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Dielectric Materials and Polarization  (Chapter 4- 8 )

In order to understand the relationship between electric field  and stored 
energy (and power flux for travelling waves, ), we need to take a 
microscopic look at a dielectric material to justify the relation .  
After we establish this relationship, we must consider energy storage in a 
dielectric.

All matter is composed of atoms in some physical arrangement in space 
with other atoms.  An atom is composed of a positively charged nucleus, 
surrounded by one or more electrons.  The composite bulk material may be 
arranged in such a way that the electrons are free, or nearly free, to move 
about within the material.  Metals and doped semiconductors are examples.  
Many more solids are insulators.  In an insulator, all of the electrons are 
bound in atomic ore molecular orbitals and are not free to move about the 
material.  In the case of a metal, an applied electric field will induce a current 
composed of the freely mobile electrons.  In an insulator, or dielectric, some-
thing else must happen because there are no free electrons.

What can, and does, happen is that the electric field pulls the electron and 
pushes the positively charged nucleus.  The result is a distorted object with 
a net atomic dipole moment, or polarization.  This is electronic polarization.  
There is also orientational polarization (water) and ionic polarization (salt 
crystals).

This microscopic polarization, , of an individual atom, molecule, unit cell, 
etc. must be summed up to form the macroscopic polarization .

Formally:

           ,

     where  = number of dipoles in a volume .

 is the average dipole moment per atom or molecule.

 is the average vector separation distance between positive and negative 
charges.

, the density of positive charge created in the polarized region.

Note that, in the absence of an applied field, there is no polarization.
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Polarization Current

Supppose we apply a time varying field to a polarizable medium (dielectric), 
where .  The result of this field is graphically depicted below:

The flow of charge across the area  is equivalent to an induced oscil-
lating current, called the polarization current.  We need to quantify this polar-
ization current.  Let us assume a linear relationship, where the field 

;  is called the electric susceptibility.  It merely quantifies how 
easy it is for the field to produce a polarization in the particular material.   We 
have .
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The polarization is defined by the dipole moment per unit volume, so the 
total dipole moment in the volume  is:

This is equivalent to two charges, each equal to , 
separated by distance .  The associated current is:

Recalling that , we can identify:

The induced polarization current is equal to the time rate of change of the 
polarization.

Ampere’s Law is: 

But now we need to add , the polarization current.

Then Ampere’s Law is (in a dielectric):
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Polarization Charge Density

 polarization charge density.  More on this later.

Gauss’ Law for Electric Fields in Materials

We have this new charge density that we must include:

Now we make the linearity assumption:  

Then:

          

But ,

              so that:

              

Note that  is the most fundamental form of this equation 
which holds, even when  is not linearly proportional to .  If  has terms 
proportional to 2nd, 3rd, etc. powers of , we have nonlinear  material not  
covered in this course.  But  lots of important devices are based on it; for 
example, nonlinear optics, modulation of lasers (which are important in opti-
cal [fiber optics] communication).
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Dielectric Materials
(alternate derivation of )

     Consider a region of space, filled with some linear and isotropic material.  
If, in that region of space, there exists a constant  field , then 
there is polarization , also uniform.  Since the polarization is 
uniform, the number of atomic dipoles per unit volume is constant and, as 
can be seen in the sketch, the effects of all the charges cancel out (except 
at boundary, which we examine separately).

     Now, consider that the  field is not constant, but increases linearly with 
x; that is, .  Then the polarization also increases linearly with x.  
That is to say, the number of aligned dipoles per unit volume increases lin-
early with x.   Something like this is shown on the sketch.
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     Obviously, now the plus and minus charges don’t cancel out.  There is 
always more negative charge to the right, so the effect is a net negative 
charge in any given volume.  If , where  is the atomic dipole 
and  is the number per unit volume (which is now not constant, but a 
function of x), then:

Note that this charge density was not placed in as an excess charge, but 
comes from the non-uniform aligned dipoles.  These charges are part of the 
material.  If the field is removed, the dipoles randomize in orientation or dis-
appear.  So we distinguish these charges as a “bound” charge density.

     In a more general form, we can write bound charge density due to 
dipoles as:
              

Any discontinuity at boundaries is also taken care of by the divergence of 
the polarization.

***

If  is uniform, but discontinuous at a boundary, , where  is 
outward normal and 

     Thus, .  (This is a special case of above.)  This is clearly seen 
on the first sketch, which shows that, although all the charges cancel out for 
uniform , at the boundary , there is an effective negative surface 
charge density; and, at , there is an effective positive surface charge 
density.  This agrees with .  This is the physical meaning of 

.***

Note that  is an expression of vector algebra that already 
accounts for .
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This now allows us to simplify greatly how we deal with the dipoles in mate-
rials:
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