y)(x .d(x)) Γ ` b : B

Γ ` f @b : C (b) f @(i(a)) ≡ d [a/x ]

(plus β, η)

• For 1 + 1→ I, reproduces cubical identity types.

• Semantically, represents the pullback corner map
(Leibniz cotensor) of a cofibration against a fibration.
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What’s up with that induction?

Question

HITs are defined inductively. Where does that induction happen?

Answer #1

In the metatheory.

I.e. given any type theory containing some HITs, we can choose one
of them, choose a domain, shape, and boundary to determine a new
constructor, and obtain a new type theory containing one more HIT.
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A theory containing HITs

Answer #2

By defining a new judgment form inside the theory.

I.e. we have a judgment for “HIT specs”, whose rule is “add a new
constructor”, and a rule that any HIT spec gives a HIT.

But now

Any judgment form in the theory must be interpreted by something
in the semantics. What is a “semantic HIT spec”?

. . . a monad.
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A type theory with monads

Judgment Meaning

Γ ` A type A is a type in type context Γ
Γ ` a : A a is a term of type A in type context Γ
Γ ` T monad T is a monad in type context Γ
Γ | τ : T ` s : S τ.s notates a monad morphism T → S
Γ | τ : T ‖ ∆ ` A type A is a T -algebra
Γ | τ : T ‖ ∆ ` a : A a is a T -algebra morphism ∆→ A

• Substitution for type variables in monads
⇒ all monads are indexed

• Substitution for monad variables in algebras
⇒ a monad map T → S gives a functor S-Alg→ T -Alg

• Elimination of monad formers into all judgments
⇒ monad colimits are algebraic colimits
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A type theory with monads

Judgment Meaning

Γ ` A type A is a type in type context Γ
Γ ` a : A a is a term of type A in type context Γ
Γ ` T monad T is a monad in type context Γ
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Γ | τ : T ‖ ∆ ` a : A a is a T -algebra morphism ∆→ A

• Substitution for type variables in monads
⇒ all monads are indexed

• Substitution for monad variables in algebras
⇒ a monad map T → S gives a functor S-Alg→ T -Alg

• Elimination of monad formers into all judgments
⇒ monad colimits are algebraic colimits
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Part II

All the lies I just told you
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Problem #1: Fibrancy

Problem

T (∅) may not be fibrant, hence may not represent a type.

• In non-recursive cases (e.g. empty type, coproduct type)
we can just fibrantly replace it.

• But in recursive cases, its fibrant replacement may no longer be
a T -algebra: the newly added fillers need a free T -action,
which may produce new horns that need fillers, etc.
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Building in fibrancy

Solution

1 Let R be the fibrant replacement monad (Garner).

2 Let TR = T + R.

• A TR -algebra is a T -algebra with an unrelated R-algebra
structure.

• In particular, every TR -algebra is fibrant!

Theorem (L-S)

TR(∅) satisfies the T -algebra induction principle: any fibration
p : Y → TR(∅) that is a T -algebra map has a T -algebra section.
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Problem #2: Pullback-stability

Problem

Everything in a model of type theory must be strictly stable under
pullback.

• Use indexed endofunctors, monads, free monads, colimits of
monads. Everything is pullback-stable up to iso. . .

• . . . except R, which is not an indexed monad at all!

• Local universes mumbo-jumbo: form T + R in the “universal
case.”
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Problem #3: Boundaries can’t use fibrancy

Problem

R is not an indexed monad, but our algebraic colimits have to work
on indexed monads.

• Therefore, we have to coproduct with R at the very end to
obtain our HIT.

• Therefore, in the middle, the “previous constructors” HIT is
not fibrant.

• Therefore, we can’t use “fibrant operations” (like path
concatenation and eliminators) in boundaries of constructors.

Partial workaround(s)

• Hub and spoke does not help.

• Use cofibrations like ∂�→ � whose domains implicitly involve
“concatenations”
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Problem #4: Closure of universes

Problem

Even in the best model categories, we don’t know how to show that
any universes are closed under HITs.

• A universe Ũ → U classifies fibrations with “small fibers”.

• For closure of U, the “universal HIT” over something built
from U must be classified by U.

• But the (algebraic) fibrant replacement of a map with small
fibers over a large base may no longer have small fibers!
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