Math 320 Linear Algebra Assignment # 11

1. Let $T: P_2 \to \mathbb{R}^{2 \times 2}$ be defined by:

$$T(ax^2 + bx + c) = \begin{bmatrix} a+b & a\\ b & c \end{bmatrix}$$

You can assume without proof that T is linear. (Hint: Only the first problem should require much in the way of work, the rest can be solved from theorems in the class.)

- (a) Find a basis for $\ker(T)$.
- (b) Find $\dim(\ker(T))$.
- (c) Find $\dim(\operatorname{Rg}(T))$
- (d) Find a basis for Rg(T)
- (e) Is T 1-1?
- (f) Is T onto?
- 2. Let V and W be vector spaces with $\dim(V) = n$ and $\dim(W) = m$. Also $T : V \to W$ is a linear transformation. Determine which of the following statements are **always** true explain your answer.
 - (a) If m < n then T is not 1-1.
 - (b) If m > n then T is not 1-1.
 - (c) If m < n then T is not onto.
 - (d) If m > n then T is not onto.
- 3. Suppose that $\lambda \in \mathbb{R}$ is an eigenvalue for $A \in \mathbb{R}^{n \times n}$. (That is there exists $\vec{v_0} \neq 0$ called an eigenvector such that $A\vec{v_0} = \lambda \vec{v_0}$). Let $E_{\lambda} = \{\vec{v} \in \mathbb{R}^n : A\vec{v} = \lambda v\}$. Show that E_{λ} is a subspace of \mathbb{R}^n .