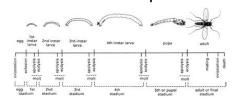
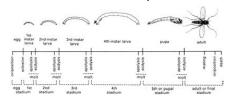

Insect growth

- · Kinds of growth
 - Indeterminate
 - Determinate
- Growth through molting
 - Membranes expand within instar
 - Growth when exoskeleton is soft just after molting



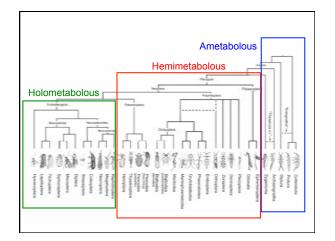
Insect development

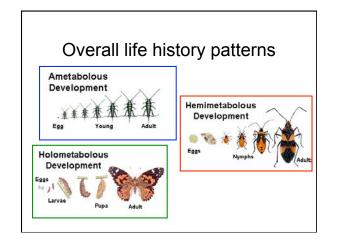
- Instar = Stadium
- Imago = Adult

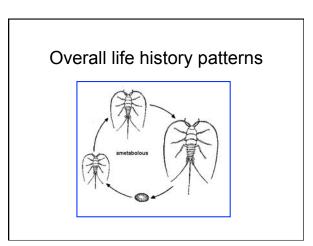


Insect development

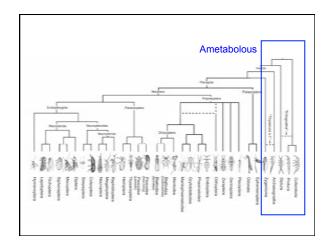
• Molt increment: increase in size between instars

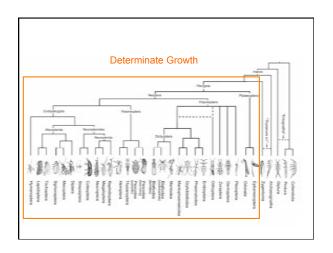

Insect development



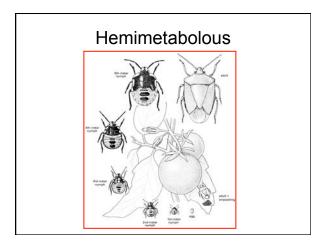

- Factors influencing molt increments, intermolt period, and number of instars
 - Food supply
 - Temperature
 - Sex
 - Interaction between genes and environment

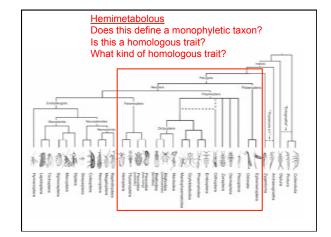
Overall life history patterns

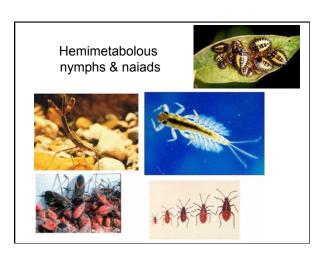

- · Ametabolous
 - Primitive wingless groups
 - Indefinite number of molts
- · Hemimetabolous
 - Gradual change towards adult form
 - Wings develop externally
- Holometabolous
 - Non-feeding pupal stage present
 - Develop wings and other adult structures internally during immature stages.


Indeterminate growth Continue to molt until death Collembola, Diplura (non-insect Hexapoda) Apterygote insects: Zygentoma (silverfish) & Archaeognatha (bristletails)

Determinate growth

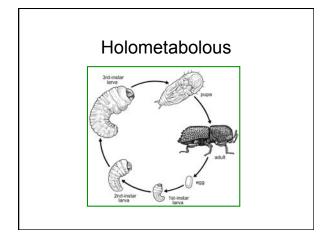

- Most insects (Pterygota)
- · Distinctive instar marks end of growth

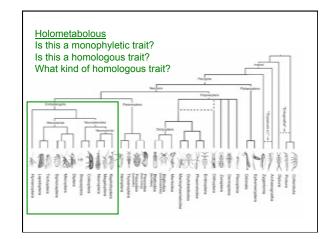


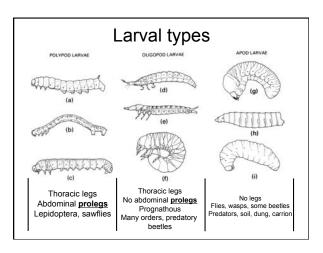


Hemimetabolous

- Stages
 - Egg, <u>nymph</u>, adult (no pupa)
 - In aquatic insects, immature called naiad
 - Nymph resembles adult but without wings
- Exopterygote: wings develop on dorsal surface of thorax
- Terrestrial
 - Adults and immatures often use similar habitats and food
 - Examples are crickets, true bugs, cockroaches
- · Aquatic: dragonflies, mayflies, stoneflies

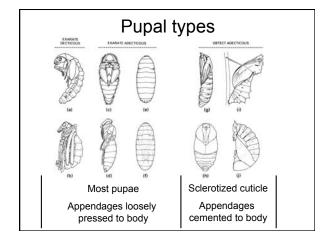


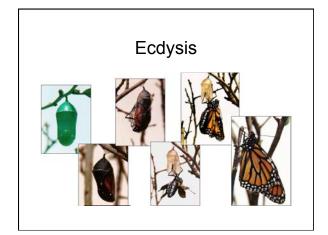


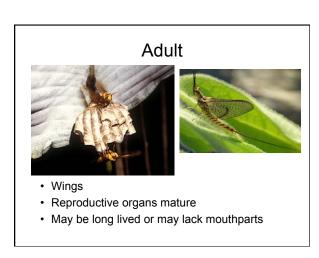


Holometabolous

- Stages
 Egg, larva, pupa, adult
 Larval stages look very different than adult
 Larvae often use different habitats and eat different food than adults
- Adult structures found in larvae as 'imaginal disks'
- Endopterygote: wings develop in invaginated pockets of integument
- Bees, wasps, butterflies, beetles, flies, caddisflies.







Pupa

- Resting stage
- · Rearrangement of body into adult form
- · Sometimes enclosed in cocoon
- At end, pupa encloses adult

Voltinism

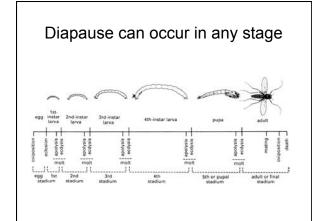
- · Numbers of generations per year
 - Univoltine
 - · One generation per year
 - Tends to occur in colder climates, where season length limits time for completion of life cycle.
 - Bivoltine
 - · Two generations per year
 - Multivoltine
 - Multiple generations per year
 - Occurs when enough time exists for completion of multiple reproductive cycles.

Diapause

- Arrested development after physiological change
- · Inactive and not feeding
- · Can last months or years
- Need 2nd physiological change to break diapause
- Induced or terminated by photoperiod, temperature, food quality, food chemistry
- Types
 - Obligatory: required to complete life cycle regardless of environment, often found in univoltine insects
 - Facultative: Dependent upon environmental conditions.

Quiescence

- Halted or slow development during unfavorable conditions
- Activity or slow development during unfavorable conditions.
- Does not involve physiological changes like diapause and is triggered directly by environment (e.g. cool temperature) rather than separate cue
- · Difficult sometimes to tell from diapause


Diapause & Quiescence

Evolution of Dispersal

- · Principle of allocation
 - Resources are limited
 - Allocation to one trait (e.g. dispersal) reduces other allocation to other traits
 - This generates tradeoffs
- · Dispersal has costs and benefits
 - Benefits
 - · Ability to leave poor habitats
 - · Reduced risk of competition, disease, predation in new
 - Costs
 - Energy required could be invested in egg production

 - Travel time
 Predation during travel
 - Risk (what kind?)

Salt marsh planthoppers

- · Adults polymorphic for wing length
 - Some have reduced hind wings and lay more eggs (brachypters).
 - Others have four full wings and can travel long distances (macropters).
- Macropter frequency 20-90%
 - Increases under crowded conditions
 - Increases in unpredictable habitats.

Migratory Locusts

- · Solitary form
 - Shuns other locusts
 - Large adult with higher fecundity

Gregarious form

- Disperses long distances in large groups
- Induced by crowding and poor habitat

Dispersal: Habitat Differences

- · Crickets & Grasshoppers
 - Flighted species predominate

 - Pastures, meadows, open areas, trees
 Flightless species predominate
 Woodland, beneath stones, caves, in ant and termite nests

Flightlessness

- Islands
- Flightlessness often evolves on islands
- · Why?
- What kinds of islands?

Flightlessness

- · Large & Cryptic
- Why be flightless?

Dispersal: Gender Differences

· In which sex would you expect to see flightlessness more often?