Definitions and Examples for Topology

Abelian
A group is *abelian* if \(ab = ba \) for all \(a, b \in G \).

Bijection
A *bijection* from \(X \) to \(Y \) is a map \(f : X \rightarrow Y \) which is both one-to-one and onto.

Brouwer Fixed Point Theorem
Every continuous \(f : D^2 \rightarrow D^2 \) has a fixed point.

Cayley Graph
The *Cayley Graph* of a (finitely generated) group is a graph consisting of one vertex for each group element, and out of each vertex, one directed edge per generator, so that if \(g_1 \cdot a = g_2 \)

\[
\text{generator}
\]

add edge from \(g_1 \) to \(g_2 \).

Conjugate
A *conjugate* of a word \(w \) in \(G \) is \(gwg^{-1} \), where \(g \) is an element of \(G \).

Example
\[\mathbb{Z} \times \mathbb{Z} \cong \langle a, b | aba^{-1}b^{-1} \rangle \]
\(\phi : \langle a, b \rangle \rightarrow \mathbb{Z} \times \mathbb{Z} \) by
\[
\phi(a) = (1, 0),
\phi(b) = (0, 1),
\phi(aba^{-1}b^{-1}) = (1, 0) + (0, 1) + (-1, 0) + (0, -1) = (0, 0).
\]

Constant
A function \(f : X \rightarrow Y \) is *constant* if there is some \(c \in Y \) so that \(f(x) = c \) for every \(x \in X \).

Constant loop
The *constant loop* in a space \(X \) based at \(x_0 \in X \) is
\[
C : (I, dI) \rightarrow (x, x_0)
\]
by \(C(s) = x_0 \).
Continuity
A map f from a topological space X to a topological space Y is continuous if and only if for every set $U \subseteq Y$ that is open in Y, the set $f^{-1}(U) \subseteq X$ is open in X.

Example
$X = \{a, b, c\}$, $\tau_X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$
$Y = \{w, z\}$, $\tau_Y = \{\emptyset, Y, \{w\}\}$
Define $f : X \rightarrow Y$ by

\[
\begin{align*}
f(a) &= w \\
f(b) &= z \\
f(c) &= z
\end{align*}
\]

Is f continuous?
The open sets in Y are $\emptyset, Y, \{w\}$.
\[
\begin{align*}
f^{-1}(\emptyset) &= \emptyset \in \tau_X \\
f^{-1}(Y) &= X \in \tau_X \\
f^{-1}(\{w\}) &= \{a\} \in \tau_X
\end{align*}
\]

So f is continuous.

Contractible
A space which is homotopy equivalent to a point is called contractible.

Proposition
X is contractible if and only if $I_x \simeq \text{constant} : X \rightarrow X$.

Proof
\Rightarrow Assume X is contractible. We want to show $I_x \simeq \text{constant}$. Then by definition, X is homotopy equivalent to a point. So there's some point y and maps

\[
\begin{align*}
f : X &\rightarrow \{y\} \\
g : \{y\} &\rightarrow X
\end{align*}
\]

so that

\[
\begin{align*}
g \circ f &\simeq I_x \\
f \circ g &\simeq I_{\{y\}}
\end{align*}
\]

Note, if $x \in X$, then $g \circ f(x) = g(y)$.

So $g \circ f$ maps every point in X to the same point in X (namely $g(y)$). So $g \circ f$ is a constant map. So $I_x \simeq \text{constant}$ map.

\Leftarrow Assume $I_x \simeq \text{constant} : X \rightarrow X$. Then $I_x \simeq C$, where C is a map $C : X \rightarrow X$ and $x_0 \in X$ and $C(x) = x_0$ for all $x \in X$. We want to show X is contractible.
Define $f : X \rightarrow \{x_0\}$ by $f(x) = x_0$ for all $x \in X$.
Define $g : \{x_0\} \rightarrow X$ by $g(x_0) = x_0$.
Now $f \circ g(x_0) = f(x_0) = x_0$.
So $f \circ g = I_{\{x_0\}}$.
Therefore, $f \circ g \simeq I_{\{x_0\}}$.
Further, $g \circ f(x) = g(x_0) = x_0$.
So $g \circ f = C \simeq \tau_x$.
So X is homotopy equivalent to a point; X is contractible.
Covering space

$p : E \rightarrow B$ is a covering space (projection) if E and B are path connected and for all $b \in B$, there exists a path connected neighborhood U of b such that every component of $p^{-1}(U)$ maps homeomorphically (via p) onto U.

Finite presentation

A finite presentation for a group G is $\langle g_1, g_2, g_3, \ldots, g_n | R_1, R_2, \ldots, R_m \rangle$ so that

1. Every element of G is a finite product of g_i’s and then inverses. (g_i’s are generators).
2. Each relation R_j is a word in the g_i’s (and their inverses) which gives the identity element in G.
3. If a reduced word in g_i’s is the identity element in G, then that reduced word is obtained by reducing some product of conjugates of the relatives.

Fixed point

A fixed point of a function $f : X \rightarrow x$ is an element $x \in X$ so that $f(x) = X$.

Example

$f : \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = 2x$.

0 is the only fixed point.

Free product

The free product of two finitely presented groups G and H is $G \ast H = \langle$generators for G, generator for H relations for G, relations for $H \rangle$.

Example

$$Z \simeq \langle || \rangle$$

$$= \langle a \rangle$$

$$= \langle b \rangle$$

$$Z \ast Z \simeq \langle a, b \rangle = F_2$$

$$Z \times Z \simeq (a, b) | aba^{-1}b^{-1}$$
Function
If \(f : X \to Y \) is a function and \(U \subseteq Y \), then \(f^{-1}(U) = \{ x \in X : f(x) \in U \} \).

Example
\(f : \mathbb{R} \to \mathbb{R} \) is \(f(x) = x^2 \)

\[
f^{-1}\{\sqrt{2}\} = \{-\sqrt{2}, \sqrt{2}\} \\
f^{-1}\{-\sqrt{2}\} = \emptyset \\
f^{-1}\{(1, 2)\} = (-\sqrt{2}, -1) \cup (1, \sqrt{2})
\]

Group
A **Group** consists of a set \(G \) and an operation \(\cdot \) defined on that set \((\cdot : G \times G \to G) \) so that
1. Identity: There is an element \(e \in G \) so that for every \(g \in G \)
 \[
e \cdot g = g \quad \text{and} \quad g \cdot e = g
 \]
2. Inverses: For all \(g \in G \), there is \(h \in G \) so that
 \[
g \cdot h = e \quad \text{and} \quad h \cdot g = e
 \]
3. Associativity: If \(g, h, j \in G \), then
 \[
 (g \cdot h) \cdot j = g \cdot (h \cdot j)
 \]

Homeomorphic
Two topological spaces \(X \) and \(Y \) are **homeomorphic** if there exists a homeomorphism \(F : X \to Y \).

Homeomorphism
A bijection \(f : X \to Y \) such that \(f \) and \(f^{-1} \) are both continuous is called a **homeomorphism**.

Homeotopic
Two maps \(f, g : X \to Y \) are **homeotopic** if there exists a map
\[
F : X \times I \to Y
\]
such that for each \(x \in X \)
\[
F(x, 0) = f(x) \quad \text{and} \quad F(x, 1) = g(x)
\]
We say \(f \) is homotopic to \(g \), write \(f \simeq g \), and \(F \) is a **homotopy** between \(f \) and \(g \).
Homomorphic
Two groups \((G, \ast_G)\) and \((H, \ast_H)\) are **homomorphic** if there exists a function \(f : G \rightarrow H\) so that, for every \(g_1, g_2 \in G\),
\[
f(g_1 \ast_G g_2) = f(g_1) \ast_H f(g_2)
\]

Homotopic
Two paths \(f, g : I \rightarrow X\) are **homotopic** if and only if there exists \(F : I \times I \rightarrow X\) so that
\[
F(x, 0) = f(x) \\
F(x, 1) = g(x)
\]

Example
Define \(f, g : \mathbb{R} \rightarrow \mathbb{R}\) by \(f(x) = 2\), \(g(x) = 5\), for every \(x \in \mathbb{R}\).

Show \(f\) and \(g\) are homotopic. We need a map \(F : \mathbb{R} \times I \rightarrow \mathbb{R}\) so that
\[
F(x, 0) = f(x) = 2 \\
F(x, 1) = g(x) = 5
\]
Define \(F : \mathbb{R} \times I \rightarrow \mathbb{R}\) by
\[
F(x, t) = 3t + 2
\]
So
\[
F(x, 0) = 3(0) + 2 = 2 = f(x) \\
F(x, 1) = 3(1) + 2 = 5 = g(x)
\]

Homotopic relative to \(A\)
Two maps \(f, g : (X, A) \rightarrow (Y, B)\) are **homotopic relative to \(A\)**, written \(f \simeq \text{grelA}\), if there exists a homotopy \(F : (X \times I, A \times I) \rightarrow (Y, B)\) so that
\[
F(x, 0) = f(x), \quad F(x, 1) = g(x) \text{ for all } x \in X \text{ and for all } x \in A \\
F(x, t) = f(x) \text{ for every } t \in I.
\]

Homotopy class
The **homotopy class** of a loop \(\alpha\) in \(X\) based at \(x_0 \in X\) is
\[
[\alpha] = \{ \beta : (I, dI) \rightarrow (x, x_0) : \alpha \simeq \beta \text{ rel } dI \}
\]
Homotopy equivalent
Two spaces X and Y are homotopy equivalent if there exists maps $f : X \to Y$ and $g : Y \to X$ so that

\[
g \circ f \simeq I_x \\
f \circ g \simeq I_Y
\]

Identity map
Let X be a topology space. Then I_x is the function $I_x : X \to X$ defined by $I_x(x) = X$

This is called the identity map on X.

Inclusion map
If $A \subseteq X$, then the inclusion map $i : A \to X$ is $i(a) = a$ for all $a \in A$.

Induced map
Suppose $f : (X, x_0) \to (Y, y_0)$ and suppose $\alpha : (I, dI) \to (X, x_0)$ is a loop in X. Then $f \circ \alpha : (I, dI) \to (Y, y_0)$ is a loop in Y. This gives a map $f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$, $f_*([\alpha]) = [f \circ \alpha]$

f_* as above is called the induced map on π_1.

Proposition: f_* is a homomorphism
Proof: We want to show $f_*([\alpha]) \cdot f_*([\beta]) = f_*([\alpha] \cdot [\beta])$ for all $[\alpha][\beta] \in \pi_1(X, x_0)$. Let $[\alpha][\beta] \in \pi_1(X, x_0)$.

Then, $f_*([\alpha]) \cdot f_*([\beta]) = [f \circ \alpha] \cdot [f \circ \beta] = [f \circ \alpha \cdot f \circ \beta]$ where

\[
(f \circ \alpha \cdot f \circ \beta)(s) = \begin{cases} f \circ \alpha(2s) & 0 \leq s \leq 1/2 \\ f \circ \beta(2s - 1) & 1/2 \leq s \leq 1 \end{cases}
\]

$f_*([\alpha \cdot \beta]) = f_*([\alpha] \cdot [\beta]) = [f \circ (\alpha \cdot \beta)]$

where,

\[
(f \circ (\alpha \cdot \beta))(s) = \begin{cases} \alpha(2s) & 0 \leq s \leq 1/2 \\ \beta(2s - 1) & 1/2 \leq s \leq 1 \end{cases}
\]

These are the same.
Isomorphic

Two groups \((G, \ast_G), (H, \ast_H)\) are isomorphic, if there exists \(f : G \rightarrow H\) which is a bijective homomorphism. \(G \cong H\).

Proposition

\[(G, \cdot_G) \cong (H, \cdot_H)\]

Define \(f : G \rightarrow H\) by

\[f(e) = 1\]

\(f\) is clearly a bijection. To see \(f\) if a homomorphism, choose \(g_1, g_2 \in G\). Then \(g_1 = e = g_2\). So,

\[f(g_1 \cdot_G g_2) = f(e \cdot_G e)\]
\[= f(e)\]
\[= 1\]

\[f(g_1 \cdot_H g_2) = f(e \cdot_H e)\]
\[= 1 \cdot_H 1\]
\[= 1\]

So \(G \cong H\).

Knot complement

Let \(K\) be a knot: \(K = f(s^1)\). Then \(X = S^3 - K\) is the knot complement of \(K\).

Loop

A loop in \(X\) is a path \(f : I \rightarrow X\) so that \(f(0) = f(1)\).

Map of Pairs

A map of pairs is \(f : (x, A) \rightarrow (Y, B)\) which means

1. \(f : X \rightarrow Y\)
2. \(f(A) \subseteq B\)

Nullhomotopic

A function \(f : X \rightarrow Y\) is nullhomotopic if it is homotopic to a constant map.

One-to-One

A function \(f : X \rightarrow Y\) is one-to-one if and only if, for all \(a, b \in X\), \(f(a) = f(b) \rightarrow a = b\).
Onto
A function \(f : X \rightarrow Y \) is \emph{onto} if and only if, for all \(a \in X \), there exists \(b \in X \), \(f(b) = a \).

Pair
A \emph{pair} of topological spaces \((x, A) \) is a topological space \(X \) with \(A \subseteq X \).

Path
A map \(f : I \rightarrow X \) so that \(f(0) = x_0 \) and \(f(1) = x_1 \) is called a \emph{path} in \(X \) from \(x_0 \) to \(x_1 \). (Note: Path is a map, not the image of a map.)

Path Connected
A space \(X \) is \emph{path connected} if for every \(x_0, x_1 \in X \), there exists a path \(f : I \rightarrow X \) so that \(f(0) = x_0 \) and \(f(1) = x_1 \).

Path Homotopic
Two paths \(f, g : I \rightarrow X \) are \emph{path homotopic} or \emph{homotopic rel endpoints}, or \emph{homotopic rel boundary}. If they have the same initial point \(x_0 \) and the same final point \(x \), and there’s a homotopy
\[
F : I \times I \rightarrow X
\]
so that
\[
F(s, 0) = f(s), F(s, 1) = g(s) \text{ for all } s \in I
\]
\[
F(0, t) = x_0, F(1, t) = x, \text{ for all } t \in I.
\]

Reduced word
A \emph{reduced word} is a word in which you do not have a letter next to its inverse.

Example
\(aboa^{-1}b \) Not reduced
\(abb \) is reduced.
This group above is the \underline{free} group of rank 2, written \(F_2 \).

Retraction of \(X \) onto \(A \)
If \(A \subseteq X \), then a \emph{retraction of \(X \) onto \(A \)} is a continuous function \(r : X \rightarrow A \) with \(r|_A = I_A \) (alternately \(r \circ i = I_A \))
"Elements of \(A \) are fixed by the function \(r \)."

Example
Let \(A = 0, X = \mathbb{R} \), then \(A \subseteq X \).
Define \(r : X \rightarrow A \)
\[
\mathbb{R} \rightarrow \{0\} \text{ by } r(x) = 0.
\]
Then \(r(0) = 0 \), so \(r \) fixes elements of \(A \). So \(r \) is a retraction.
Simply connected
A space X is called simply connected if it is path connected and $\pi_1(X, x_0) \simeq \{1\}$, for every $x_0 \in X$.

Theorem $\pi_1(s^1, x_0) \simeq (\mathbb{Z}, +)$

Proof
We want do define a map

$$ f : \pi_1(s^1, (1, 0)) \rightarrow \mathbb{Z} $$

which is an isomorphism.

To define f, let $[\alpha] \in \pi_1(s^1, (1, 0))$

Then $\alpha : (I, dI) \rightarrow (s^1, (1, 0))$. Using the Unique Path Lifting lemma there exists $\alpha(0) = 0$.

Define

$$ n_\alpha = \tilde{\alpha}(1) $$

Claim: Note that n_α is an integer.

Proof Claim: we know $\pi \circ \alpha = \alpha$

$$ \Rightarrow \pi(\tilde{\alpha}(1)) = \alpha(1) $$

$$ \Rightarrow \pi(\tilde{\alpha}(1)) = (1, 0) $$

The function π is defined by

$$ \pi(x) = (\cos 2\pi x, \sin 2\pi x) = (1, 0) $$

when $\cos 2\pi x = 1$ and $\sin 2\pi x = 0$.

This happens only when $x \in \mathbb{Z}$.

So

$$ \pi(\tilde{\alpha}(1)) = (1, 0) \Rightarrow n_\alpha = \tilde{\alpha}(1) \in \mathbb{Z} $$

For $[\alpha] \in \pi_1(s^1, (1, 0))$, define $f[\alpha] = n_\alpha = \alpha(1)$.

Need to check f is 1.well-defined 2. 1-1 3.onto 4.homomorphism.

1.**Well-defined:** Show $[\alpha] = [\beta]$, then $f[\alpha] = f[\beta]$.

Assume $[\alpha] = [\beta]$. In other words, assume $\alpha, \beta : (I, dI) \rightarrow (s^1, (1, 0))$ with $\alpha \simeq \beta$ rel dI.

[want to show $n_\alpha = n_\beta$].

Since $\alpha \simeq \beta$ rel dI, there exists homotopy $F : (I \times I, dI \times I) \rightarrow (s^1, (1, 0))$.

So that

$$ F(s, 0) = \alpha(s) $$

$$ F(s, 1) = \beta(s) $$

$$ F(0, t) = (1, 0) $$

$$ F(1, t) = (1, 0) $$

For each t, let $a_t(s) = F(s, t)$. This is a loop in s^1 based at (1,0). Define function $n : \{\text{loops in } s^1\} \rightarrow \mathbb{Z}$ by $n(\gamma) = nr$. Since this is a continuous map into a discrete set, it must be constant. So $n_{\alpha_t} = n_{\beta_t}$ for every t_1, t_2. So $n_\alpha = n_\beta$ and f is well defined.

2. **1-1** Suppose $f([\alpha]) = f([\beta])$. We want to show $[\alpha] = [\beta]$.

So $n_\alpha = n_\beta$. We want to define a homotopy $F : (I \times I, dI) \rightarrow (s^1, (1, 0))$. So that

$$ f(s, 0) = \alpha(s) $$

$$ f(s, 1) = \beta(s) $$

$$ F(0, 0) = (1, 0) $$

9
Since $\alpha, \beta : (I, dI) \rightarrow (s^1, (1, 0))$, the unique path lifting lemma says there exists lifts $\tilde{\alpha}, \tilde{\beta} : (I, dI) \rightarrow \mathbb{R}$ with $\tilde{\alpha} = 0 = \tilde{\beta}(0)$.

Since $f(\alpha) = f([\beta])$, we know $\tilde{\alpha}(1) = \tilde{\beta}(1)$.

Define homotopy $\tilde{F} : I \times I \rightarrow \mathbb{R}$ by
\[
\tilde{F}(s, t) = (1 - t)\alpha(s) + t(p) \in \mathbb{R}
\]
\[
\tilde{F}(s, 0) = \alpha(s)
\]
\[
\tilde{F}(s, 1) = \beta(s)
\]
\[
\tilde{F}(0, t) = (1 - t)\alpha(1) - t\beta(1) = (-t)\alpha(1) + t\alpha(1) = \alpha(1)
\]
\[
\tilde{F}(0, t) = (1 - t)(0 + t(0) = 0
\]

So $\tilde{\alpha} \simeq \tilde{\beta}$ rel dI.

Now define F by $F = \pi \circ \tilde{F}$. Then $F : I \times I \rightarrow s^1$, and
\[
f(s, 0) = \pi \circ \tilde{F}(s, 0)
\]
\[
f(s, 0) = \pi \circ \tilde{\alpha}(s)
\]
\[
f(s, 0) = \alpha(s)
\]
\[
f(s, 1) = \pi \circ \tilde{F}(s, 1)
\]
\[
f(s, 1) = \pi \circ \tilde{\beta}(s)
\]
\[
f(s, 1) = \beta(s)
\]
\[
f(0, t) = \pi \circ \tilde{F}(0, t)
\]
\[
f(0, t) = \pi(0)
\]
\[
f(0, t) = (1, 0)
\]
\[
f(1, t) = \pi \circ \tilde{F}(1, t)
\]
\[
f(1, t) = \pi(\tilde{\alpha}(1))
\]
\[
f(1, t) = (1, 0)
\]

3. onto: Let $m \in \mathbb{Z}$. We want to find $[\alpha]$ such that $f([\alpha]) = m$.

Define $\alpha_m : (I, dI) \rightarrow (s^1, (1, 0))$ by
\[
\alpha_m(s) = (\cos(2\pi sm), \sin(2\pi sm))
\]

Then $\alpha(1) = m$. So $f([\alpha]) = n_\alpha = \alpha(1) = m$.

4. homomorphism: Let $[\alpha], [\beta] \in \pi_1(s^1, (1, 0))$. We want to show
\[f([\alpha] \cdot [\beta]) = f([\alpha]) + f([\beta]) \]

Then \(f([\alpha]) = n \) and \(f([\beta]) = m \). So \(\alpha \) is homotopic to the standard loop wrapping around the circle \(n \) times:

\[
\begin{align*}
\alpha & \simeq \alpha_n \text{ rel } \partial I \\
\beta & \simeq \alpha_m \text{ rel } \partial I
\end{align*}
\]

\[
\begin{align*}
 f([\alpha] \cdot [\beta]) & = f([\alpha_n] \cdot [\alpha_m]) \\
 & = f([\alpha \cdot \alpha_m]) \\
 & = f([\alpha(n + m)]) \\
 & = n + m \\
 & = f([\alpha_n]) + f([\alpha_m]) \\
 & = f([\alpha]) + f([\beta])
\end{align*}
\]

Strong deformation retraction

If \(A \subseteq X \), and \(r : X \to A \) is a retraction, then \(r \) is a *strong deformation retraction* if \(I_x \simeq r \text{ rel } A \).

Example

![Diagram](image)

There is an SDR from \(X \) to \(A \).

Word

A *word* in the symbols \(a, b \) is a finite sequence of elements chosen from \(\{a, a^{-1}, b, b^{-1}\} \).

Example

\(aaba^{-1}bbaab^{-1} \) is a word.