Review of Phasor Notation

e/’ = cosf + jsiné



Complex Vectorsand Time Harmonic Representation
(Chapter 1.5, 1.6 Text)

Complex Numbers Imaginary
1) Rectangular/Cartesian Representation
c=a+t+jb b
ii) Polar Representation e
. A
c =|cle’, where |c|=+a®+b?

¢ = tan™(%/)
c=a+jb=|c[e” =|c|cos¢ + j|c|sing

1

real part imaginary part  magnitude phase
1) Addition/Subtraction
Cartesian representation most convenient
c=a+jb
d=e+jh
Then: c+d=(a+e)+j(b+h)
c-d=(a-¢e)+j(b—h)
Iv) Multiplication/Division
Notethat (j)° = -1
oc* = a?+b? =|c”
where ¢* = a— b, the complex conjugate.

v) Cartesian Representation
cd = (a+ jb)(e+ jh) = (ae—bh) + j(ah+ be)
c_a+jb_a+jbe-jh _(ae+bh)+j(be-ah)

d e+jh e+jhe—jh e? + h?

» Real

vi) Polar Representation (more convenient for multiplication and division)

Cc= |C|ej¢1 d= |d|ei¢z cd = |C||d|ej(¢l+¢2) a ‘d‘

C:M

j(¢1‘¢2)



vii) Complex Representation of Time-harmonic Scalars
Consider:
v(t) = Acos(w,t+¢)

amplitude  angular/radian phase
frequency magnitude |&l = [aa*]"

amplitude Re[4,

and w = 2rrf
ad'/
radian
frequency frequency

Sinusoidally Time Varying Fields (1.6 Text)

1) f = Acos(wt+¢) = 110005(1207rt+%)

(Note: % radians = 450)
iIsascaar field that depends on time only, but not on position (location). Thisisnot

awave.
For example, thisisthe voltage in any electric household plug. Note that the

phase ¢ simply aters the starting point.

t(in units of E)
0)

voltage

The circular frequency ¢ = 277f, where f isthe frequency in Hz. Here, f =60
hertz (Hz) and ¢ =12077= 377rad/ sec



2) Waves -- travelling waves (main subject of this course)

vV =\, cosw (t = E)

Y
=V, cos(wt —kz) or V,cos(wt - B2z)
z

:\/00052”(“—1) Repeats z - z+ A

k (or B) Egzﬂzz_zr propagation constant
v.ovo 4 v=Af
A = wavelength _2m_1_
Vv = phase velocity T= w f period
€ 57 >

=)
B

. . T
z(ln units of —)
B

witht =0

Thisisascalar traveling wave.



3) Vector Travelling Waves -- el ectromagnetic waves
Examples:

()E=8& Eocosw(t—%) = & E. cos(wt—Ky)
(X-oriented field, +Y propagation)

(i)E = léx+—“ 3 éy) E, cos(wt—kz)
22 Y
~ 1, 3.
b= =6+~
E 2 X 2 ey
X

(iii)E = & E,cos(wt—kz+ 45")
(X-oriented, + Z propagation)
(iviH=-¢ Hosin(gx)cos(wt— Bz)+ éZchos(gx)sin(a)t— Bz)
(waveguide example)
Example: (X-directed planewave, — Y propagation)
E(y,t) = &100cos(wt+ fy+45")

=8 100 cos[a)(t+z)+ 45(}
v

w _
L=p

Thisisavector travelling wave field.

y(in units of lj
B

Propagatesinthe —Y
direction




At t =0: cos(By+45")

At t=-"— cos(By+90°) = —sin By
4w

Note that this vector field:

(i) aways pointsin the & direction (reverses, of course).

(i) propagates in the 'y direction.

(iii)spatially depends only on the y coordinate (which is the direction of propaga-
tion).

Z V4
: A
uniform 'f‘ y :
in X-y : E ----- 7 ; 7Y
plane PrIaues <P > X e > X

The magnitude E, that is, the density of these lines (or the length of the arrows), var-
Ies sinusoidally, both in time and in the variable y direction of propagation.
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Method of Phasors (“Set your phasors on ‘Stun,” Mr. Spock!”)

Background material needed:
Review of complex algebra
Eulers Law: € = cosx+ jsSIinXx Re [elx] = COSX, | m[elx] = sinx

Suppose we have a field that varies sinusoidally in time and/or space. For a scalar
field, voltage, for example, we have:

v =V, cosat (a sinusoidal voltage)
v =\, cos(wt—kz) (a voltage wave on a transmission line)

These areeal measurable quantities.

We represent them by writing as follows:

v=Re{Vv,e”} Now we do either of (a) or (b):

(a) Drop “Re ”. The remaininv =V,e!*" s called the complex voltage (includ-
ing time dependence) or voltage phasor (including time dependence).

(b) v=Re{v,e”} Drop Re "and et ”

The resultanv =V, is called the (complex) phasor. Note that, for this example,
the complex phasor happens to be real. (PHASORS are written in bold type-
face.)

Ifv =\, cos(wt+ ¢)
= Re [Voej(“"+"’)] = Re[V,e”'e”]
= Re[V,e’e"]

V.e¥ is a complex quantity in polar representation.
| m el?=cos¢ +jsing
v, el¢|=Jcos?¢ +sin?¢ =1

i(ﬂ > Re




Graphical Picture of Complex Fields

Consider avector field with harmonic time dependence:

E =6 E,cos(wt+30") = Re {éx Eoej“’teje}

This is another notation for & E,~30e ®.

Complex form: E =&, E0430°eiwt/

)

phasor amplitude (also a vector)

If we picture the entire time dependent complex field in the complex plane, we see
that it rotates at angular velocity w.

| ma
t:% é\&) (=0
E| N
30 > Re

t=2 —
w

Note that the direction of the complex field on this complex plane has no relation-
ship toitsdirection in rea physical space, which hereis constant &, .

The entire complex field, includine’*  time dependence, is often called “Rotating
Phasor.” The real field is th@ ojection on theRe axis.

Amplitude, Time Average, M ean Square and Root Mean Square
(a) Amplitude is the maximum value of the time oscillation (real number).

(i) E = €100cos(wt— Bz+¢) real
E = €,100e'’ phasor

Amplitude is 100

Amplitude = magnitude of phasor = \E\ = [E E*]



(ii) v =100e #-100e"#* 2 wavesin opposite direction, phasor form

[ ek
Use INX = -

2]
_200] =5|ef—e 7] = — 200j sin Bz O Thisisthe phasor
2] (smplified).

Amplitude of the total waveis
|v|=]-200jsinBz|=/(-200sinBz)(200jsinfz) = 200sin Bz

function of ZI

Now, real form v(zt) = 200sinfzsinwt because:
v(z,t) = Re[-200sinBze’"]
= Re[-200j sinfBzcosat + 200sin Bzsinat]
= 200sinBzsinat arrows show

/_\ time oscillations

(b) Time average of aharmonic quantity is always zero.

v(t) =V, cos(wt +¢) v=\,e"  phasor
1 (7 _ _ l
(v(t)) = ?_[0 V, cos(wt+¢) = 0 T = N

(c) Mean squareisnot zero.

(v?(1)) —_[ V.? cos?(wt + ¢)dt

:—J { + —CO0S 2wt+2¢)}

V2
"2

Using phasors for V2 cannot give correct answers since phasors are not valid for a
nonlinear situation. Try it and see:

vZ =V2cos?at, but v? =\ et



Does not give cos? when real part istaken for the time average. But the following
“trick” works:
For the time average:Nfte: It givesonly the time average.)
1 1 V2

2 _ - * 4 i i
(v’(1)) = Re 5W*=Re;\VerVer==

(This works for vector phasors, too!)

If. E=6E,+§E,
- 2 1, - =
<‘E(I,Z) >= RGE(E'E ) Vector “dot” product
E=Ee“é T

phasor
TheMean Sguare is related to Average Power (averaged over whole cycles).

The same “trick” works for any other second order quantity.

: . Note: The"Re" is necessary here,
<V(t)' (t)> = Re E[V' ] since V andi may have a phase
difference.

(d) Root Mean Square (RMS)

JVA(D) or,/<‘E(t)‘2>

For harmonic fields, RMS valu= 1 amplitude.

V2

Example:

If: E
H =

& 100cos(wt- f2) cylindrical coordinates (r, ¢,2)
é

,0.3cos(wt— z-60°)
Calculate< E x H > , usingoth real fields and phasors.
Solution:

(a) Using real fields
E x H = & 30 cos(wt— z)cos(wt— fz— 60°)



Use product of COSA*cosB = %{cos(A— B)+ cos(A+ B)}
E x H = &,15[cos60°+ cos(2mt— 27— 60°)]

xH)=8[7.5+0]

~_—

(b) Using phasors
E = 100 Phasors corresponding to

% thereal E(t,2),H(t,2)

e 3

1Re ExH* =&15c0s60° = &,7.5

Phasor examples with waves

(1) Space dependence is due to propagation only

(a) Uniform plane EM wave -- vector
(b) Transmission line wave -- scalar voltage or current

(1a) Propagation isonly in one direction
Real field: E(zt) = & E, cos{w(t—§)+ qb} = é E_ cos(wt— Bz+¢)
Propagationisin +2 direction [ = %) Vv :%)

ei (0t-Bz+¢)

j(0t-B2z)

Complex field: E(zt) = & E,
e Ee'e

Phasor field: (two options possible)

(i) Drop entire e'*"#? dependence
Phasor: E =& E e (agebraic) =& E, £¢ (schematic)

For example, E = &100230 =& 100e'*”
E(t,2) = Re [éxloo ej(“’tﬁ”%)]
=&,100 cos(wt— Bz+ 30°)



Another example:
(j = cos¢ +jsing, when ¢ = 90°)

M

= 8,j 50 = &,50£90°
E(t,z) = Re [éySOje”“’t ’“] [50e (0t- ﬁz+%)]
= -50€, sin(wt-Bz) = 50e cos(wt— Bz+90°)

Another example: E = (& - j§&,)100
E(t,z) = Re [100(e —j8 e BZ)]
=100[ &, cos(ot- Bz)+ &, sin(wt- f7)]

(Jef*) = Re[1E* E*|=%(100)°(6,~ &) (&,+ 8
= %(100)*(1+1) = (100)?

(ii) Droponly e“* dependence
E(zt) = & E, cos(wt— Bz+ ¢)
E(zt) = é Re [Eoe“"”’ﬁ”"’)]
E = é Eoe—JﬁZ+J¢
We can seethat — 3z and ¢ both are phases. The phase changes with propaga-
tion. The phase rotates in the complex plane.
For waves travelling in one direction only, we don’t usually use this. Instead,
we drop off ofe’“"#? - usually (but not always).
Example:
(1b) Transmission line wave
Waves travelling inwo opposite directions
v(t,z) = V, cos(wt— Bz)+ TV, cos(wt + Bz+ ¢)
V(t,2) = Re[V,e Fzel*' + TV, e g*ifz giot]
We only have one option: Drce’*  dependence, sfBze dependence is not the
same on the two parts.

Phasor: v = \,[e 2+ T e¥ g*1#7]

=\, e # [1+ Feziﬁz] I = I'e" = complex reflection
coefficient



| mEart [1+ Fezjﬂz]

I‘\' =Te?’ called “Crank
;1 ;A; : > Re part Diagram”

diagram of [ ] quantity in complex plane

(2) Spacedependence may exist perpendicular tothedirection of propagation;
for example, laser beams, guided electromagnetic waves, optical wavesin
fibers. Not the subject of ECE 130A, but used in ECE 130B.

Example of (2) with (i) propagationin onedirection: E.M. wavein rectangular
waveguide

E()(, Y, z,t) - éy Eosin(zx)ej(wt—ﬂz) X< a
a

j(ot-B2) ,

EzéyEosin(%x) X<a

Drop e

Another example:
H=-6 Hosin(zx)—jézchos(Ex) X<a
a a

Phasor:
Significanceof j : X and 2 components are 90° out of phase

Real fieldis:

H=-¢ Hosin(%x)cos(a)t ~B2)+& chos(%x)sin(a)t -B2)

Similar fields exist in any guided wave, such as wavesin optical fibers!

(3) Modulated (time dependent amplitude) waves

All the examples brought in (1) and (2) were waves of a single sinusoidal fre-
guency and amplitude constant in time.

In communications, we impress infor mation onto a single frequency wave by
modulating its amplitude in time. The original sinusoid isthe carrier and the mod-
ulation of the amplitude contains the information.



Example: Pulse code modulation
unmodulated carrier

T > t EzéXEocosa)(t—s)

z=0
asingle pulseimpressed onto acarrier

Atz=0: E=& E,e /2% cosm,t

Phasor form: E = & E e /29 gioot

X 0

71 R

amplitude envelope carrier
1 This envelope function
isaGaussian.
> t

E’=elE* =E?e"~

The modulated wave is no longer asingle frequency. By Fourier analysis, it is easy
to show that aband of frequencies about cw, are present.

Frequency Domain Representation

unmodul ated wave a single pulse modulated wave
E(w) .E(0)

> : > ()

o

Wo
1 = i +o0 .
E(t,2=0)= o[ E(@)edo E(w)=[ E(t)e ™ dt



2
0'70(0)_0)0)2

For the single pulse modulated field: E(w) = /27 6 E,e 2
[E(w)|° =21 62E? g oslo-en)’

Such apulseisin fact avery good approximation to an actual one travelling in an
optical fiber part of an optical communication system.

Schematic of such a system:
Many km of optical fiber ~ SdUarelaw detector

Photo- |

Electronic Diode P
Modulator [ |Laser [~ CO000) | Detector Amplifier

A v
E Processor

Responds to envelope of wave
only since light frequency istoo fast
.. iIsdemodulator




