Math 361: Real Analysis 2 Assignment # 2

- 1. State the Bolzano-Weierstrass Theorem
- 2. Use the Bolzano-Weierstrass Theorem to show that if $f: K \to \mathbb{R}$ is a continuous function where $K \subseteq \mathbb{R}$ is compact then f(K) is compact. (Hint: Remember that $f: D \to \mathbb{R}$ is continuous at $c \in D$ if and only if for every sequence $\{c_n\} \subseteq D$ that converges to $c, \{f(c_n)\}$ converges to f(c).
- 3. Show if $a, b \in \mathbb{R}$ with a < b and $f : [a, b] :\to \mathbb{R}$ continuous then there exists $m, M \in \mathbb{R}$ with $m \leq M$ (note *m* could equal *M* so the "interval" would contain one element) such that f([a, b]) = [m, M].
- 4. Consider the interval [0, 6] and the function $f(x) = x^3$. For each of the following tagged partitions find:
 - i $||\dot{\mathcal{P}}||$ ii $S(f, \dot{\mathcal{P}})$ (a) $\dot{\mathcal{P}} = ((0, 2, 6)), (0, 5))$ (b) $\dot{\mathcal{P}} = ((0, 1, 2, 5, 6)), (0.5, 1.5, 3.5, 5.5))$ (c) $\dot{\mathcal{P}} = ((0, 1, 2, 3, 6)), (1, 1, 3, 3))$