PRACTICE PROBLEMS - CHEMISTRY

- 1. How many tons of an ore containing 2.50% magnetite, Fe₃O₄ (MW=232) must be processed to yield 1.00 ton Fe (ATWT=55.85) if the process is 100% efficient? Ans. 55.3 tons.
- 2. a. Assuming 100% efficiency, calculate the tons of an ore 15.0% by weight FeS₂ (MW=119.97) which must be processed to produce 1.00 ton of 98.0 wt% H_2SO_4 solution (MW= 98.1). Ans. 4.00 tons.

$$\label{eq:solution} \begin{split} &FeS_2 + O_2(air) = SO_2 + Fe_2O_3 \qquad SO_2 + O_2 = SO_3 \qquad SO_3 + H_2O = H_2SO_4 \\ & \text{b. Calculate the liters of air (21.0 mole \%O_2) at 620.0 } \underline{\text{mm}} \text{Hg and } 25.0^{\circ}\text{C} \text{ required in the process of part a. Ans. } 1.78 \times 10^6 \text{ liter.} \end{split}$$

3. An ore contains 12.0 wt% Cu₂S. Cu is to be recovered by the process: $Cu_2S + H_3O^+ + NO_3^- = Cu^{++} + SO_4^- + NO(g) + H_2O$ $Cu^{++} + Fe = Cu + Fe^{+++}$ a. Calculate the tons Fe needed in processing 1.00 ton of ore. Ans. 0561. b. Calculate the liters NO gas at 620.0 <u>mm</u> Hg and 27.0°C generated in processing 1.00 ton of ore. Ans. $6.8x10^4$ liter.

- 4. For Ni recovery by the process: $Ni_3S_2 + O_2 = NiO + SO_2$ NiO + C = Ni + COa. How many grams of Ni metal can be produced per kg of Ni_3S_2 ? Ans. 736 g. b. How many liters of dry SO₂ gas at 620.0 <u>mm</u> Hg and 21.0'C are generated per kg N_3S_2 processed? Ans. 246 liter.
- 5. Calculate the equivalent weight of Monel alloy (67.0% Ni, 28.0% Cu, other components disregarded in the calculation) for dissolving in HNO₃, to produce Ni(NO₃)₂ and Cu(NO₃)₂. Ans. 31.6.
- 6. If 5.60 kg CO were reacted with 1470 gm Ni, what would be the mole fraction $Ni(CO)_4$ in the effluent gas stream? Ni + 4 CO(g) = $Ni(CO)_4$. Ans. .200.
- 7. a. How many grams Ti metal may be produced from 5.00 kg illmenite, FeTiO₃ (MW=151.75)? Ans. 1.58×10^3 . FeTiO₃ + Cl₂ + C = TiCl₄ + FeCl₃ + CO₂ TiCl₄ + Mg = Ti + MgCl₂ b. How many liters CO, at 550 mm Hg and 23.0°C are co-produced? Ans. 1.66×10^3 L.
- 8. a. If 1.00 gm. MnO_2 , 1.00 gm NaCl, and 5.00 gm H_2SO_4 , are mixed, then calculate the maximum mLs dry Cl_2 , gas at 25.0°C, and 620.0 mm Hg which could be produced. Ans. 260. $MnO_2 + NaCl + H_2SO_4 = MnSO_4 + Cl_2 + H_2O + Na_2SO_4$ b. Calculate the mLs of 95.0 wt% H_2SO_4 solution (sp gr 1.84) needed per liter of Cl_2 evolved. Ans. 3.74 ml.
- 9. Which ore has the greater wt % Cu: an ore 20.0 wt% CuFeS₂ or an ore 16.0 wt% Cu₂(OH)₂CO₃? Ans. Cu₂(OH)₂CO₃ ore 9.2 wt% Cu.
- 10. Titration of 100.0 ml of KMnO₄ solution required 48.6 ml of a 2.50 N Fe(NO₃)₂ solution. 8 $H_3O^+ + MnO_4^- + 5 Fe^{++} = 5 Fe^{+++} + Mn^{++} + 12 H_2O$
 - a. Calculate the normality of the $KMnO_4$ solution. Ans. 1.22.
 - b. Calculate the molarity of the KMnO₄ solution. Ans. .243.
 - **c**. Calculate the molality of the $KMnO_4$ solution (sp gr 1.35).

- 11. An aqueous NH_3 solution is 18.0 wt% NH_3 and has density of .9295g/mL. MW $NH_3 = 17.0$, $H_2O = 18.0$. Calculate a. M Ans. 9.84 b. m Ans. 12.9 c. mole fraction NH_3 Ans. .189
- 12. What is the <u>maximum</u> volume of H_2 gas, measured at 30°C and 685 torr that will combine with 12.00 grams of oxygen and 6.00 grams of carbon to produce CH₃OH? (27.6L)
- 13. A mixture of gases contains 4.00 mole N₂, 19.00 grams F_2 , and 1.204×10^{24} atoms of Ar. Calculate the average molecular weight of the mixture. Calculate the density at 50.0°C and 625 torr. Calculate the mole fraction of F₂. (M = 32.4)
- 14. 800.0 ml of an aqueous solution contains 19.62 grams of H₂SO₄, and has a density of 1.0115 g/ml.
 (a) What is the molarity of H₂SO₄, in the solution? (b) What is the mole fraction of H₂SO₄? (c) What volume of the solution would be required to make 100.0 ml of a 0.2000 M solution by dilution with water? (d) How many moles of H₂SO₄ are in 100.0 ml of the original solution? (a. .2500M)
- 15. A solution is prepared by dissolving 29.0 g CsCl in 21.0 g H₂O, giving a 6.00 M solution. Calculate the density of the solution. (1.75g/ml)
- 16. A solution is prepared by mixing 35.0 mL 2.50 M HCl and 50.0 mL 0.150 M HCl. Assuming the volumes are additive, calculate the molarity of the resulting solution. (1.12M)
- 17. What volume of 0.250 M HCl must be added to 155 mL of 2.00 M HCl to yield 1.50 M HCl?
- 18. What volume of 0.150 M NaOH is required for the titration of 30.0 mL of 0.125 HCl? (25.0 mL)
- 19. A base solution is standardized by titration with potassium hydrogen phthalate (MW = 204.2). It requires 43.85 ml of the base solution to react with 0.8650 grams of the acid, which is99.95% pure. Determine the molarity of the base (NaOH). (.09655M)
- 20. A solid sample is a mixture of KCl and Na₂CO₃. 0.485 g of the solid is dissolved in water, and titrated with HCl, requiring 23.65 mL of 0.1120 M HCl. Calculate the percent of Na₂CO₃ in the sample. $2H_{+} + CO_{3}^{=} = CO_{2} + H_{2}O$ (28.9%)
- 21. It requires 43.20 mL of 0.0904 M NaOH to titrate 0.7515 grams of a monoprotic acid. Calculate the molecular weight of the acid. (175.0)
- 22. Calculate the concentrations of all ionic species in the solution resulting from mixing 25.00 mL of 0.1500 M NaOH with 15.00 mL of 0.2000 M HNO₃. (.01875M OH⁻)
- 23. Calculate the molarities of NH_3 and NH_4^+ in the solution resulting from mixing 25.00 mL of 0.1500 M NH₃ with 10.00 mL of 0.1200 M HCl, assuming complete reaction (.07286 M NH₃)
- 24. Calculate the molarities of H^+ and Cl^- in the resulting solution when 55.0 mL of 0.200 M HCl and 45.0 mL of 0.150 M NaOH are mixed. (.0425 M H^+)
- 25. Complete and balance the reaction (acidic solution) $MnO_4^- + I^- = Mn^{++} + I_2$. What volume of 0.150 M KMnO₄ will react with 1.25 g KI? (10.0 mL)

- 26. What volume of 0.150M KMnO₄ will react with 50.0 mL of 0.100 M FeCl₂? KMnO₄ + FeCl₂ = $MnCl_2 + FeCl_3$ (unbalanced) (6.67 mL)
- 27. Complete and balance the reaction (basic solution): $S_2O_3^{=} + I_2 = S_4O_6^{=} + I^{-}$. What volume of 0.200 M Na₂S₂O₃ react with 0.300 grams of I₂? (11.8 mL)
- 28. It requires 28.7 mL of 0.0600 M HAsO₂ to titrate a 0.200 gram sample containing MnO₂, What is the percent MnO₂ in the sample? MnO₂ + HAsO₂ = Mn⁺⁺ + H₃AsO₄ (unbalanced) (74.9%)
- 29. Complete and balance the following reactions: $N_2H_4 + MnO_4^- = NO_3^- + MnO_2$ (basic) $AuCl_6^{3-} + H_2O_2 = O_2 + Au$ (acidic) $As_2S_3 + Ce^{4+} = H_3AsO_4 + SO_2 + Ce^{3+}$ (acidic) $Cu_2S + NO_3^- = Cu^{++} + NO + S$ (acidic)
- 30. 5.60 g N₂ and 7.20 g O₂ are put into a previously evacuated container at a total pressure of 700.0 torr and 40°C. (a) What is the partial pressure of N₂? (b) What is the average molecular weight? (c) What is the volume of the container? (329 torr; 30.1; 11.9 L)
- 31. Calculate the resulting temperature when 60.0 grams of Cu at 80.0°C are poured into 20.0 grams of water at 10.0°C. The specific heat of Cu is 0.0924 cal/g-°C. (25.2°C)
- 32. Determine the final state of the system when 155 grams of iron (sp. ht. = $0.106 \text{ ca1/g-}^{\circ}\text{C}$) at 215°C are mixed with 95.0 grams of ice at O.O°C. ΔH_{fusion} of water = 1435 cal/mole. (50.7 g ice at O°C)
- 33. Enthalpies of combustion of graphite, H_2 , and C_2H_6 (g) are -94.05, -68.32, and -372.8 kcal/mole, resp. Calculate the enthalpy of formation of C_2H_6 (g). (-20.3 kcal/mole)
- 34. Circle that solution in each set having the highest pH:
 a. 0.100 M HCl, 0.100 M HF, 0.100 M NaCl, 0.100 M NaF
 b. 0.100 mole NaCl dissolved in 1.00 liter 0.100 M HCl, 0.100 mole NaF dissolved in 1.00 liter
 0.100 M HF, 0.100 M HF
 c. 0.100 M NH₃, 0.100 M NH₄Cl, 0.100 mole NH₄Cl dissolved in 1.00 liter 0.100 M NH₃
 d. 0.100 M NH₄Cl, 0.100 M NaCl, 0.100 M NH₄F.
 e. At the equivalence point in the titration of. 0.100 M HC1 with 0.100 M NaOH, 0.100 M HF with 0.100 M NaOH, 0.100 M HC1 with 0.100 M NH₃.
- 35. Calculate the pH at the equivalence point in the titration of 50.0 mL 0.100 M HF ($K_a = 4.8 \times 10^{-4}$) with 0.400 M NaOH. (Ans. 8.11)
- 36. When 25.0 mL 0.200 M HC1 are added to 50.0 mL 0.300 M solution of an unknown monoprotic base, B, the resulting solution pH is 8.25. Calculate K_b of B. (Ans. 8.9 x 10⁻⁷)
- 37. Consider the titration of 50.0 mL 0.100 M HSCN (HSCN K_a = 0.14) with 0.200 M NaOH.
 a. Calculate pH prior to the addition of any NaOH. (Ans. 1.17)
 b. Calculate pH after addition of 15.0 mL NaOH. (Ans. 1.68)
- 38. Which of the following has the greatest electronegativity? Be, K, S, As, Se Which of the following has the smallest ionization potential? Be, K, K⁺, As, F

Which of the following has the largest ionization potential? S, S⁼, Ar, Ca, Ca⁺⁺ Which of the following has the largest radius? Ca, Ca⁺⁺, S⁼, Br, I⁻

- 39. Consider the voltaic cell: $Hg(l)/Hg_2Cl_2(s)/Cl^-(.100M)//H_3O^+(pH)$
 - 3.00), I⁻ (.500M), IO₃⁻ (5.00M)/Pt.
 - a. Diagram the cell, label all features.
 - b. Write the balanced anode, cathode, and cell reactions.
 - c. Calculate E^o for the cell. (Ans. +.730 volt)
 - d. Calculate E for the cell. (Ans. +.503 volt)
 - c. If both half-cells have constant 200.0 mL volume, calculate the final [I⁻] after the cell operates at 0.600 amp for 3.00 hours. (Ans. 0.556M)
- 40. Calculate E° for HBrO => Br₂ in acid-solution. (Ans. +1.24v).
- 41. Calculate K_{sp} AgBr. (Ans. 5 x 10⁻¹⁰).
- 42. Calculate E° for $S_2O_4^{=} \Rightarrow SO_3^{=}$ in basic solution. (Ans. +1.11v)
- 43. Calculate E° for PbSO₄,(s) => Pb + SO₄⁼. (Ans. -0.36v)
- 44. For electrolysis of 3.00M CdCl₂. using Pt electrodes, the unbalanced cell reaction is $Cd^{2+} + Cl^{-} => Cd + Cl_2(g, 1.00 \text{ atm}).$
 - a. Calculate the cell decomposition potential. (Ans. 1.701v)
 - b. Write the balanced anode reaction.
 - c. Is the electrode at which Cd deposits connected to the + or pole of the power supply?
- 45. When a 0.500M NiCl₂ solution is electrolyzed with Pt electrodes:
 - a. Calculate the cell decomposition potential. (Ans. 1.075v)
 - b. Write the balanced cell reaction.

c. Is the electrode connected to the + or - pole of the power supply; to the anode, or cathode of the electrolysis cell?

DATA: Reduction Potentials (volts at 25.0'C)

$Na^+ \implies Na$	-2.714	$Pb^{2+} \Rightarrow Pb$	126
$Mn^{++} \implies Mn$	-1.05	$AgBr \implies Ag+Br$	+.071
$SO_4^= \implies S_2O_4^= + OH^-$	99	$Hg_2Cl_2 \Longrightarrow Hg + C1^-$	+.355
$SO_4^{=} \implies SO_3^{=} + OH^{-}$	93	$IO_3^- + H_3O^+ \Longrightarrow I^-$	1.085
$Cd^{2+} \Rightarrow Cd$	402	$O_2 + H_2O + => H_2O$	1.229
$Ni^{2+} \Rightarrow Ni$	250	$C1_2 \implies Cl-$	1.3595
$MnO_4^- + H_3O^+ => Mn^{2+}$	1.51	$BrO_3^- \Rightarrow HBrO$	1.59
$BrO_{3} + H_{3}O^{+} => Br_{2}$	1.52		

Other data: $K_{sp}(PbSO_4) = 1.6 \times 10^{-8}$ 1.00 cal = 4.18 Joule 2.303 RT/P = .0591 at 25.0°C

1.000 F = 96500 coulomb/equivalent