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Overview

My philosophy

| want to use (“formal”) type theory as an internal language
for higher categories.

Therefore, | want a type theory that has semantics in a wide
class of categories (not just one “intended” model).

Today, we are semantically motivated: but the “intended
semantics” is a large class of “good model categories”, which
suffice (for instance) to represent every oo-topos.

In the distant future, it would be nice to be able to construct
new models of HoTT inside HoTT. But for now, we use
set-math (e.g. ZFC) as the metatheory.
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Original Goal

Every good model category models higher inductive types.



Overview

The goal

Original Goal

Every good model category models higher inductive types.

Basic idea is 5 years old. Why not published yet?
@ We are easily distracted.
® There are a lot of details in making it precise.

© Easy to construct models of particular HITs; harder to say
what a general "HIT" is.
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W-types
Semantics of W-types

Definition
The W-type of (x : A) - B(x) type is inductively generated by
® sup: H(X:A)(B(X) — WA,B) — WA,B

or equivalently

° sup: (Z(X;A)(B(X) — WA,B)) — Wag



W-types
Semantics of W-types

Definition

The W-type of (x : A) - B(x) type is inductively generated by
® sup: H(X:A)(B(X) — WA,B) — WA,B

or equivalently
° sup: (Z(X;A)(B(X) — WA,B)) — Wag

Theorem (Classical)

Wa,g is the initial algebra for the polynomial endofunctor

Pas(X) = (Xun)(B) = X))



W-types

Now in category theory

Definition
The polynomial endofunctor associated to an exponentiable map
f:B—Ais X q
ccBLeciase
Definition

An algebra for an endofunctor S : C — C is an object X equipped
with a map SX — X.

How can we construct an initial algebra for an endofunctor?



W-types

Some categorical technology

e G. M. Kelly, “A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on"”, Bull. Austral. Math. Soc. 22 (1980), 1-83



W-types

Some categorical technology

e G. M. Kelly, “A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on"”, Bull. Austral. Math. Soc. 22 (1980), 1-83

Theorem (Kelly)

Let A be a cocomplete category with two cocomplete factorization
systems (£, M) and (&', M), let A be E- and E’'-cowellpowered,
let S be a well-pointed endofunctor, and for some regular cardinal o
let S preserve the E'-tightness of (M, «)-cones. Then S-Alg is
constructively reflective in A.



W-types

The high technology: user-friendly version

Theorem (Kelly?)
Let C be a locally presentable category. Then:

e Every accessible endofunctor of C generates an
algebraically-free monad.

e Every small diagram of accessible monads on C has an
algebraic colimit.



W-types

Review about monads

e Monad = endofunctor T with u: TT — T,n:Ild — T, axioms
e T-algebra = object X with TX — X, axioms
e The forgetful functor Ut : T-Alg — C has a left adjoint

FTX = (TX,,LLX TTX — TX).

and in particular an initial object F7(0).



W-types

Review about monads

e Monad = endofunctor T with u: TT — T,n:Ild — T, axioms
e T-algebra = object X with TX — X, axioms
e The forgetful functor Ut : T-Alg — C has a left adjoint

FTX = (TX,,LLX TTX — TX).

and in particular an initial object F7(0).
e The assignation T — T-Alg is a fully faithful embedding

Monads®® < Catc.

i.e. we have

Monads(T1, T2) = Catjc(T2-Alg, T1-Alg)



W-types
Free monads

Definition
Every monad has an underlying endofunctor; this defines a functor

monads on C — endofunctors on C.

A free monad on an endofunctor S is the value at S of a (partially
defined) left adjoint to this:

Monads(S, T) = Endofrs(S, T)

S——S

N

%



W-types

Algebraically-free monads

Definition
A monad S is algebraically-free on S if we have an equivalence of
categories over C:

S monad-algebras —+ S endofunctor-algebras

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C is
locally small and complete.



W-types

Semantics of W-types, again

Idea

Given (x : A) F B(x) type

It interprets as a fibration f : B — A, hence exponentiable

The associated polynomial endofunctor S is accessible

By Kelly's theorem, it generates an algebraically-free monad Ty
Define WA,B = Tf(@).



W-types

Semantics of W-types, again

Idea

Given (x : A) F B(x) type

It interprets as a fibration f : B — A, hence exponentiable

The associated polynomial endofunctor S is accessible

By Kelly's theorem, it generates an algebraically-free monad T¢
Define WA,B = Tf(@)

Subtleties (ignore for now)

o Pullback-stability

e Fibrancy in homotopical models



Inductive types

Outline

© Semantics of inductive types



Inductive types
Semantics of inductive types

Example

Consider the inductive type H generated by
° supy : [[en)(B(x) = H) = H
° supy : [[.c)(D(x) = H) = H

Expect H to be initial among objects X equipped with two maps
(Z(X:A)(B(X) - X)) — X and (Z(X:C)(D(x) - X)) X

Questions

@ Given endofunctors S1, Sy, is there a monad T whose algebras
have (unrelated) S;-algebra and S»-algebra structures?

® Given monads T3, T, is there a monad T whose algebras
have (unrelated) Ti-algebra and Ty-algebra structures?



Inductive types

Algebraic colimits of monads

Definition
An algebraic colimit of a diagram D : J — Monads is a monad T
with an equivalence of categories over C:

T-Alg — limjc; D;-Alg
This is a limit in Cat/C, so it means that

T-algebra structures on X +— compatible families of
D;-algebra structures on X.

Theorem

Every algebraic colimit is a colimit in the category of monads, and
the converse holds if C is locally small and complete.



Inductive types

Semantics of inductive types, again

Idea

e Each constructor yields a polynomial endofunctor, hence an
algebraically-free monad T,

e Take the algebraic coproduct T =) _ T of all these monads
e The inductive type is T(0).

Remark 1

The domains of constructors can be more general than in a W-type,
but they can be reduced easily to that form using ¥-types.

Remark 2

The initial monad (the empty algebraic coproduct) is Id, whose
algebras are just objects. Thus, the empty type — the inductive
type generated by no constructors — is the initial object.
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A first example

Example

Consider the propositional truncation ||Al|, generated by
o A= [A]
* Hieyanx=v)

e First constructor adds a point for every point of A
~~ constant endofunctor $1(X) = A

e Second constructor adds a path for every two points of ||A|l
~+ endofunctor S(X) = X x X x I

e How do we control the endpoints of those paths?



The boundary endofunctor

Define another endofunctor

9S3(X) = X x X x 2= (X x X) + (X x X).

e A 05;-algebra is a type with two binary operations.

e Every Sy-algebra is a 05;-algebra via 2 — I
(i.e. “take the endpoints”).

e Every object is also a 05;-algebra via [m1, 2]
(i.e. (x,y) — x and (x,y) — y).

e The endpoints of the paths in an S>-algebra are correct iff
these two 0S5»-algebra structures are the same.



Gluing intervals onto monads

So we are interested in the pullback category on the left:

o———(C 0S5 —— Id

N T B

Sy-Alg —— 055-Alg SS— T

which corresponds to the algebraic colimit of monads on the right.
We also need the S;-algebra structure (a map from A), so:

Conclusion

|A|| is the initial (S; + T»)-algebra.



HITs
Dependency between constructors

Example

The free group on A is generated by
e A— FA
e (- ):FA—>FA— FA
° H(x,y,z:FA) (X ’ (y ’ Z) = (X y) ’ Z)
[ ]

NB: The source and target of the path in the third constructor
(associativity) refer to the second constructor (multiplication).

L Sl(X):A
o SH(X) =X x X
e 53(X) =X x X x X x I, but then. ..



HITs

Dependency between constructors

S3(X)=XxXxXxI
0S3(X) =X XX xXx2=(XxXxX)+(XxXxX)

e Not every object is a 953-algebra in the right way. ..
e ...only the Sy-algebras are!

e The functor S>-Alg — 953-Alg equips an S>-algebra
(a "magma”) with the two ternary operations

“x-(y-z)" and “(x-y)-2".



Trivial dependency

For ||A||, instead of a pushout and then a coproduct, we could
instead consider the outer pushout:

S, Id Sy

| | |

S——Th—— S5+ T

Similarly, for the free group we could incorporate S; from the
beginning:
ld — S

- |

03— ——51+%

[




HITs
Cofibrations

Question: What is special about 2 — I that makes this work?

5(X) x 2 —; X ‘ﬁ_ﬁxl
l = ‘ lfibration
S(X) x I S(X) ——r X2

= ] (uls) =x v(s))

5:5(X)

Answer: 2 — I is a cofibration.



Other cofibrations

o If C — D is a cofib. & X is fibrant, XP — XC is a fibration.

e Hence we have types (its fibers) of “(strict) extensions of a
given map C - X toamap D — X."

e Other cofibrations give other kinds of constructors:

0—1 ~ X
862_>G2 > P =x=y q
PUNS

02 — 2 Square(p, q,r, s)



From semantics to syntax

Outline

@ From semantics to syntax



From semantics to syntax

From semantics to syntax

Definition
A HIT spec consists of
e An ordered list of constructors.

e Each constructor has a domain, giving a polynomial
endofunctor S,.

e Each constructor has a shape, which is a cofibration C, — D,
mapping the “boundary” into the “path”.

e Finally, each constructor has a boundary, which has something
to do with C,.



From semantics to syntax

The semantics of a HIT spec

e Each constructor yields a map of free monads

S, xC,— S, x D,
e Starting from Tg = Id, we build up monads successively:

Spx Cp—— Tho1

.

S, x Dp—— T,

A monad built in this way we call a cell monad.
e A HIT with n constructors is T,(0).



From semantics to syntax

Those pesky boundaries

Question
What can the boundaries of a path-constructor be?

Answer

The semantics tells us! They have to be:
e monad morphisms S, x Cy— Tp_1, OF equivalently
e endofunctor maps S, x C, — T,_1.

But what are those?



From semantics to syntax
Free endofunctors

Suppose S, is polynomial on (a: A,) - B,(a):

Sn()<) = Za:A,, XBn(a)
(Sn X Cn)(X) = (Za:A,, XBn(a)) X C"
= Z(a,c):AnXC,, X5n(2)

e Internally, this is a coproduct of the functors AX.X5n(2),
So S, x C, — T,_1 consists of “a map AX.XBn(@) s T 1 for
each (a,c) : A, x G,



From semantics to syntax
Free endofunctors

Suppose S, is polynomial on (a: A,) - B,(a):
Sn(X) = X0, X5
(Sn X Cn)(X) = (Za:A,7 XB,,(a)) X Cn
= Z(a,c):AnXC,, XBn(a)

e Internally, this is a coproduct of the functors AX.X5n(2),
So S, x C, — T,_1 consists of “a map AX.XBn(@) s T 1 for
each (a,c) : A, x G,

e But by (internal) Yoneda,

NatTrans(AX.X5(®) T, 1) = T,_1(B.(a)).
e So natural transformations S, x C,, — T,_1 are the same as

H(a,c):A,,XC,, Th-1(Bn(a))



From semantics to syntax

Syntax for boundaries

H(a,c):A,,X Cn Tn—l(Bn(a))



From semantics to syntax

Syntax for boundaries

[, (G = Tora(Ba(2))



From semantics to syntax

Syntax for boundaries

[, (G = Tora(Ba(2))

e T,_1(0) is the HIT generated by the first (n — 1) constructors.

e Th_1(Bn(a)) is the HIT generated by the first (n — 1)
constructors and one extra constructor with domain B,(a).

Thus, the boundary of a constructor [],. Ilf.g,)—w " is
e Foreach a: A,,
e ...a Cy-shaped picture (pair of points, parallel paths, etc.)

e ...in the HIT generated by the previous constructors and new
symbols “f(b)" for all b: By(a).



Examples

From semantics to syntax

loop : base = base

“base” is a term in the HIT generated by
“base” only

merid: [[[ N=S

N and S are terms in the HIT generated by
N and S only

surf :p-g=¢qg-p

p-q and g- p are terms in the HIT generated
by b p:b=b,andg: b=0>

Hx,y:||A|| (X = _)/)

x and y are interpreted as “f(b)": each is a
term in the HIT generated by A and 1
(here A=2, B(a) =1)




From semantics to syntax
A more complicated example

In the localization L¢(A) at f: P — Q, we see:

HX:P Hg:PHLf(A) eXt(g7 f(X)) = g(X)

Here A= P, B(a) = P, and both ext(g, f(x)) and g(x) are
(assuming x : P) terms in the HIT W’ generated by
ext: [[gpuw (@ — Le(A)) and g : P — W'



From semantics to syntax

Stepping back

e In general, we expect some “grammar” describing what the
boundary of a constructor can be.

e We are leveraging the type theory itself to be this grammar:
the boundary simply consists of terms in a particular type.



From semantics to syntax

HIT specs, again

Definition

Inductively, a HIT spec W is either empty, or consists of:
e A HIT spec W’ (the previous constructors).
e A constructor domain (a: A) - B(a).

e A constructor shape, which is a cofibration C — D.

e A constructor boundary [],.4 (C — W;) where W is the
HIT generated by W’ together with a map B(a) — W..



From semantics to syntax

Rules for HITs

Definition
Given a HIT spec W, a W-algebra is a type X together with:
o A W'-algebra structure (inductively), and. ..

e Foreach a: Aand f: B(a) — X, the W’-algebra structure
and f make X a W/!-algebra. So by recursion we have
W! — X, hence a boundary composite C — W, — X. The
additional data is an extension of this to D:

C—>W5—3X

|



From semantics to syntax

Rules for HITs

Definition
Given a HIT spec W, a W-algebra is a type X together with:
o A W'’-algebra structure (inductively), and. ..

e Foreach a: Aand f: B(a) — X, the W-algebra structure
and f make X a W/-algebra. So by recursion we have
W. — X, hence a boundary composite C — W) — X. The
additional data is an extension of this to D.

e Intro: “W is a W-algebra”.
e Elim: “Any dependent W-algebra over W has a section.”

e Comp: "“The section is a W-algebra map.”
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Theories

What are these cofibrations, anyway?

We could either

@ Fix a particular set of cofibrations that exist in models of
interest, like G, — G, or 00" — "

® Extend the type theory with a judgment for cofibrations, and a
“type of extensions” of a given function along such a
cofibration.

e In the case 2 — I this will behave like cubical identity tyes.

o NB: objects like I are not usually fibrant; put them in a
separate context (like cubical “dimension variables™) or use
HTS-style “pretypes”.



Theories
The type of extensions along a cofibration

r'-i:A—B My:BF Ctype Mx:AkEd: Cli(x)/y]
I+ Extn;, c(x.d) type

Ny:BFc:C Mx:Abcli(x)/y]=d
M+ Ay.c: Extn;, c(x.d)

M=f: Ethi’y.C(y)(X'd(X)) rkb:B
[-fob: C(b)  f0(i(a)) = dla/x]

(plus 8, )

e For 1+1 — I, reproduces cubical identity types.

e Semantically, represents the pullback corner map
(Leibniz cotensor) of a cofibration against a fibration.



Theories

What's up with that induction?

Question

HITs are defined inductively. Where does that induction happen?

Answer #1

In the metatheory.

l.e. given any type theory containing some HITs, we can choose one
of them, choose a domain, shape, and boundary to determine a new
constructor, and obtain a new type theory containing one more HIT.



Theories

A theory containing HITs

Answer #2

By defining a new judgment form inside the theory.

l.e. we have a judgment for “HIT specs”, whose rule is “add a new
constructor”, and a rule that any HIT spec gives a HIT.

But now

Any judgment form in the theory must be interpreted by something
in the semantics. What is a “semantic HIT spec”?



Theories

A theory containing HITs

Answer #2

By defining a new judgment form inside the theory.

l.e. we have a judgment for “HIT specs”, whose rule is “add a new
constructor”, and a rule that any HIT spec gives a HIT.

But now

Any judgment form in the theory must be interpreted by something
in the semantics. What is a “semantic HIT spec”?
...a monad.



A type theory with monads

Theories

Judgment Meaning

I Atype Ais a type in type context I

lFa: A a is a term of type A in type context I
"'+ T monad T is a monad in type context
MNr:Tks:S 7.5 notates a monad morphism T — S

M7:T|AF Atype
MNr:TJAkFa:A

Ais a T-algebra
ais a T-algebra morphism A — A



A type theory with monads

Theories

Judgment Meaning

I Atype Ais a type in type context I

lFa: A a is a term of type A in type context I
"'+ T monad T is a monad in type context
MNr:Tks:S 7.5 notates a monad morphism T — S

M7:T|AF Atype
MNr:TJAkFa:A

Ais a T-algebra
ais a T-algebra morphism A — A

e Substitution for type variables in monads
= all monads are indexed

e Substitution for monad variables in algebras
= a monad map T — S gives a functor S-Alg — T-Alg

e Elimination of monad formers into all judgments
= monad colimits are algebraic colimits



Part |l

All the lies | just told you
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Fibrancy

Problem #1: Fibrancy

Problem
T(0) may not be fibrant, hence may not represent a type.

e In non-recursive cases (e.g. empty type, coproduct type)
we can just fibrantly replace it.

e But in recursive cases, its fibrant replacement may no longer be
a T-algebra: the newly added fillers need a free T-action,
which may produce new horns that need fillers, etc.



Fibrancy

Building in fibrancy

Solution

@ Let R be the fibrant replacement monad (Garner).
@ let TR=T+R.

e A Tgr-algebra is a T-algebra with an unrelated R-algebra
structure.

e In particular, every Tg-algebra is fibrant!

Theorem (L-S)

Tr(D) satisfies the T-algebra induction principle: any fibration
p:Y — Tr(D) that is a T-algebra map has a T-algebra section.
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Pullback-stability

Problem #2: Pullback-stability

Problem

Everything in a model of type theory must be strictly stable under
pullback.

e Use indexed endofunctors, monads, free monads, colimits of
monads. Everything is pullback-stable up to iso...

e ...except R, which is not an indexed monad at all!

e Local universes mumbo-jumbo: form T + R in the “universal
case.”
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Fibrancy in boundaries

Problem #3: Boundaries can't use fibrancy

Problem

R is not an indexed monad, but our algebraic colimits have to work
on indexed monads.

e Therefore, we have to coproduct with R at the very end to
obtain our HIT.

e Therefore, in the middle, the “previous constructors’ HIT is
not fibrant.

e Therefore, we can't use “fibrant operations” (like path
concatenation and eliminators) in boundaries of constructors.



Fibrancy in boundaries

Problem #3: Boundaries can't use fibrancy

Problem

R is not an indexed monad, but our algebraic colimits have to work
on indexed monads.

e Therefore, we have to coproduct with R at the very end to
obtain our HIT.

e Therefore, in the middle, the “previous constructors’ HIT is
not fibrant.

e Therefore, we can't use “fibrant operations” (like path
concatenation and eliminators) in boundaries of constructors.

Partial workaround(s)

e Hub and spoke does not help.

e Use cofibrations like L1 — [0 whose domains implicitly involve
“concatenations”
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Closure of universes

Problem #4: Closure of universes

Problem

Even in the best model categories, we don't know how to show that
any universes are closed under HITs.

e A universe U — U classifies fibrations with “small fibers .

e For closure of U, the “universal HIT" over something built
from U must be classified by U.

e But the (algebraic) fibrant replacement of a map with small
fibers over a large base may no longer have small fibers!
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