Graduate (S) Business Administration 502

STATISTICS FOR MANAGERS

Spring 2017
 
| HOME | SYLLABUS | CALENDAR | ASSIGNMENTS | ABOUT PROF. GIN |
 

III.  Regression and Time Series Analysis

A. Correlation and Linear Regression

1. Correlation

Measure the strength of the association (relationship) between two variables

a. Characterization

.

.

.

.

.

.

.

.

.

.

b. Calculation

.

.

.

.

  • Excel

.

.

.

c. Hypothesis test

.

.

.

.

.

.

2. Linear regression

.

.

.

a. Simple linear regression model

.

.

.

.

.

.

.

.

.

b. Methodology

  • Least squares method - minimize sum of squared differences of the actual values from the estimated values

.

.

.

.

.

.

.

.

.

.

  • Excel and pH Stat

.

.

.

.

.

c. Interpretation

.

.

.

.

.

.

.

.

d. Measures of variation

(1) Sum of squares

.

.

.

.

.

.

.

.

.

.

(a) Total sum of squares (SST)

.

.

(b) Regression sum of squares (SSR)

.

.

(c) Error sum of squares (SSE)

.

.

(2) Coefficient of determination

  • Proportion of the variation in variable Y explained by the linear regression model involving variable X

.

.

.

.

.

.

.

(3) Standard error

  • Standard deviation of actual values of Y around the predicted values of Y

.

.

.

e. Prediction

.

.

.

.