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The ubiquity of topology

A bold claim

Topology is not just one mathematical subject among many.
It is a foundational feature of all mathematics.

Old point of view New point of view

Everything in math is a set. Everything in math is a space.

A space is a set equipped with
a topology.

A set is a space whose topology
is discrete.

We give sets a topology when
we think it would be useful.

Constructions on discrete
spaces lead unavoidably to
non-discrete ones.



Origins of topology

Topologies arise naturally, usually from universal constructions.

Example

Even if A and B are discrete, the function-space BA may not be.

2N is Cantor space.

NN is Baire space.

R is Cauchy sequences (in QN) or Dedekind cuts (in 2Q).

The completion of a ring (formal power series, in RN) is local.

The pro�nite completion (sequences of elements of quotients).

The Zariski spectrum of a ring.



The times, they are a'changing

From Interview with Yuri Manin (by Mikhail Gelfand), AMS Notices,

October 2009:

[A]fter Cantor and Bourbaki . . . set theoretic mathematics
resides in our brains. . . . we start with the discrete sets of Cantor,
upon which we impose something more in the style of Bourbaki.

But fundamental psychological changes also occur. Nowadays
. . . the place of old forms and structures . . . is taken by some
geometric, right-brain objects. Instead of sets, clouds of discrete
elements, we envisage . . . spaces. . .

. . . [T]here is an ongoing reversal in the collective consciousness
of mathematicians: the. . . homotopical picture of the world
becomes the basic intuition, and if you want to get a discrete set,
then you pass to the set of connected components. . . Cantor's
problems of the in�nite recede to the background: from the very
start, our images are so in�nite that if you want to make something
�nite out of them, you must divide them by another in�nity.

http://www.ams.org/notices/200910/rtx091001268p.pdf
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Analytic topology

Recall the claim

Topology is a foundational feature of all mathematics.

The lightweight approach

De�ne a notion of �space� that can be used in place of bare sets
when doing most of mathematics.

Question

What's wrong with ordinary topological spaces?



Function spaces

Problem #1

Topological spaces are not cartesian closed: there is no
well-behaved �space of continuous functions� BA.

In particular, there is no well-behaved �power-space� 2A.

Traditional solution

For a category C of �test spaces�, A is C-generated if it has the �nal
topology induced by all the continuous maps X → A for X ∈ C.

C = compact Hausdor� spaces ⇝ compactly generated spaces
C = { Rn | n ∈ N } ⇝ ∆-generated spaces
C = { N∞ } ⇝ sequential spaces

All these categories of spaces are cartesian closed.



Continuous bijections

Problem #2

Not every continuous bijection is a homeomorphism.

That this is actually a problem is more easily seen in algebra.

Example

Let ♭R denote the real numbers with the discrete topology.
Then ♭R → R is a noninvertible homomorphism of topological
abelian groups with trivial kernel and cokernel.

Thus, topological abelian groups are not an abelian category.

All the cartesian closed categories of spaces have the same problem.



The stu� of topology

Idea

A C-probed set is like a C-generated space, but more than one
�map� X → A can have the same underlying function on points.

Then R/♭R has one point, but nontrivial �topology�.

De�nition

Fix a Grothendieck topology on C. A C-probed set is a sheaf on C:
a functor Cop → Set satisfying �gluing� axioms.

For A : Cop → Set, have A(X ) = �the set of maps X → A�.

{ Rn | n ∈ N }, open covers ⇝ ∆-topological sets
{ N∞ }, canonical covers ⇝ consequential sets
compacta, �nite closed covers ⇝ condensed sets∗{
2N

}
, �nite closed covers ⇝ countably condensed sets

C-generated spaces embed fully-faithfully in C-probed sets.
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An intuitive topological topos

Arguably the easiest kind of C-probed set to understand is:

De�nition (∼Johnstone 1979)

A consequential set is a set A equipped with

For each sequence x0, x1, x2, . . . and point y , a set of
�proofs that (xn) converges to y � (possibly empty).

There must be speci�ed proofs that:

1 Every constant sequence x , x , x , x , . . . converges to x .

2 If a sequence (xn) converges to x , so does any subsequence.

3 If every subsequence of (xn) contains a further subsequence
converging to x , then (xn) converges to x .

satisfying coherence axioms.



Origins of topology

De�nition

In a discrete consequential set, the only witnesses of convergence
are the speci�ed ones that x , x , x , x , . . . converges to x .

(And trivial variants, like y , x , x , x , . . . converging to x .)

The discrete sets are an embedded copy of the category of sets,
closed under colimits, but not limits or function-spaces.

Example

If A and B are discrete, BA has pointwise convergence.

A limit of discrete sets, like the pro�nite completion, has
componentwise convergence.

R, as Cauchy sequences or Dedekind cuts, automatically has
its usual topology.



Exactness

The monomorphisms of consequential sets are injective on
points and proofs.

The epimorphisms of consequential sets are surjective on
points and induce a �quotient structure� on proofs.

Example

♭R → R is mono but not epi.

Consequential sets are balanced: any monic epic is an iso.

Theorem

Consequential abelian groups are an abelian category.

In particular, ♭R → R is the kernel of the quotient map R → R/♭R.
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Synthetic topology

Recall the claim

Topology is a foundational feature of all mathematics.

To take this more seriously, we change the meanings of words so:

�Set� means �space�

�Function� means �continuous function�

All constructions of �sets� automatically yield spaces.

Actually, in traditional formal foundations like ZFC, �set� is already
an unde�ned term, given meaning by its axioms.

We just change the axioms a bit.
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Synthetic vs analytic

Theorem

There is a formal interpretation function that automatically

�compiles� any mathematical argument into an internal statement

in any topos, such as C-probed sets.

By analogy:

Proofs in group theory ⇝ True in any group
Proofs in ring theory ⇝ True in any ring
Proofs in mathematics ⇝ True in any topos

Therefore:

Even a ZFC devotee can reason about spaces synthetically.

C-probed sets can inform our choice of axioms for spaces.



An example of internal reasoning

Theorem

Any injective map of abelian groups is the kernel of its quotient.

Proof.

Given ϕ : H ↪→ G , the quotient G/H is the set of equivalence
classes [g ] = { g ′ | g ′ − g ∈ H }. Thus, if [g ] = [0], then g ∈ [0]
and so g − 0 = g ∈ H.

This is a proof in ordinary mathematics.

The internalizer compiles it to a proof that any monomorphism of
abelian group objects in a topos is the kernel of its quotient.



But some things are weird

The axiom of choice is false in spaces.

Example

R → S1 is surjective, but has no (continuous) section.

So is the law of excluded middle (�for any P , either P or not-P�).

Example

If we could claim �x < 0 or x ≥ 0 for all x ∈ R�, then we could
de�ne a discontinuous function f : R → R by

f (x) =

{
0 if x < 0

1 if x ≥ 0



Enter modalities

You might be surprised how much we can do without AC and LEM,
but sometimes we really do need them.

Idea: use discreteness

The function

f (x) =

{
0 if x < 0

1 if x ≥ 0

is continuous ♭R → R, where ♭R is R retopologized discretely.

We augment mathematics with a modality ♭ that retopologizes any
set discretely. We have ♭♭A = ♭A, and a coercion ♭A → A.



Using the modality

Now we can assume:

Discrete excluded middle

For any∗ property P of points x ∈ A, and any x ∈ ♭A, we have
either P(x) or not P(x).

Discrete axiom of choice

For any∗ surjective f : A↠ B , there is a map s : ♭B → A such that
f (s(x)) = x for any x ∈ ♭B .

We can also access other topological properties using the modality.

De�nition

A set A is connected if any map from A to a discrete set ♭B is
constant, i.e. (♭B)A ∼= ♭B .

For instance, R is connected.
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Synthetic topological proofs

Theorem (The Intermediate Value Theorem)

Let f ∈ ♭(RR) and c ∈ ♭R. If there are a, b ∈ R such that

f (a) < c < f (b), then there exists x ∈ R such that f (x) = c .

NB: x can't be chosen to vary continuously with f and c .

Proof.

Since ♭(RR)× ♭R is discrete, we can use LEM and hence proof by
contradiction. Thus, suppose not; then we can de�ne g : R → 2 by

g(x) =

{
0 if f (x) < c

1 if f (x) > c

Since 2 is discrete and R is connected, g is constant.
But g(a) = 0 and g(b) = 1, a contradiction.



The point of synthetic topology

Conclusion

Synthetic topological foundations looks like ordinary mathematics,
but we have to mark explicitly where things are not continuous,
rather than explicitly introducing topology when needed.

This is good: continuity is more common than discontinuity.

We can also add other modalities:

♯A is A retopologized indiscretely: have ♭ ⊣ ♯.

sA is the shape or fundamental ∞-groupoid of A: have s ⊣ ♭.

Smooth structure, super structure, etc. also have modalities.
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Classifying spaces

A classifying space is a representing object for some contravariant
functor. For example:

{ vector bundles over X } ∼= Map(X ,BO)

{ double covers of X } ∼= Map(X ,B2).

Synthetically, we can de�ne classifying spaces with just sets of sets!

B2 = { A | A has cardinality 2 }

An f : X → B2 sends each x ∈ X to the �ber over it; the total
space of the double cover is

Ef = { (x , y) | y ∈ f (x) } .
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Univalence, part 1

Suppose f , g : X → B2 classify isomorphic double covers:

Ef Eg

X

∼=

Then f (x) ∼= g(x) for all x ∈ X .

But for B2 to really be a classifying space, we need f = g , that is
f (x) = g(x) for all x . Thus we need:

Axiom (Univalence, version 1)

For two sets A,B , we have A = B if and only if A ∼= B .

This is a better sort of classifying space than in classical topology:
f is literally unique, not just up to homotopy.



Trivial double covers

Any X has a trivial double cover X × 2, classi�ed by a constant
function f : X → B2. Conversely:

By induction, any double cover of a �nite set is trivial.

By the discrete axiom of choice, any double cover of a discrete
set is trivial.

Since 2 is discrete and �nite, B2 is also discrete. Thus all maps
R → B2 are constant, so any double cover of R is also trivial.



Nontrivial double covers

Example

We have S1 = [0, 1]/(0 ∼ 1), so:

f : S1 → B2 consists of g : [0, 1] → B2 with g(0) = g(1).

[0, 1] is a retract of R, so g is constant.

But g(0) = g(1) is an isomorphism g(0) ∼= g(1), which could
be the identity or the �swap�.

Thus, S1 has two double covers.



Univalence, part 2

For this to make sense, the construction of f : S1 → B2 has to
remember which proof of g(0) = g(1) we gave.

Principle of proof-relevance

Any statement or theorem is represented by a space, which is
nonempty just when that statement is true. For ordinary true
statements, the set is just ∗, but more complicated statements can
be �true in more than one way�.

Axiom (Univalence, version 2)

For two sets A,B , the space A = B is isomorphic to the set
Iso(A,B) of isomorphisms between A and B .



Groupoids, higher groupoids, and stacks

For any space A and a, b ∈ A, we have another space a = b.
Then for p, q ∈ (a = b), we have p = q, ad in�nitum.

Each space is actually an ∞-groupoid.

Warning

If you know what an ∞-groupoid is, you might be used to thinking
of them as �like topological spaces�. For us, the ∞-groupoid
�direction� is orthogonal to the �topological� one.

S1 has a topological loop, but has no groupoid structure.

B2 is topologically discrete, but is a groupoid, (2 = 2) ∼= 2.

Analytically, a C-probed ∞-groupoid is a stack on C.



Connectedness and contractibility

We said A is �connected� if any map A → B is constant, for
discrete B .

But we found a non-constant map S1 → B2, where B2 is
discrete. Thus S1 is not �connected�!

We need better terminology.

De�nition

A space A is connected if any map A → B is constant when B is
discrete and 0-truncated (has no higher groupoid structure).

De�nition

A space A is contractible if any map A → B is constant, for any
discrete B .

Now S1 is connected but not contractible, while R is contractible.



Vector bundles

The space
BVect = { V | V is a vector space }

classi�es �continuous families of vector spaces�, but f : X → BVect
need not be �locally constant�, as required for a bundle.

A better classifying space of vector bundles is ♭BVect.

Example

Any vector bundle over a contractible space is trivial.

Example

Over S1, there is a 1-dimensional Möbius bundle, constructed like
the nontrivial double cover.
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A problem

�Theorem�

All spaces are discrete: ♭A ∼= A for all A.

Proof.

For the one-point space ∗, clearly ♭∗ = ∗.
For any x ∈ A we have fx : ∗ → A, hence ♭fx : ♭∗ = ∗ → ♭A.
Thus x 7→ ♭fx(∗) is a map A → ♭A.

To avoid this, we have to forbid using ♭ in the �context� of x ∈ A
when A is non-discrete.



A brief introduction to type theory

Type theory lets us formalize this. At any point in an argument
there is a context consisting of the variables currently assumed,
along with the sets they belong to, e.g.

a ∈ A, b ∈ B, c ∈ C

Certain constructions extend the context. For instance, to
construct a function X → Y we may assume some x ∈ X ,
extending the context to

a ∈ A, b ∈ B, c ∈ C , x ∈ X

and proceed to construct an element y ∈ Y in this context, to be
the value of f (x).



Modal type theory

To handle ♭, we make a new way to extend the context: with a lock.

a ∈ A, b ∈ B, c ∈ C , µ

A variable occurring �behind a lock� can only be used if it belongs
to a discrete set. This allows rules for ♭, like those for functions:

To construct a function X → Y , extend the context by x ∈ X
and construct an element of Y .

To construct an element of ♭X , extend the context by µ and
construct an element of X .

This prevents the problematic �for any x ∈ A we have fx : ∗ → A,
hence ♭fx : ♭∗ = ∗ → ♭A� because x is behind a lock, hence
unusable in ♭fx as A is not discrete.



Semantics of dependent type theory

Recall the compiler that interprets mathematics into toposes.

Syntactic structure Categorical structure

Context
a ∈ A, b ∈ B

Object
A× B

Element in that context
x ∈ X given a ∈ A, b ∈ B

Morphism
A× B → X

The rule for constructing functions thus becomes the universal
property of an exponential object:

f ∈ Y X in context a ∈ A, b ∈ B

y ∈ Y in context a ∈ A, b ∈ B, x ∈ X

A× B → Y X

A× B × X → Y



Semantics of modal dependent type theory

But what does µ mean categorically?

x ∈ ♭X in context a ∈ A, b ∈ B

x ∈ X in context a ∈ A, b ∈ B,µ

A× B → ♭X

? → X

This looks like it should be a left adjoint to ♭.

De�nition (Gratzer�Kavvos�Nuyts�Birkedal)

For any 2-category M, there is a modal dependent type theory
called MTT, using a lock µµ that looks left adjoint to the modality
associated to each morphism µ of M.

Theorem (S.)

For any suitable diagram C : M → Cat, there is a diagram Ĉ with

additional left adjoints µµ, and a compiler interpreting MTT into it.
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The meaning of synthetic topology

Conclusion

There is a general syntactic way to extend mathematics with
modalities such as ♭, and a compiler interpreting them into toposes.

Therefore:

ZFC devotees can reason synthetically using ♭.

Toposes can inform our choice of axioms for spaces with ♭.

Further reading:

M. Shulman, Homotopy type theory: the logic of space,
arXiv:1703.03007

M. Shulman, Semantics of multimodal adjoint type theory,
arXiv:2303.02572

https://arxiv.org/abs/1703.03007
https://arxiv.org/abs/2303.02572
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