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Nuclear Energy

POWER GENERATION

Condenser

Cold Wer Pump

COOLING SYSTEM Sea Water

PRIMARY CONTAINMENT
STRUCTURE

fuel rod assembly

fuel rod

fuel pellet

-
\->

Spent Fuel Pool to Shield Radiation and Cool Fuel Rods




Diameter: 98 in.
Cask Lid

Steel Cannister
0.5 in.

Bundles of used
fuel assemblies

Concrete Wall
26.75In.

(Holtec International
Overall Length: 197 to 225 in. HI-STORM 100)

Loaded Weight: 360,000 Ibs.
Typical Payload: 24 PWR Bundles

* Storage and Transportation
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47,944 nodes
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Fluent Model

FLUENT

* Steady State 2D simulations using Pressure-based
solver in Fluent

* Gravity in Y direction
* Energy Equation ON to model:
—  Conduction heat transfer in solid region
— Buoyancy induced gas motion and natural
convection heat transfer within the gas filled
regions
— Radiation heat transfer across all gas filled
regions




Fluent Model Input and B.C.
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UQlk

Uncertainty Quantification

Mathematical models of heat transfer are often challenged by

random/uncertain properties
Uncertainty quantification is needed in order to get a predictive fidelity of the

simulation
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Introduction to PCE

p = N-ord (Highest order Legendre Present).

PCE is Polynomial Chaos Expansion n = N-dim (Number of uncertain dimensions).

Univariate Case: For one input parameter, we
model the propagation of uncertainty through D

our model X — szwz(g)

1. Assume our input variable can be expressed

as a polynomial expansion. Where € =0
represents a uniform random variable, and p
) represents Legendre Polynomials

2. After propagating X through our model we 1I'= Z T’ﬂvb%(g)
can model the output of the model as a 1=0

similar expansion

3. We can then perform non-intrusive spectral < . ¢>
projection (NISP) to extract the coefficients K — Liy Yi Tz — K xT

of this expansion <¢z’ ¢z>




Introduction to PCE

Multivariate Case: For n-input parameters, we model the n = N-dim (Number of uncertain dimensions).
propagation of uncertainty through our model

|
1. When modeling the propagation of multiple uncertain Npc — (n T p).
parameters we introduce a Multi-index (M) showing the nlp!
ordering of polynomials in the expansion. The number
of terms in our expansion is N_pc.

2.Using identical methods from the univariate case we Npe
are able to extract an expansion for the output T = Z T;9;(Z)
parameter as a function of our multiple input variables i=0

— Zﬂl’[zp{(g) where 1= M/




Multivariate Case Example

We will now consider the case where Nord = 2, and Ndim = 2.

In this case we will use the nPCETerms equation to see that we (2 +2)! B

expect 6 terms in our output expansion. nPCETerms = o Npc =6

We will then look at our Multilndex matrix which shows how the terms

are paired. 0 0
1 0

This yields the following general expression for the center temperature M = 01
expansion: ? ?
(1 2 ! 1,2 1.2 il 42 oyl 2 ; 1,2 0 2

= Totgtp + Tiy vy + Todgvy + Tavgthy + Thhyoby + Taihgs -

Now we refer to the table of Legendre polynomials to see what these basis

Functions actually are. ? j;
2 3(32% —1
Furthermore, since 19 = 1 and ¢y = x, we can reduce the expansion to: 3 5(52° — 32)

1 1
T. =Ty +Tizy + Toxs + 'Tgfﬁjl(g(i"-l}ﬂ - 1) + Tyx170 + TE(E}(S{IE}Q - 1:]




Matlab-Fluent Interface

ANSYS

FLUENT® MATL AB

e Using user-input, MATLAB can create arbitrarily complex journal files based on a The Language of Technical Compuing

custom dictionary of FLUENT text user-interface commands
e These journal files are sent to the ANSYS - FLUENT environment where they are
used to modify model parameters based on their uncertainty

e Solution data is exported after each simulation, these files are then collected by

MATLAB and used for UQ data analysis




Sensitivity Analysis

10 Dimensions & 15t Order Legendre Polynomials

* This allows us to see the relative contribution of each variable to the overall output parameter,
be that Temperature, Velocity, Pressure, etc.




Sensitivity Analysis Results

1,024 FLUENT Simulations

* Time-to-Run on local machine: Intel Xeon E3 - 4 (8 thread) 3.50GHz cores
Approximately 16 hours.

* Coefficients of Significance for Center Temperature

HeK HeCp ZrK ZrCp ZrEm UOK UOCp WallT Power FuelEm Npc
M T1 T2 T T4 T T T7 T T T1 — AU (=
(Mean) 3 5 6 8 9 0 T = E T; \Ilz(_')
379.6246  -0.11803 9.08E-03 -0.04534 -1.44E-15 -0.09561 -5.42435 -5.30E-14 48.18958 1.596366 -0.17262 i=0

« ZrCp and UOCp can be dropped (no convection heat transfer in solid)
HeCp can also be dropped. This could be explained by the dominant conduction/radiation heat transfer modes in
gas filled regions (ref. Araya and Greiner)
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Simulation Results
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Fluent Mesh with Colormap
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Variance and
Coefficient of Variance

Temperature Variance, w2=1
Ndim =10, Nord =1
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Gravity-Induced Mean Velocity Vectors, Ndim = 10 Nord =1
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2"4 Order PCE Analysis Results

* Reduced Dimensions to 7 after Cp concluded to be insignificant, based on
sensitivity analysis.

e 2,187 FLUENT Runs
* Time-to-Run on local machine: less than 2 Days
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Future Work

* Convergence Analysis with 3 order polynomial

* HPC - run larger, more complex models faster

* Building 3D models of the assemblies




