Graduate Business Administration 509

MANAGERIAL DECISION MAKING

Fall 2003
 
| HOME | SYLLABUS | CALENDAR | ASSIGNMENTS | ABOUT PROF. GIN |
 

E.  Linear Programming

  • Used to solve problems involving resource constraints => constrained optimization, minimization or maximization subject to constraints

Ex. - Minimize cost subject to producing a certain quantity, maximize profit subject to limited resources

Ex. - Advertising mix, portfolio mix, transportation problems, scheduling

1. Formulating the problem

a.  Decision variables

  • Variables under decision maker's control

.

.

.

b. Objective function

  • Function that is maximized or minimized

Ex. -

.

.

.

c. Contraints

  • Limits on decision making

Ex. -

.

.

.

.

.

.

d. Nonnegativity constraints

  • Most variables in business and economics cannot take on negative values

Ex. -

.

.

.

2. Solving the problem

a. Graphical solution

Ex. -

.

.

.

.

.

.

.

.

.

.

Ex. -

.

.

.

.

.

.

.

.

.

.

.

.

b. Excel

  • Use Tools | Solver

.

.

.

.

.

.

.

.

.

.

3. Special situations

a. No feasible solution

.

.

.

.

.

.

b. Multiple solutions

.

.

.

.

.

.

 

4. Sensitivity analysis

a.  Changes in objective function

.

.

.

.

.

.

.

.

b.  Changes in constraints

(1)  Shadow price (dual value)

  • Change in objective function due to a one unit relaxation of a particular constraint

.

.

.

.

.

.

.

.

(2)  Optimal decisions and shadow prices

.

.

.

.

.

.

.

.

.

5.  Applications

a.  Scheduling

  • Integer programming - decision variables have to take on integer values

.

.

.

.

.

.

.

.

.

.

.

.

b.  Transportation

.

.

.

.

.

.

.

.

.

.

.

.