Semantics and syntax of
higher inductive types

Michael Shulman! Peter LeFanu Lumsdaine?

LUniversity of San Diego
2Stockholm University

http://www.sandiego.edu/~shulman/papers/stthits.pdf

March 20, 2016

http://www.sandiego.edu/~shulman/papers/stthits.pdf

Overview

Outline

@ Overview

Overview

My philosophy

| want to use (“formal”) type theory as an internal language
for higher categories.

Therefore, | want a type theory that has semantics in a wide
class of categories (not just one “intended” model).

Today, we are semantically motivated: but the “intended
semantics” is a large class of “good model categories”, which
suffice (for instance) to represent every oo-topos.

In the distant future, it would be nice to be able to construct
new models of HoTT inside HoTT. But for now, we use
set-math (e.g. ZFC) as the metatheory.

Overview

The goal

Original Goal

Every good model category models higher inductive types.

Overview

The goal

Original Goal

Every good model category models higher inductive types.

Basic idea is 5 years old. Why not published yet?
@ We are easily distracted.
® There are a lot of details in making it precise.

© Easy to construct models of particular HITs; harder to say
what a general "HIT" is.

W-types

Outline

@® Semantics of W-types

W-types
Semantics of W-types

Definition
The W-type of (x : A) - B(x) type is inductively generated by
® sup: H(X:A)(B(X) — WA,B) — WA,B

or equivalently

° sup: (Z(X;A)(B(X) — WA,B)) — Wag

W-types
Semantics of W-types

Definition

The W-type of (x : A) - B(x) type is inductively generated by
® sup: H(X:A)(B(X) — WA,B) — WA,B

or equivalently
° sup: (Z(X;A)(B(X) — WA,B)) — Wag

Theorem (Classical)

Wa,g is the initial algebra for the polynomial endofunctor

Pas(X) = (Xun)(B) = X))

W-types

Now in category theory

Definition
The polynomial endofunctor associated to an exponentiable map
f:B—Ais X q
ccBLeciase
Definition

An algebra for an endofunctor S : C — C is an object X equipped
with a map SX — X.

How can we construct an initial algebra for an endofunctor?

W-types

Some categorical technology

e G. M. Kelly, “A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on"”, Bull. Austral. Math. Soc. 22 (1980), 1-83

W-types

Some categorical technology

e G. M. Kelly, “A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on"”, Bull. Austral. Math. Soc. 22 (1980), 1-83

Theorem (Kelly)

Let A be a cocomplete category with two cocomplete factorization
systems (£, M) and (&', M), let A be E- and E’'-cowellpowered,
let S be a well-pointed endofunctor, and for some regular cardinal o
let S preserve the E'-tightness of (M, «)-cones. Then S-Alg is
constructively reflective in A.

W-types

The high technology: user-friendly version

Theorem (Kelly?)
Let C be a locally presentable category. Then:

e Every accessible endofunctor of C generates an
algebraically-free monad.

e Every small diagram of accessible monads on C has an
algebraic colimit.

W-types

Review about monads

e Monad = endofunctor T with u: TT — T,n:Ild — T, axioms
e T-algebra = object X with TX — X, axioms
e The forgetful functor Ut : T-Alg — C has a left adjoint

FTX = (TX,,LLX TTX — TX).

and in particular an initial object F7(0).

W-types

Review about monads

e Monad = endofunctor T with u: TT — T,n:Ild — T, axioms
e T-algebra = object X with TX — X, axioms
e The forgetful functor Ut : T-Alg — C has a left adjoint

FTX = (TX,,LLX TTX — TX).

and in particular an initial object F7(0).
e The assignation T — T-Alg is a fully faithful embedding

Monads®® < Catc.

i.e. we have

Monads(T1, T2) = Catjc(T2-Alg, T1-Alg)

W-types
Free monads

Definition
Every monad has an underlying endofunctor; this defines a functor

monads on C — endofunctors on C.

A free monad on an endofunctor S is the value at S of a (partially
defined) left adjoint to this:

Monads(S, T) = Endofrs(S, T)

S——S

N

%

W-types

Algebraically-free monads

Definition
A monad S is algebraically-free on S if we have an equivalence of
categories over C:

S monad-algebras —+ S endofunctor-algebras

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C is
locally small and complete.

W-types

Semantics of W-types, again

Idea

Given (x : A) F B(x) type

It interprets as a fibration f : B — A, hence exponentiable

The associated polynomial endofunctor S is accessible

By Kelly's theorem, it generates an algebraically-free monad Ty
Define WA,B = Tf(@).

W-types

Semantics of W-types, again

Idea

Given (x : A) F B(x) type

It interprets as a fibration f : B — A, hence exponentiable

The associated polynomial endofunctor S is accessible

By Kelly's theorem, it generates an algebraically-free monad T¢
Define WA,B = Tf(@)

Subtleties (ignore for now)

o Pullback-stability

e Fibrancy in homotopical models

Inductive types

Outline

© Semantics of inductive types

Inductive types
Semantics of inductive types

Example

Consider the inductive type H generated by
° supy : [[en)(B(x) = H) = H
° supy : [[.c)(D(x) = H) = H

Expect H to be initial among objects X equipped with two maps
(Z(X:A)(B(X) - X)) — X and (Z(X:C)(D(x) - X)) X

Questions

@ Given endofunctors S1, Sy, is there a monad T whose algebras
have (unrelated) S;-algebra and S»-algebra structures?

® Given monads T3, T, is there a monad T whose algebras
have (unrelated) Ti-algebra and Ty-algebra structures?

Inductive types

Algebraic colimits of monads

Definition
An algebraic colimit of a diagram D : J — Monads is a monad T
with an equivalence of categories over C:

T-Alg — limjc; D;-Alg
This is a limit in Cat/C, so it means that

T-algebra structures on X +— compatible families of
D;-algebra structures on X.

Theorem

Every algebraic colimit is a colimit in the category of monads, and
the converse holds if C is locally small and complete.

Inductive types

Semantics of inductive types, again

Idea

e Each constructor yields a polynomial endofunctor, hence an
algebraically-free monad T,

e Take the algebraic coproduct T =) _ T of all these monads
e The inductive type is T(0).

Remark 1

The domains of constructors can be more general than in a W-type,
but they can be reduced easily to that form using ¥-types.

Remark 2

The initial monad (the empty algebraic coproduct) is Id, whose
algebras are just objects. Thus, the empty type — the inductive
type generated by no constructors — is the initial object.

HITs
Outline

@ Semantics of HITs

A first example

Example

Consider the propositional truncation ||Al|, generated by
o A= [A]
* Hieyanx=v)

e First constructor adds a point for every point of A
~~ constant endofunctor $1(X) = A

e Second constructor adds a path for every two points of ||A|l
~+ endofunctor S(X) = X x X x I

e How do we control the endpoints of those paths?

The boundary endofunctor

Define another endofunctor

9S3(X) = X x X x 2= (X x X) + (X x X).

e A 05;-algebra is a type with two binary operations.

e Every Sy-algebra is a 05;-algebra via 2 — I
(i.e. “take the endpoints”).

e Every object is also a 05;-algebra via [m1, 2]
(i.e. (x,y) — x and (x,y) — y).

e The endpoints of the paths in an S>-algebra are correct iff
these two 0S5»-algebra structures are the same.

Gluing intervals onto monads

So we are interested in the pullback category on the left:

o———(C 0S5 —— Id

N T B

Sy-Alg —— 055-Alg SS— T

which corresponds to the algebraic colimit of monads on the right.
We also need the S;-algebra structure (a map from A), so:

Conclusion

|A|| is the initial (S; + T»)-algebra.

HITs
Dependency between constructors

Example

The free group on A is generated by
e A— FA
e (-):FA—>FA— FA
° H(x,y,z:FA) (X ’ (y ’ Z) = (X y) ’ Z)
[]

NB: The source and target of the path in the third constructor
(associativity) refer to the second constructor (multiplication).

L Sl(X):A
o SH(X) =X x X
e 53(X) =X x X x X x I, but then. ..

HITs

Dependency between constructors

S3(X)=XxXxXxI
0S3(X) =X XX xXx2=(XxXxX)+(XxXxX)

e Not every object is a 953-algebra in the right way. ..
e ...only the Sy-algebras are!

e The functor S>-Alg — 953-Alg equips an S>-algebra
(a "magma”) with the two ternary operations

“x-(y-z)" and “(x-y)-2".

Trivial dependency

For ||A||, instead of a pushout and then a coproduct, we could
instead consider the outer pushout:

S, Id Sy

| | |

S——Th—— S5+ T

Similarly, for the free group we could incorporate S; from the
beginning:
ld — S

- |

03— ——51+%

[

HITs
Cofibrations

Question: What is special about 2 — I that makes this work?

5(X) x 2 —; X ‘ﬁ_ﬁxl
l = ‘ lfibration
S(X) x I S(X) ——r X2

=] (uls) =x v(s))

5:5(X)

Answer: 2 — I is a cofibration.

Other cofibrations

o If C — D is a cofib. & X is fibrant, XP — XC is a fibration.

e Hence we have types (its fibers) of “(strict) extensions of a
given map C - X toamap D — X."

e Other cofibrations give other kinds of constructors:

0—1 ~ X
862_>G2 > P =x=y q
PUNS

02 — 2 Square(p, q,r, s)

From semantics to syntax

Outline

@ From semantics to syntax

From semantics to syntax

From semantics to syntax

Definition
A HIT spec consists of
e An ordered list of constructors.

e Each constructor has a domain, giving a polynomial
endofunctor S,.

e Each constructor has a shape, which is a cofibration C, — D,
mapping the “boundary” into the “path”.

e Finally, each constructor has a boundary, which has something
to do with C,.

From semantics to syntax

The semantics of a HIT spec

e Each constructor yields a map of free monads

S, xC,— S, x D,
e Starting from Tg = Id, we build up monads successively:

Spx Cp—— Tho1

.

S, x Dp—— T,

A monad built in this way we call a cell monad.
e A HIT with n constructors is T,(0).

From semantics to syntax

Those pesky boundaries

Question
What can the boundaries of a path-constructor be?

Answer

The semantics tells us! They have to be:
e monad morphisms S, x Cy— Tp_1, OF equivalently
e endofunctor maps S, x C, — T,_1.

But what are those?

From semantics to syntax
Free endofunctors

Suppose S, is polynomial on (a: A,) - B,(a):

Sn()<) = Za:A,, XBn(a)
(Sn X Cn)(X) = (Za:A,, XBn(a)) X C"
= Z(a,c):AnXC,, X5n(2)

e Internally, this is a coproduct of the functors AX.X5n(2),
So S, x C, — T,_1 consists of “a map AX.XBn(@) s T 1 for
each (a,c) : A, x G,

From semantics to syntax
Free endofunctors

Suppose S, is polynomial on (a: A,) - B,(a):
Sn(X) = X0, X5
(Sn X Cn)(X) = (Za:A,7 XB,,(a)) X Cn
= Z(a,c):AnXC,, XBn(a)

e Internally, this is a coproduct of the functors AX.X5n(2),
So S, x C, — T,_1 consists of “a map AX.XBn(@) s T 1 for
each (a,c) : A, x G,

e But by (internal) Yoneda,

NatTrans(AX.X5(®) T, 1) = T,_1(B.(a)).
e So natural transformations S, x C,, — T,_1 are the same as

H(a,c):A,,XC,, Th-1(Bn(a))

From semantics to syntax

Syntax for boundaries

H(a,c):A,,X Cn Tn—l(Bn(a))

From semantics to syntax

Syntax for boundaries

[, (G = Tora(Ba(2))

From semantics to syntax

Syntax for boundaries

[, (G = Tora(Ba(2))

e T,_1(0) is the HIT generated by the first (n — 1) constructors.

e Th_1(Bn(a)) is the HIT generated by the first (n — 1)
constructors and one extra constructor with domain B,(a).

Thus, the boundary of a constructor [],. Ilf.g,)—w " is
e Foreach a: A,,
e ...a Cy-shaped picture (pair of points, parallel paths, etc.)

e ...in the HIT generated by the previous constructors and new
symbols “f(b)" for all b: By(a).

Examples

From semantics to syntax

loop : base = base

“base” is a term in the HIT generated by
“base” only

merid: [[[N=S

N and S are terms in the HIT generated by
N and S only

surf :p-g=¢qg-p

p-q and g- p are terms in the HIT generated
by b p:b=b,andg: b=0>

Hx,y:||A|| (X = _)/)

x and y are interpreted as “f(b)": each is a
term in the HIT generated by A and 1
(here A=2, B(a) =1)

From semantics to syntax
A more complicated example

In the localization L¢(A) at f: P — Q, we see:

HX:P Hg:PHLf(A) eXt(g7 f(X)) = g(X)

Here A= P, B(a) = P, and both ext(g, f(x)) and g(x) are
(assuming x : P) terms in the HIT W’ generated by
ext: [[gpuw (@ — Le(A)) and g : P — W'

From semantics to syntax

Stepping back

e In general, we expect some “grammar” describing what the
boundary of a constructor can be.

e We are leveraging the type theory itself to be this grammar:
the boundary simply consists of terms in a particular type.

From semantics to syntax

HIT specs, again

Definition

Inductively, a HIT spec W is either empty, or consists of:
e A HIT spec W’ (the previous constructors).
e A constructor domain (a: A) - B(a).

e A constructor shape, which is a cofibration C — D.

e A constructor boundary [],.4 (C — W;) where W is the
HIT generated by W’ together with a map B(a) — W..

From semantics to syntax

Rules for HITs

Definition
Given a HIT spec W, a W-algebra is a type X together with:
o A W'-algebra structure (inductively), and. ..

e Foreach a: Aand f: B(a) — X, the W’-algebra structure
and f make X a W/!-algebra. So by recursion we have
W! — X, hence a boundary composite C — W, — X. The
additional data is an extension of this to D:

C—>W5—3X

|

From semantics to syntax

Rules for HITs

Definition
Given a HIT spec W, a W-algebra is a type X together with:
o A W'’-algebra structure (inductively), and. ..

e Foreach a: Aand f: B(a) — X, the W-algebra structure
and f make X a W/-algebra. So by recursion we have
W. — X, hence a boundary composite C — W) — X. The
additional data is an extension of this to D.

e Intro: “W is a W-algebra”.
e Elim: “Any dependent W-algebra over W has a section.”

e Comp: "“The section is a W-algebra map.”

Theories

Outline

@ Adding HITs to a theory

Theories

What are these cofibrations, anyway?

We could either

@ Fix a particular set of cofibrations that exist in models of
interest, like G, — G, or 00" — "

® Extend the type theory with a judgment for cofibrations, and a
“type of extensions” of a given function along such a
cofibration.

e In the case 2 — I this will behave like cubical identity tyes.

o NB: objects like I are not usually fibrant; put them in a
separate context (like cubical “dimension variables™) or use
HTS-style “pretypes”.

Theories
The type of extensions along a cofibration

r'-i:A—B My:BF Ctype Mx:AkEd: Cli(x)/y]
I+ Extn;, c(x.d) type

Ny:BFc:C Mx:Abcli(x)/y]=d
M+ Ay.c: Extn;, c(x.d)

M=f: Ethi’y.C(y)(X'd(X)) rkb:B
[-fob: C(b) f0(i(a)) = dla/x]

(plus 8,)

e For 1+1 — I, reproduces cubical identity types.

e Semantically, represents the pullback corner map
(Leibniz cotensor) of a cofibration against a fibration.

Theories

What's up with that induction?

Question

HITs are defined inductively. Where does that induction happen?

Answer #1

In the metatheory.

l.e. given any type theory containing some HITs, we can choose one
of them, choose a domain, shape, and boundary to determine a new
constructor, and obtain a new type theory containing one more HIT.

Theories

A theory containing HITs

Answer #2

By defining a new judgment form inside the theory.

l.e. we have a judgment for “HIT specs”, whose rule is “add a new
constructor”, and a rule that any HIT spec gives a HIT.

But now

Any judgment form in the theory must be interpreted by something
in the semantics. What is a “semantic HIT spec”?

Theories

A theory containing HITs

Answer #2

By defining a new judgment form inside the theory.

l.e. we have a judgment for “HIT specs”, whose rule is “add a new
constructor”, and a rule that any HIT spec gives a HIT.

But now

Any judgment form in the theory must be interpreted by something
in the semantics. What is a “semantic HIT spec”?
...a monad.

A type theory with monads

Theories

Judgment Meaning

I Atype Ais a type in type context I

lFa: A a is a term of type A in type context I
"'+ T monad T is a monad in type context
MNr:Tks:S 7.5 notates a monad morphism T — S

M7:T|AF Atype
MNr:TJAkFa:A

Ais a T-algebra
ais a T-algebra morphism A — A

A type theory with monads

Theories

Judgment Meaning

I Atype Ais a type in type context I

lFa: A a is a term of type A in type context I
"'+ T monad T is a monad in type context
MNr:Tks:S 7.5 notates a monad morphism T — S

M7:T|AF Atype
MNr:TJAkFa:A

Ais a T-algebra
ais a T-algebra morphism A — A

e Substitution for type variables in monads
= all monads are indexed

e Substitution for monad variables in algebras
= a monad map T — S gives a functor S-Alg — T-Alg

e Elimination of monad formers into all judgments
= monad colimits are algebraic colimits

Part |l

All the lies | just told you

Fibrancy

Outline

@ Fibrancy

Fibrancy

Problem #1: Fibrancy

Problem
T(0) may not be fibrant, hence may not represent a type.

e In non-recursive cases (e.g. empty type, coproduct type)
we can just fibrantly replace it.

e But in recursive cases, its fibrant replacement may no longer be
a T-algebra: the newly added fillers need a free T-action,
which may produce new horns that need fillers, etc.

Fibrancy

Building in fibrancy

Solution

@ Let R be the fibrant replacement monad (Garner).
@ let TR=T+R.

e A Tgr-algebra is a T-algebra with an unrelated R-algebra
structure.

e In particular, every Tg-algebra is fibrant!

Theorem (L-S)

Tr(D) satisfies the T-algebra induction principle: any fibration
p:Y — Tr(D) that is a T-algebra map has a T-algebra section.

Pullback-stability

Outline

@ Pullback-stability

Pullback-stability

Problem #2: Pullback-stability

Problem

Everything in a model of type theory must be strictly stable under
pullback.

e Use indexed endofunctors, monads, free monads, colimits of
monads. Everything is pullback-stable up to iso...

e ...except R, which is not an indexed monad at all!

e Local universes mumbo-jumbo: form T + R in the “universal
case.”

Fibrancy in boundaries

Outline

© Fibrancy in boundaries

Fibrancy in boundaries

Problem #3: Boundaries can't use fibrancy

Problem

R is not an indexed monad, but our algebraic colimits have to work
on indexed monads.

e Therefore, we have to coproduct with R at the very end to
obtain our HIT.

e Therefore, in the middle, the “previous constructors’ HIT is
not fibrant.

e Therefore, we can't use “fibrant operations” (like path
concatenation and eliminators) in boundaries of constructors.

Fibrancy in boundaries

Problem #3: Boundaries can't use fibrancy

Problem

R is not an indexed monad, but our algebraic colimits have to work
on indexed monads.

e Therefore, we have to coproduct with R at the very end to
obtain our HIT.

e Therefore, in the middle, the “previous constructors’ HIT is
not fibrant.

e Therefore, we can't use “fibrant operations” (like path
concatenation and eliminators) in boundaries of constructors.

Partial workaround(s)

e Hub and spoke does not help.

e Use cofibrations like L1 — [0 whose domains implicitly involve
“concatenations”

Closure of universes

Outline

@ Closure of universes

Closure of universes

Problem #4: Closure of universes

Problem

Even in the best model categories, we don't know how to show that
any universes are closed under HITs.

e A universe U — U classifies fibrations with “small fibers .

e For closure of U, the “universal HIT" over something built
from U must be classified by U.

e But the (algebraic) fibrant replacement of a map with small
fibers over a large base may no longer have small fibers!

	Truths
	Overview
	Semantics of W-types
	Semantics of inductive types
	Semantics of HITs
	From semantics to syntax
	Adding HITs to a theory

	All the lies I just told you
	Fibrancy
	Pullback-stability
	Fibrancy in boundaries
	Closure of universes

