Math 361: Real Analysis 2 Assignment # 3

- 1. Suppose $f \in \mathcal{R}[a, b]$ and $\dot{\mathcal{P}}_n$ be any sequence of pointed partitions such that $\lim_{n \to \infty} \left| \left| \dot{\mathcal{P}}_n \right| \right| = 0$. Show that $\lim_{n \to \infty} S(f, \dot{\mathcal{P}}_n) = \int_a^b f$.
- 2. Let $f(x) = x^2$. Assume that $f \in \mathcal{R}[0,1]$ (we will soon show that all continuous functions are Riemann integrable). Use the fact that, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ to show that $\int_0^1 x^2 = \frac{1}{3}$.
- 3. Suppose $f \in b([a, b])$ and the there exists two sequences of pointed partitions such that $\lim_{n \to \infty} \left\| \dot{\mathcal{P}}_n \right\| = 0$ and $\lim_{n \to \infty} \left\| \dot{\mathcal{Q}}_n \right\| = 0$, but $\lim_{n \to \infty} S(f, \dot{\mathcal{P}}_n) \neq \lim_{n \to \infty} S(f, \dot{\mathcal{Q}}_n)$. Show $f \notin \mathcal{R}[a, b]$.
- 4. Consider the function:

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Prove $f \notin \mathcal{R}[0,1]$.