Math 320 Linear Algebra Assignment # 12

1. Consider

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 4 \\ 0 & a & -1 \end{bmatrix}$$

Given that $det(A) = \frac{2}{3}$, find A (i.e. find a the only missing part of A).

2. An $n \times n$ matrix, A, is said to be orthogonal if $A^T A = I_n$. Suppose that A is orthogonal, show that det(A) is either 1 or -1.

3. Let:

$$A = \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}.$$

Suppose $B = \frac{1}{3}A$.

- (a) Show that B is orthogonal.
- (b) Use this to find the possible values for det(A). (You don't need to find which one it is but you can for practice if you want).
- 4. Let $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 1 \\ -2 & -2 \end{bmatrix}$. Find the following:
 - (a) det(A)
 - (b) det(B)
 - (c) AB
 - (d) det(AB)
 - (e) Show det(A) det(B) = det(AB).
- 5. Let:

$$A = \begin{bmatrix} -7 & 5 & 0\\ -10 & 8 & 0\\ -5 & 5 & -2 \end{bmatrix}.$$

(a) Show that $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ is an eigenvector for A and find its corresponding eigenvalue.

(b) Show that $\lambda = -2$ is an eigenvalue and find two linearly independent eigenvectors associated with λ .