Electrostatic Problems with Dielectrics

$$
C = \frac{Q}{V} = \frac{A}{d_2 \left(\frac{A}{\varepsilon_2} + \frac{d_1}{\varepsilon_1}\right)}
$$

Examples of Electrostatic Problems with Dielectrics

Problem: Find \vec{D} (electric flux density), \vec{E} (electric field intensity), and (polarization) for a metallic sphere (radius *a*, charge *Q*), coated by a dielectric (radius *b*), and the charge densities at the interfaces. \vec{D} (electric flux density), \vec{E} (electric field intensity), and \vec{P}

Solution: Use Gauss' Law $\oint \vec{D} \cdot d\vec{s} = \int \rho_{\psi} dv$ *s v* $\oint_{s} \vec{D} \cdot d\vec{s} = \int_{v} \rho$

In $region \ 0, \ r < a, \vec{D} = 0, \vec{E} = 0$

In *region* 1, $a < r < b$:

$$
\vec{D}_1 = \hat{e}_r \frac{Q}{4\pi r^2}
$$

In *region* 2, $r > b$:

$$
\vec{D}_2 = \hat{e}_r \frac{Q}{4\pi r^2}
$$

The electric fields are:

In *region* 1, $a < r < b$:

$$
\vec{E}_1 = \hat{e}_r \frac{Q}{4\pi \varepsilon_1 r^2}
$$

In *region* 2, *r > b*:

$$
\vec{E}_2 = \hat{e}_r \frac{Q}{4\pi \varepsilon_o r^2}
$$

Note that the electric field varies with the medium, and the flux density does not.

The polarization is:

$$
\vec{P} = \varepsilon_{o} \chi_{e} \vec{E} \text{ and } \varepsilon_{r} = 1 + \chi_{e}
$$

In *region* 1:

$$
\vec{P}_1 = \varepsilon_o \chi_e \vec{E}_1 = \varepsilon_o (\varepsilon_r - 1) \vec{E}_1 = \hat{e}_r \frac{\varepsilon_o (\varepsilon_r - 1) Q}{4 \pi \varepsilon_1 r^2}
$$

In *region* 2: \rightarrow $P_2 = 0$

Now the surface charge on $0-1$ boundary. The boundary condition is:

$$
\vec{n} \cdot (\vec{P}_1 - \vec{P}_o) = -\rho_{ps},
$$

or $\hat{e}_r \cdot \left[\hat{e}_r \frac{\varepsilon_o (\varepsilon_r - 1) Q}{4\pi \varepsilon_1 a^2} - 1 \right] = -\rho_{ps}$

Then:

$$
\left. \rho_{ps} \right|_{r=a} = -\frac{\varepsilon_{o} (\varepsilon_{r} - 1) Q}{4 \pi \varepsilon_{1} a^{2}}
$$

Now for $r = b$:

$$
\hat{e}_r \cdot \left[0 - \hat{e}_r \frac{\varepsilon_o(\varepsilon_r - 1)Q}{4\pi \varepsilon_1 b^2}\right] = -\rho_{ps}
$$

Then:

(a) The electric flux density in all regions where it may be seen that \overrightarrow{D} is continuous. region 2 and hence was presented by closer flux lines. (c) The polarization \vec{P} that (b) The electric field intensity \vec{E} in all regions where it may be seen that \vec{E} is larger in (b) The electric field intensity \vec{E} in all regions where it may be seen that \vec{E} is larger in only exists in region 1 where we have dielectric material and (d) the polarization surface charge on both surfaces of region 1.

Example

Parallel plate capacitor with two different dielectrics:

Determine (1) the electric field intensities and the electric flux density vectors, and (2) the surface charge density of polarization charges.

(1) $\varepsilon_1 = \varepsilon_o \varepsilon_{r1}$

The electric field is: $V = \int_{a}^{d} \vec{E} \cdot d\vec{l} = E d$ or $E = V/d$, everywhere $\vec{D}_1 = \varepsilon_1 \vec{E}_1$ (*region* 1) and $\vec{D}_2 = \varepsilon_2 \vec{E}_2$ (*region* 2) $=\int_0^d \vec{E} \cdot d\vec{l}$ = 0

Or, in terms of *V*:

$$
\vec{D}_1 = \varepsilon_1 \frac{V}{d}
$$
 and $\vec{D}_2 = \varepsilon_2 \frac{V}{d}$

(2) At the surface of the conductor, the surface free charge density is:

$$
\rho_s = D_n
$$

Therefore, in *region* 1: and in *region* 2: $\rho_{s2} = D_{n2} = \varepsilon_2 \frac{V}{d}$ *- - - - - - - - - - - -* $\rho_{s1} = D_{n1} = \varepsilon_1 \frac{V}{d}$ $E \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}$ ε_1 ρ_{s1} $\varepsilon_1 < \varepsilon_2$ ρ_{s2} $\rho_{s1} < \rho_{s2}$

The surface charge density of polarization charge is:

$$
-\rho_{ps1} = p_{normal1} \rightarrow \text{since } \vec{P} = \varepsilon_o \chi_e \vec{E} \text{ and } \varepsilon_{r1} = 1 + \chi_{e1}
$$

$$
\Rightarrow \vec{P}_1 = \varepsilon_o (\varepsilon_{r1} - 1) \vec{E}_1, \text{ or } \vec{P}_1 = (\varepsilon_1 - \varepsilon_o) \frac{V}{d} = -\rho_{ps1}
$$

and for *region* 2:

$$
\Rightarrow \vec{P}_2 = \varepsilon_o \left(\varepsilon_{r2} - 1 \right) \vec{E}_1 \text{, or } \vec{P}_2 = \left(\varepsilon_{2} - \varepsilon_o \right) \frac{V}{d} = -\rho_{ps2}
$$

Free surface charge density distribution ρ_s and the polarization charge density distribution ρ_{ps} on the interface between the conducting planes and the dielectric materials. The total charge density on the surface of the conductor is constant and equal to $\varepsilon_o E$.

The total charge density (sum of bound and free) is a constant $=\boldsymbol{\mathcal{E}}_{o}\,E$.

Capacitance (We need this for transmission lines!)

A measure of the amount of charge a particular arrangement of two conducfors is able to retain per unit voltage: $C \equiv Q/V$.

Example: Spherical capacitor

$$
\oint_{s} \vec{D} \cdot d\vec{s} = \int_{v} \rho_{v} dv
$$

Since \vec{D} = $\varepsilon \,\vec{E}$ and the total charge on the inner sphere is Q , we have: \rightarrow $D = \varepsilon E$

$$
\vec{E} = \frac{Q\hat{e}_r}{4\pi\,\varepsilon\,r^2}
$$

and the potential difference is: $V_{ab}\!=\!-\!\int_b^a\vec{E}\!\cdot d\vec{l}=\int_a^b\vec{E}\!\cdot d\vec{l}$ *b a* $=-\int_b^a \vec{E} \cdot d\vec{l} = \int_a^b \vec{E} \cdot d\vec{l}$

Discussion: The minus sign indicates that positive work must be done to move a positive test charge from b to a against the field direction (radially out of a to b). Now, because of symmetry, $d\vec{l} = dr \hat{e}_r$.

Then,

$$
V_{ab} = -\int_{a}^{b} \left[\frac{Q(\hat{e}_{r} \cdot \hat{e}_{r})}{4 \pi \epsilon r^{2}} \right] dr = \left[-\frac{Q}{4 \pi \epsilon r} \right]_{a}^{b}
$$

$$
= \left(-\frac{Q}{4 \pi \epsilon} \right) \left(-\frac{1}{a} + \frac{1}{b} \right) = \frac{Q}{4 \pi \epsilon} \left(\frac{1}{a} - \frac{1}{b} \right)
$$

The capacitance is:

$$
C \equiv \frac{Q}{V} = \frac{4\pi\,\varepsilon}{\frac{1}{b} - \frac{1}{a}}
$$

Another example: Infinitely wide parallel plate capacitor. Find capacitance/unit area.

There are two fields, $E^{}_1$ and $E^{}_2$, both directed normal to the plates.

Gauss' Law gives:
$$
E_1 = \frac{\rho_s}{\varepsilon_1}
$$
 and $E_2 = \frac{\rho_s}{\varepsilon_2}$.

The flux density \dot{D} is (and must be) continuous across the dielectric boundary, and its value equals the surface charge density. \rightarrow *D*

The potential is given by:

$$
V = -\int_{d_2}^{0} E_2 \cdot d\vec{l} - \int_{d_1 + d_2}^{d_2} E_1 \cdot d\vec{l} = \frac{\rho_s d_2}{\varepsilon_2} + \frac{\rho_s d_1}{\varepsilon_1}
$$

= $\rho_s \left(\frac{d_2}{\varepsilon_2} + \frac{d_1}{\varepsilon_1} \right)$

Now $Q = \rho_s A$.

So the capacitance is: $C = \frac{Q}{V}$ *V A* $=\frac{Q}{V}=\frac{A}{d_2 \bigg / \bigg / \bigg / \bigg / \bigg / \bigg }$ $^{2}/_{c}$ + 2 1 $\left[{\varepsilon} _2\right.^\top\left/ {\varepsilon} _1\right]$

Another important example:

Again, Gauss' Law:

$$
\oint_{s} \mathcal{E}_{1} \vec{E} \cdot d\vec{s} = \int_{v} \rho_{v} dv
$$

or for $a < r < b$: $\varepsilon_1 E 2\pi r L = \rho_s 2\pi a L$, or $E_r = \frac{\rho_s a}{\varepsilon_1 r}$

The voltage is
$$
V = -\int_b^a E \cdot d\vec{l} = -\frac{\rho_s a}{\varepsilon_1} \int_b^a \frac{dr}{r} = \frac{\rho_s a}{\varepsilon_1} \ln\left(\frac{b}{a}\right)
$$
,

so that $C = \frac{2 \pi a \rho_s}{L} = \frac{\ln(b/a)}{L}$. *V unit length s* $=\frac{2\pi a \rho_s}{N} = \frac{\ln(b/a)}{1}$ $2\pi\varepsilon_1$ $\pi a \rho$ $\frac{\pi \, \varepsilon_1}{\ln \left(\frac{b}{a}\right)}$

Another important example Two conductor transmission line.

There are equal and opposite charges per unit length on the conductors. Let $+r_l$ be on the right conductor. We will use the principal of superposition to solve this problem.

Gauss' Law for the right hand wire yields for the field:

$$
\int_{s} \varepsilon \vec{E}_{1} \cdot d\vec{s} = \int_{c} r_{l} dl
$$
\n
$$
\int_{\phi=0}^{2\pi} \int_{z=0}^{l} \varepsilon \vec{E}_{1r} \hat{e}_{r} \cdot r \, d\phi \, dz \, \hat{e}_{r} = r_{l} l
$$
\n
$$
E_{1r} = \frac{r_{l}}{2\pi \varepsilon r}
$$

The electric field at $\,d_1$ due to right hand wire is

$$
\vec{E}_1 = \frac{r_l}{2\pi \varepsilon d_1} \hat{e}_r
$$

Now, the left hand wire:

$$
\vec{E}_2 = \frac{r_l(-\hat{e}_r)}{2\pi \varepsilon (d - d_1)}
$$

The total field is:

$$
\vec{E} = \vec{E}_1 + \vec{E}_2 = \left[-\frac{r_l}{2\pi \varepsilon (d - d_1)} + \frac{r_l}{2\pi \varepsilon d_1} \right]
$$

$$
V = -\int_{d-a}^{a} \left[\frac{r_l}{2\pi \varepsilon r} - \frac{r_l}{2\pi \varepsilon (d - r)} \right] \hat{e}_r \cdot dr \hat{e}_r = -\int_{d-a}^{a} \vec{E} \cdot d\vec{l}
$$

 $C=?$