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A brief review of categories

Definition

A category consists of

A set C0 of objects.

A set C1 of morphisms.

Functions s, t : C1 → C0 assigning a source and target to each
morphism. We write HomC (x , y) for the set of morphisms
from x to y .

For each x ∈ C0, an identity morphism idx ∈ HomC (x , x).

Composition maps HomC (y , z)× HomC (x , y)→ HomC (x , z).

Composition is associative and unital.



A brief review of functors and natural transformations

Definition

A functor F : C → D consists of functions F0 : C0 → D0 and
F1 : C1 → D1, preserving sources, targets, identities, and
composition.

Definition

For functors F ,G : C → D , a natural transformation α : F ⇒ G
consists of

A component αx ∈ HomD(F (x),G (x)) for all x ∈ C0.

For any h ∈ HomC (x , y) we have αy ◦ F1(h) = G1(h) ◦ αx .

We write [C ,D ] for the category whose objects are functors
F : C → D , and whose morphisms are natural transformations.
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Large categories

In category theory we often want to talk about “the category of all
sets”, “the category of all groups”, etc.

Example

The “underlying set” functor U : Grp→ Set has a left adjoint, the
“free group” functor.

In ZFC, the collection of all sets (or groups, etc.) is not a set.

Definition

A class category C consists of

Classes (possibly proper) C0 and C1 of objects and morphisms,

Class functions assigning sources and targets, identities, and
composition,

Satisfying the axioms of a category.



The problem of large categories

We can do a lot with class categories, but not everything.

Problem

There is no “class of all functions” between two proper classes.
Hence, when C and D are class categories there is no (class)
category [C ,D ] whose objects are all functors F : C → D .

But we do sometimes want such functor categories!

Example

Any Grothendieck topos E is equivalent to the category of sheaves
on itself (which are functors Eop → Set).

Example (Rosebrugh–Wood)

If the Yoneda embedding E → [Eop, Set] of a category E has a
string of four left adjoints, then E ' Set.



The solution of inaccessibles

Usual solution

Assume an inaccessible cardinal κ, and instead of Set use the
category Setκ of sets in Vκ.

A small set or small category is one in Vκ.

A large category is now still built out of sets; just not small
ones.

The most common large categories Setκ, Grpκ are in Vκ+1.
Functor categories between these lie in Vκ+2, etc.

This solves the first problem, but introduces new ones. . .



The problem of consistency strength

Problem

ZFC doesn’t prove that any inaccessible cardinals exist.

Pretty much everyone believes inaccessibles are consistent.

But some people are troubled by having to assume them,
especially when category theory is used as a tool to prove very
concrete facts, e.g. Grothendieck topos theory used in Wiles’
proof of Fermat’s Last Theorem.

It feels like only a convenience of language: FLT shouldn’t
actually depend on the existence of any inaccessibles.



The problem of universe-changing

Problem

To do category theory formally, we work with the category of all
small categories. But then we may want to apply theorems proven
therein to large categories!

Solution #1 (Grothendieck)

Assume there are arbitrarily large inaccessibles, and start every
theorem with “for any inaccessible κ, . . . ”. This is a stronger large
cardinal axiom (“Ord is 1-inaccessible”).

Solution #2

Assume Vκ is an elementary substructure of V , so anything we prove
about small objects is also true about large ones. This is an even
stronger large cardinal axiom (equiconsistent with “Ord is Mahlo”).

So these solutions work, but exacerbate the first problem.



Weaker notions of universe

Do we really need κ to be inaccessible?

By the reflection and compactness theorems of ZFC, it’s
equiconsistent with ZFC to assume either

1 There is a κ (not necessarily inaccessible) such that Vκ � ZFC
(as a schema).

2 There is a κ (not necessarily inaccessible) such that Vκ is an
elementary substructure of V (as a schema).

The latter is sometimes called “Feferman set theory”.

In fact, most mathematics doesn’t use the replacement schema
at all. And Vκ models Zermelo set theory whenever κ is a limit
ordinal greater than ω. Then the ambient theory of V only
needs to assure such ordinals exist (Zermelo + a bit more).



Even weaker notions of universe

In fact, most mathematics doesn’t use unbounded separation either!
Thus it can be formalized in “Bounded Zermelo” (BZ) or “Mac
Lane set theory” (MAC), which is equiconsistent with finite-order
arithmetic.

Observation (McLarty)

Something much like the topos theory of Grothendieck, which
suffices for Wiles’s proof of FLT, can be done in an equiconsistent
NBG-like extension of MAC, with proper-class categories.

However, this encoding is somewhat uncomfortable. . .



Problems with weak universes

If κ is inaccessible, we can prove:

Theorem

The category Setκ of (small) sets has small products.

Proof.

Given a small set D and a family of small sets F : D → Vκ, define

∏
x∈D

F (x) =

{
u : D →

⋃
x∈D

F (x)

∣∣∣∣∣ ∀x ∈ D, u(x) ∈ F (x)

}
.

Then
⋃

x∈D F (x) is in Vκ since κ is inaccessible; hence so is∏
x∈D F (x).



Problems with weak universes

If only Vκ � ZFC, we can only prove:

Theorem

The category Setκ of (small) sets has products of small families
F : D → (Setκ)0 that are definable over Vκ.

Proof.

Given a small set D and a family of small sets F : D → Vκ, define

∏
x∈D

F (x) =

{
u : D →

⋃
x∈D

F (x)

∣∣∣∣∣ ∀x ∈ D, u(x) ∈ F (x)

}
.

Since F is definable,
⋃

x∈D F (x) is in Vκ by the replacement axiom
of Vκ; hence so is

∏
x∈D F (x).



Problems with weak universes

If only Vκ � Z (or BZ or MAC), we can only prove:

Theorem

The category Setκ of (small) sets has products of small families
F : D → (Setκ)0 such that

⋃
x∈D F (x) is in Vκ.

Proof.

Given a small set D and a family of small sets F : D → Vκ, define

∏
x∈D

F (x) =

{
u : D →

⋃
x∈D

F (x)

∣∣∣∣∣ ∀x ∈ D, u(x) ∈ F (x)

}
.

Then
⋃

x∈D F (x) is in Vκ by assumption; hence so is∏
x∈D F (x).



Towards a better solution

Inspecting a lot of category theory, it appears to always be possible
to insert definability/image restrictions to make the theorems
remain true with weaker universes. But:

The statement of every theorem has to be modified.

The definability conditions are not invariant under equivalence
of categories.

How do we know it will always remain true?

Idea

Instead of changing the theorems of category theory, change the
formal theory (e.g. ZFC) into which they are implicitly encoded, and
prove a metatheorem interpreting that theory in set theory with
weak universes.
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Martin–Löf dependent type theory

Basic objects: types.

Types have elements, written a : A. No two distinct types have
any elements in common.

Type operations: product A× B, function type A→ B, . . .

The elements of A× B are primitive ordered pairs (a, b), those
of A→ B are primitive functions, etc. We don’t “encode”
pairs and functions with ∈ as in ZFC.

Can have universe types U whose elements are (some) other
types. Not every type need belong to any universe.

A function B : A→ U into a universe is a dependent type or
“family of types”.



Type theory vs Set theory

Type theory can be used, like ZFC, for the formal encoding of
all ordinary mathematics. Some things are more convenient in
ZFC, others are more convenient in type theory.

One thing that’s more convenient in type theory is building
models with category theory.

object  type
morphism  element (in context)

product object  product type
exponential object  function type

...

We can also build a model of set theory inside type theory,
using well-founded relations. Thus type theory is a “bridge”
from categories to sets.



Synthetic families

Start from a set theory containing a weak universe Vκ. We will
build a model of MLTT such that:

1 We have one universe type U , containing the small sets.

2 A “large” type, not in U , consists of a large set A together
with a collection of “D-indexed families of elements of A” for
all small sets D.

In concrete cases, like U itself, the D-indexed families will turn out
to be the “definable / small-image” functions D → A. But in
general, they are just specified data.



Presheaves

If X is a “D2-indexed family of elements of A”, and we have a
function f : D1 → D2, then we should be able to “reindex” X along
f to get a D1-indexed family, (f ∗X )i = Xf (i).

Definition

A presheaf on the category Setκ is a functor A : Setopκ → SET.
The category of presheaves is the functor category [Setopκ ,SET],
whose morphisms are natural transformations.

Here SET is the proper-class category of all sets. Thus [Setopκ , SET]
is also a proper-class category.

First plan

Interpret types in MLTT by presheaves on Setκ.

In particular, U ∈ [Setopκ ,SET] is defined by U(D) = the set of
small/definable D-indexed families of small sets.



The Yoneda lemma

For any E ∈ Setκ, the corresponding “small type” will be the
representable presheafよE :

よE (D) = HomSetκ(D,E ).

Lemma (Yoneda)

For any presheaf A ∈ [Setopκ ,SET], there is a bijection between
morphismsよE → A and elements of A(E ).

Proof.

Given g :よE → A, we have a component gE :よE (E )→ A(E ),
hence an element gE (idE ) ∈ A(E ).

Given x ∈ A(E ), define g :よE → A by gD(f ) = f ∗(x) ∈ A(D).

These are inverses.



The upshot of Yoneda

The Yoneda lemma tells us two things:

1 MorphismsよD →よE are equivalent to elements ofよE (D), i.e.
functions D → E . Thus, the universe Setκ of small sets
embeds into the universe [Setopκ , SET] of types.

2 In the type theory of [Setopκ , SET], the functions from a small
typeよE to a large one A are precisely the “E -indexed families
of elements” that were specified in the construction of A.
Thus, the machinery keeping track of “definable families” is
hidden in the model construction, happening automatically
“under the hood” when we work in the type theory.

So presheaves seem great, but. . .



The problem of unions

Problem

If R,S ⊆ D are subsets of a small set, thenよR∪S is not the union
ofよR andよS , in the categorical sense of a pushout in [Setopκ , SET]:

よR∩S =よR ∩よS よS

よR よR ∪よS 6=よR∪S

p

Thus, the small types don’t really behave like the small sets.

Second plan

Replace [Setopκ , SET] by a subcategory thereof in which unions are
better-behaved.
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Sheaves

Definition

A site is a category C with a collection of covering families of
the form {fi : Ri → D}i∈I , satisfying some natural axioms.

A sheaf on a site is a presheaf A ∈ [C op, SET] such that for
any covering family there is a bijection

Hom[Cop,SET]

(
よD , A

)
∼= Hom[Cop,SET]

(⋃
iよRi

, A
)
.

The inclusion of the category Sh(C ) of sheaves into [C op,SET] has
a left adjoint a, and we have a(よ⋃

i Ri
) ∼=

⋃
i a(よRi

) in Sh(C ).

Example

C = Setκ with covers {fi : Ri → D}i∈I such that D =
⋃

i fi [Ri ].



Digression: sheaves and forcing

Example

Let P be a forcing poset, regarded as a category via

HomP(p, q) =

{
{∗} if p ≤ q

∅ otherwise

Define {fi : pi → q}i∈I to be covering if it is dense below q, i.e. for
all r ≤ q there is a pi ≤ r .

If we build a model of set theory from well-founded relations inside
Sh(P), we get essentially the Boolean-valued model associated to
forcing over P.



The logic of sheaves

“We get more replacement by giving up separation.”

In the type theory of Sh(Setκ):

1 Small types have all products and (disjoint) unions indexed by
small types. (“U appears inaccessible”.)

2 Small types have separation for formulas with quantifiers
bounded by small types, and involving equality only between
elements of small types.

3 If Vκ � ZFC, this can be extended to quantifiers bounded by U ,
at least in a “moderate context”.

4 Small types satisfy AC if Vκ does. . . but large ones don’t!



The logic of sheaves

“We get more replacement by giving up separation. . . and choice.”

In the type theory of Sh(Setκ):

1 Small types have all products and (disjoint) unions indexed by
small types. (“U appears inaccessible”.)

2 Small types have separation for formulas with quantifiers
bounded by small types, and involving equality only between
elements of small types.

3 If Vκ � ZFC, this can be extended to quantifiers bounded by U ,
at least in a “moderate context”.

4 Small types satisfy AC if Vκ does. . . but large ones don’t!



The logic of sheaves

“We get more replacement by giving up separation. . . and choice
and classical logic!”

In the type theory of Sh(Setκ):

1 Small types have all products and (disjoint) unions indexed by
small types. (“U appears inaccessible”.)

2 Small types have separation for formulas with quantifiers
bounded by small types, and involving equality only between
elements of small types.

3 If Vκ � ZFC, this can be extended to quantifiers bounded by U ,
at least in a “moderate context”.

4 Small types satisfy AC if Vκ does. . . but large ones don’t!
In fact, “large logic” doesn’t even satisfy LEM!



The problem of weak equivalences

For the most part, category theory is completely constructive
anyway. But there are exceptions:

Definition

A functor F : C → D is an equivalence if there is G : D → C and
natural isomorphisms F ◦ G ∼= IdD and G ◦ F ∼= IdC .

In ZFC-based category theory, F is an equivalence if and only if

It is fully faithful: the maps HomC (x , y)→ HomC (F (x),F (y))
are bijective.

It is essentially surjective: for all y ∈ D , there exists an x ∈ C
with F (x) ∼= y .

Problem

This characterization of equivalences is equivalent to AC.
Thus, it fails for large categories in the type theory of Sh(Setκ).
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Pseudo-naturality

A category defined in the type theory of [Setopκ ,SET] is equivalently
a functor C : Setopκ → CAT. Similarly, a functor F : C → D in this
type theory is a natural transformation of CAT-valued functors.

If F is fully faithful and essentially surjective, then each component
FE : C (E )→ D(E ) is an equivalence, with pseudo-inverse
GE : D(E )→ C (E ). But GE are not a natural transformation;
instead of an equality they satisfy only an isomorphism

GD ◦D(f ) ∼= C (f ) ◦ GE

for f ∈ Setκ(D,E ).

Third plan

Replace Sh(Setκ) by a category that incorporates such
pseudo-natural transformations.



Presheaves of groupoids

The “minimal modification” that allows us to even talk about
pseudo-naturality is to replace sets by groupoids (categories in
which all morphisms are isomorphisms).

Idea

Interpret each type by a functor Setop → GPD, and each function
between types by a pseudo-natural transformation.

A small set X ∈ Set is again the representableよX , consisting
of discrete groupoids (only identity morphisms).

The universe U is defined by U(D) = the groupoid of definable
functions f : D → Vκ, with definable families of bijections
between them.

NB: In practice, all “large sets” actually underlie groupoids (e.g.
groups and isomorphisms, spaces and homeomorphisms, . . . ).



Coflexibility and stacks

Pseudo-natural transformations are too “loose” to model type
theory directly. Instead we use strict natural transformations, but
restrict the objects.

Definition

A functor B : Setop → GPD is coflexible if every pseudo-natural
transformation A→ B is isomorphic to a strict one (coherently).

Definition

When C is a site, a functor A ∈ [Setop,GPD] is a stack if it satisfies
the sheaf condition up to equivalence.

We now work in the type theory of the category St(Setκ) of
coflexible stacks.



Groupoid type theory

The internal type theory of St(Setκ) is groupoid type theory or
1-truncated homotopy type theory.

We are only allowed to talk about equality between two
elements of the same small type: if A : U with a, b : A, then
a = b is a proposition.

If A is large, we instead have an isomorphism type a ∼= b. This
is a primitive operation, not defined in terms of anything else.
It has all the structure we expect: ida : a ∼= a, composition, . . .

Remark

In fact, equality a = b is defined as a special case of a ∼= b, which
happens to “be” just a proposition when A is small. Often people
use the notation a = b in place of a ∼= b for arbitrary A too.



Univalence

Axiom

For small types A,B : U , the isomorphism type A ∼= B of U is
canonically bijective to the type of bijections A↔ B:

(A ∼= B)↔ (A↔ B).

This is called univalence (Voevodsky) or universe extensionality
(Hofmann–Streicher).

It implies similar facts about other large types, e.g. for small
groups G ,H the isomorphism type G ∼= H in the type of small
groups is bijective to the type of group isomorphisms.



Categories in groupoids

Definition (in groupoid type theory)

A (locally small) category consists of:

A type C0 of objects.

Hom-types HomC : C0 × C0 → U .

Compositions HomC (b, c)× HomC (a, b)→ HomC (a, c) that
are associative with identities ida : HomC (a, a).

For a, b : C0, the isomorphism type a ∼= b is canonically
bijective to the type of isomorphisms in C .

Essentially all of informal category theory can be formalized
directly in groupoid type theory.

Fully faithful and essentially surjective functors are
equivalences, even in the absence of choice!



An open question

It seems that the weakest theory that this construction applies
to is Mac Lane set theory containing a Vκ that itself models
Mac Lane set theory.

However, McLarty (2020) is able to translate most of category
theory into a single model of Mac Lane set theory extended
conservatively by classes, as in NBG. Can groupoid type theory
be applied to this situation?



Thanks!
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