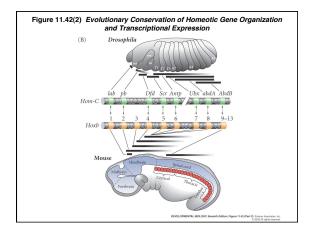
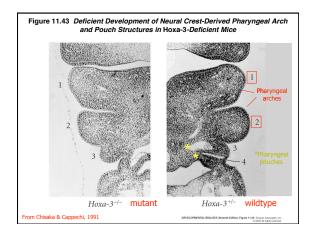


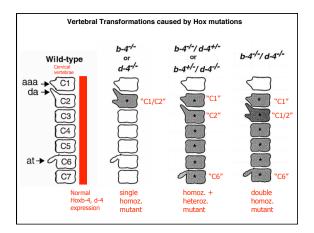
Figure 11.42(1) Evolutionary Conservation of Homeotic Gene Organization and Transcriptional Expression														
Drosophila Hom-C	lab	pb R	X	Dfd 0 K	Scr	Antp	Ubx	abdA	Aba	iB S				
	~	مر a2	منام . a3	~~ a4	منہ a5	a6			ـــــــــــــــــــــــــــــــــــــ	a10	all		a13	
Mouse Hoxa (al DX			a4	a5		a7		a9			<u> </u>		
Hoxb (b1	b2	b3	b4	b5	b6	b7	Ь8	b9		600			
Hoxc				c4	c5	c6	/ X \ /	c8	c9	c10	c11	c12	c13	
	d1		d3	d4				d8	d9	d10	d11	d12	d13	
Hoxd Paralogous subgroups	1	2	3	4	5	6	7 7	8	9	10	11	12	13	
0		0	rthol	ogs	e.g	., <i>lab</i>	& Ho	xa1,	Dfo	d & F	loxc4	1		



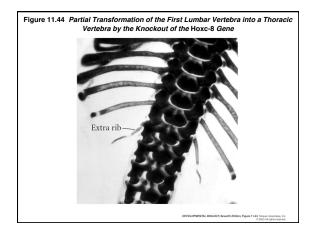
Mammalian HOM-C gene function

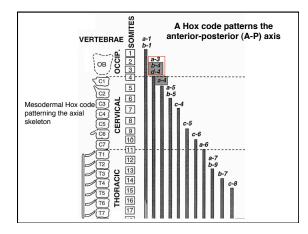

Mammalian HOM-C genes are found in clusters, and are expressed in A-P pattern related to location on chromosomes.

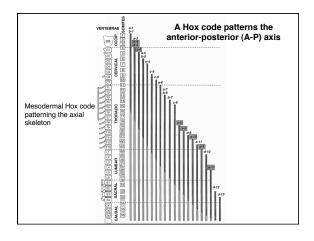
Do they function to specify regional identity, like in Drosophila?

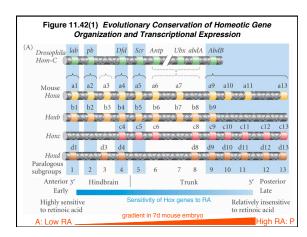

Mouse "gene knockouts" used to address this question. (2007 Nobel - work by Capecchi, Smithies & Evans)

Basic answer: Yes - mouse Hox mutants have homeotic transformations.


(Examples follow)






Hox genes activated in part by endogenous retinoic acid (RA)

Many HOM-C genes have RA receptor-binding enhancers

Early embryo has A-P gradient of RA (lo - anterior, hi - posterior)

Hensen's node also has RA (varying conc. over time)

Hox genes vary in sensitivity to RA (generally low sensitivity in posterior, high sensitivity in anterior)

Hox genes activated in part by endogenous retinoic acid (RA)

CONTRAINDICATIONS AND WARNINGS

Exogenous RA is a powerful teratogen in humans

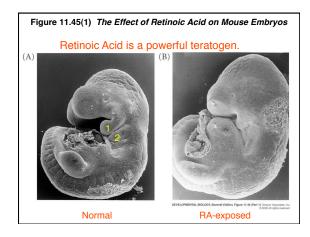
After exposure to RA, in 59 pregnancies: 12 spontaneous abortions (20%) 21 infants with major malformations (36%) Lammer et al., 1985

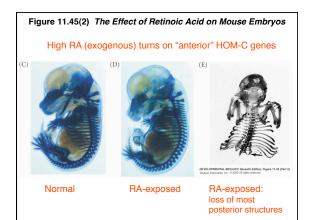
CAUSES BIRTH DEFEOS

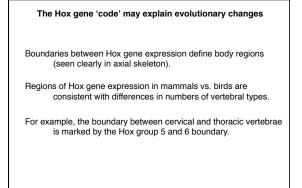
DO N GET PREC Accusane must not be used by female patients who are or may becompregnant. There is an actronoid high this discretive lith offects will resperisols of finese its activation high this discretive lith offects will resperisols of finese. Notestiality any fetus exposed during programs, can a affected. There are so accurate means of determining whether an expose fetus has been affected.

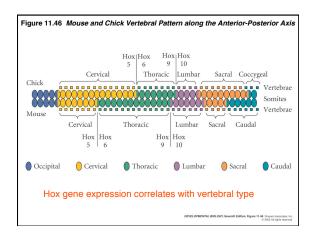
cardiovascular system, and thymus and parathyroid glands. Cases of Q scores less than 85 with or without other abnormalities have been reported. There is an increased risk of spontaneous abortion, and premature births have been reported. Documented external abnormalities include: skull abnormality; ear

auditory canaby; eye abnormalities (including microphthalmis); fac dymorphia; cfel palate. Documented internal abnormalities include: Cl abnormalities (including cerebral abnormalities, cerebellar malformatic hydrocephalus; microcephaly; canail a nere wide/chi); carafulorascul abnormalities; thymus gland abnormality; parahyroid bornone delicien: In some cases dead has occurred with certain of the abnormaliti

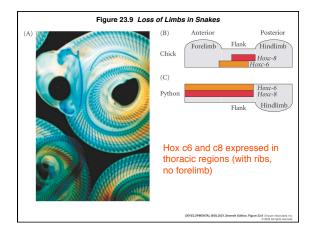

Hox genes activated in part by endogenous retinoic acid (RA)


Exogenous RA is a powerful teratogen experimentally, in mice


Exposure to additional RA typically causes structures to be transformed to more anterior


Transformations consistent with shifts in Hox gene expression - 'anterior' Hox genes expressed further posterior

Some exposure causes complete loss of many posterior structures



Drosophila	lab	pb		Dfd	Scr	Antp	Ubx	abdA	Aba	lB			
HoM-C		*											
Generalized													
insect HoM-C Hypothetical	+	t		+	+	Ł	4	+	ŧ				
common		367		o k	20	NUX N		XX0	0 1				
ancestor	¥	f	7	¥	¥	Ŧ	*	+	1	•			
Amphioxus Hox cluster		2	3	4 (7) (8	5		7 67]	8	9	10			
Mouse	al	a2	a3	a4	a5	a6	a7	//	a9	a10	all		al
Hoxa	b1	b2	b3	b4	b5	b6	b7	b8	b9			0.00	
Mouse Hoxh												000	30
Mouse				c4	c5	c6		c8	c9	c10	c11	c12	c1
Hoxe		367	\mathcal{X}		27 L			9° 9					0

