
Math 361: Real Analysis 2
Assignment # 25

Remember you may use anything we proved in class or previous homework assignments, previous
problems in the same homework assignment and even previous parts from the same question even if
you did not complete them. The one exception is that if I am asking you to work on part of a proof
of a theorem from class you may not use that theorem in your proof (but you may use any part we
proved before the part you are proving).

You may also use the major parts of Real I. If you have a question about that please ask.
These question are to prepare you for the final.

1. Give an example of each or explain why no such example exists.

1. A non-continuous, non-monotone function on [0, 1] that is in R[0, 1].

2. A function f ∈ R[−1, 1] that has no anti-derivative.

3. Bounded functions f and g defined on [0, 1] with f ∈ R[0, 1] and g ̸∈ R[0, 1] such that
f + g ̸∈ R[0, 1].

4. A function f ∈ R[0, 1] such that f(x) ≥ 0 for all x ∈ [0, 1] and

∫ 1

0
f = 0 but f(c) = 1 for some

c ∈ [0, 1].

5. A monotone function f ∈ R[0, 1] such that f(x) ≥ 0 for all x ∈ [0, 1] and

∫ 1

0
f = 0 but

f(c) = 1 for some c ∈ (0, 1).

6. A function f ∈ c[0, 1] such that f(x) ≥ 0 for all x ∈ [0, 1] and

∫ 1

0
f = 0 but f(c) = 1 for some

c ∈ [0, 1].

7. a function f ∈ R[0, 1] that is neither monotone nor continuous

8. a function f ∈ R[0, 1] such that |f | ̸∈ R[0, 1]

9. a function f ̸∈ R[0, 1] such that |f | ∈ R[0, 1]

10. a sequence of function fn that converges to a function f pointwise on [0, 1] but not uniformly
on [0, 1]

11. a sequence of function fn all of which are not continuous, that converges uniformly on [0, 1]
to a function f that is continuous

12. a power series with radius of convergence R = 4

13. a power series that converges at x = 2 and x = 4 but not at x = 0

14. a Hilbert space

2. What is the derivative of F (x) =

∫ x2

x
ln(t) dt on [1, e]?

3. Suppose f ∈ R[a, b] and

∫ b

a
f = −1. Also suppose there exists d ∈ [a, b] such that

∫ d
a f = 3. Show

there exists c ∈ [d, b] such that
∫ c
a f = 0.

4. Define f : [0, 1] → R by:

f(x) =

{
1 if x = 1

n for n ∈ N
0 otherwise



Show f ∈ R[0, 1] and compute the value of

∫ 1

0
f .

5. 1. Suppose {ak} and {bk} are sequences such that |ak| = |bk| eventually, show that the power

series
∞∑
k=0

akx
k and

∞∑
k=0

bkx
k have the same radius of convergence.

2. Use the previous part (and series you already know) to show that

∞∑
k=0

x2k

(2k)!
and

∞∑
k=0

x2k+1

(2k + 1)!

both converge for all x.

3. Define sinh(x) =
∞∑
k=0

x2k+1

(2k + 1)!
and cosh(x) =

∞∑
k=0

x2k

(2k)!
. Show fn(x) =

n∑
k=0

x2k+1

(2k + 1)!
converges

uniformly to sinh(x) on [−N,N ] for all N ∈ N and gn(x) =
n∑

k=0

x2k

(2k)!
converges uniformly to

cosh(x) on [−N,N ] for all N ∈ N.

4. Prove
d

dx
sinh(x) = cosh(x) and

d

dx
cosh(x) = sinh(x).

5. Let H(x) = sinh(x) + cosh(x) show H ′(x) = H(x) and H(0) = 1. Thus it follows that
H(x) = exp(x).

6. Suppose for all n, fn is defined on [0, 1] by:

fn(x) =

{
ne−nx if x > 0
0 if x = 0

1. Show fn → f pointwise on [0, 1] where f(x) = 0 for all x ∈ [0, 1].

2. Compute

∫ 1

0
fn for all n.

3. Does fn → f uniformly on [0, 1]?.

7. Suppose V is a vector space and ||·|| is a norm on V . Let a > 0 and for all v ∈ V let ||v||a = a ||v||.

1. Show ||·||a is a norm on V .

2. Show that if d is the metric derived from ||·|| then show da defined by da(x, y) = a[d(x, y)] for
all x, y ∈ V is the metric derived from ||·||a.

3. Show that {xn} ⊆ V and x ∈ V then xn → x using the metric d if and only if xn → x using
the metric da.

8. Find the radius for convergence of
∞∑
n=1

3n(x− 2)n.

9. For all n let fn = sin
(x
n

)
defined on [0, 1].

1. Show fn → 0 pointwise on [0, 1].

2. Compute f ′
n.

3. Show that f ′
n → 0 uniformly on [0, 1].

4. Does fn → 0 uniformly on [0, 1]?
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5. Find

∫ 1

0
fn.

6. Use 5 to show that

[
n− n cos

(
1

n

)]
→ 0.

10. Consider the metric space (R, d) where:

d(x, y) =

{
0 if x = y
1 otherwise

.

Does the sequence 1
n converge?

11. Let T : (L2([1, 3]), ||·||2) → R defined by T (f) = 2

∫ 3

1
f .

1. Show T ∈ L∗
2([1, 3].

2. Find (and prove) ||T ||.

12. Let:

A =

[
2 3
0 2

]
.

Find:

1. ||A||1,1
2. ||A||2,2
3. ||A||∞,∞

13. For each a ∈ l∞(R) define Fa : l1(R) → R by Fa(b) =
∞∑
i=0

aibi.

1. Show for each a ∈ l∞(R), Fa ∈ l∗1(R).
2. Show F : X → X∗ defined by F (x) = Fx is an isometric embedding of l∞(R) into l∗1(R). (I.e

show that it is a norm preserving injection).

3. Extra credit: Show F is onto so l∞(R) ∼= l∗1(R).

14. Let X be a real inner product space with < ·, · >. For each x ∈ X define Fx : X → R by
Fx(y) =< x, y >.

1. Show for each x ∈ X, Fx ∈ X∗.

2. Show F : X → X∗ defined by F (x) = Fx is an isometric embedding of X into X∗. (I.e show
that it is a norm preserving injection).

3. Show that if X is not Hilbert then F is not onto.

4. Show that if X = Rn with the usual dot product, then F is onto so X ∼= X∗.

5. Extra credit: Show if X = l2(R) then F is onto so X ∼= X∗.
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