Problems from Assignment 12

- 1. (a) Suppose X and Y are independent random variables and suppose the $f_Y(y)$ is an even function. Show that $f_{Y/X}(w)$ is an even function.
 - (b) Show if $T \sim t_n$ then f_T is an even function. You may not use the density of T since we computed that using the fact that f_T is symmetric around the origin which you are now proving.
- 2. Let $T \sim t_5$.
 - (a) Write $f_T(t)$ without any Γ in it.
 - (b) Use Simpson's rule with n = 6 intervals to estimate $P(0 \le T \le 1.5)$.
 - (c) Using the above estimation, estimate $P(T \ge 1.5)$.
 - (d) Is this consistent with Table A.2 in the book?
- 3. Suppose $X, Y \stackrel{\text{iid}}{\sim} N(0, 1)$ and let $W = \frac{Y^2}{X^2}$.
 - (a) Find $f_W(w)$ (it should not include any Γ functions).
 - (b) Argue what $P(W \le 1) = \frac{1}{2}$ without doing integration.
 - (c) By doing a clever substitution, integrate $f_W(w)$ to show that $P(W \le 1) = \frac{1}{2}$.