Math 361: Real Analysis 2 Assignment # 1

Note in this homework set I might say give **a** definition of a concept instead of "the". The reason for this is that concepts can often be defined in several equivalent ways. So your Real Analysis I classes may have given different definitions. As we go on and the definitions are from this class I will say "the" definition since I will want you to give the one we gave in class.

- 1. Give a definition of a set $U \subseteq \mathbb{R}$ being a **closed** set.
- 2. Let X, Y be sets with $A \subseteq X$, and $f: X \to Y$ a function. Define the set f(A).
- 3. Let X, Y be sets with $A, B \subseteq X$, and $f: X \to Y$ a function. Show that if $A \subseteq B$ then $f(A) \subseteq f(B)$.
- 4. Let $X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R}$. Give a definition of f being continuous.
- 5. We say that $I \subseteq \mathbb{R}$ is an interval if for all $a, b \in I$ with $a < b, [a, b] \subseteq I$. Suppose that $X \subseteq \mathbb{R}$, $f: X \to \mathbb{R}$ is continuous, and $I \subseteq X$ is an interval. Show f(I) is an interval. (Hint: Use one of the big Theorems in Real I. Unless I say prove from the definition or you are doing a piece of the proof of the theorem you can always use the theorems from class. That is why we prove them!)