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Numerical and experimental analyses of the structure of supersonic free-jet 

expansions of supercritical CO2 into the atmosphere and impacting on a flat plate are 

presented. Such expansions are important to technology used by chemical engineers in 

materials processing, known as the Rapid Expansion of Supercritical Solutions  

(RESS). 

 Numerical calculations for the axisymmetric, two-dimensional expansion are 

based on a time-dependent finite difference method known as the two-step predictor-



 

xi 

corrector Lax-Wendroff technique, incorporating the Redlich-Kwong or Peng-

Robinson equations of state to model supercritical CO2. A quasi-one-dimensional 

convergent-divergent nozzle approximation is also studied to test our numerical 

methods for the axisymmetric free-jet, to study the vibrational relaxation of CO2, and 

to study the clustering and condensation during the expansion. 

Experimental mass flow rates for the free-jet expansion from two different types 

of sources (orifice and capillary) are studied and compared to one-dimensional 

numerical results. Optical shadowgraph measurements of the axisymmetric free-jet 

and associated shock wave structure are compared to the axisymmetric numerical  

results. Impact pressure and temperature along the flat plate are measured and 

compared to numerical results, as is a temperature probe of the free-jet expansion.  

We find that the numerical methods are able to reproduce the flow rate and free-

jet structure very well. The temperature and pressure profiles agree reasonably well, 

except for temperature along the impacted plate. The disagreement with temperature at 

the plate is due to neglect of heat transfer at the plate and, at higher pressures, to 

condensation in the expansion. Our results suggest that approximations based on ideal 

gases and quasi-one-dimensional flow analysis, often used by RESS researchers, may  

be useful for these supercritical fluid flows. The preliminary calculations and 

experiments indicate that condensation is important in these flows at high pressures, 

but it will require considerable further study to understand and predict the associated 

effects.



 

 1 
 

 

 

CHAPTER 1 

INTRODUCTION AND BACKGROUND 

A supersonic free-jet expansion occurs in the expansion of a compressible fluid 

from high pressure into the atmosphere or a vacuum through a restriction such as an 

orifice or capillary tube. The expansion begins from a stagnation reservoir where the 

gas velocity is assumed to be zero. As the fluid flows through the orifice or capillary 

tube it accelerates from subsonic flow, reaching sonic conditions (Mach number equal 

to one) at the exit. The fluid then expands into a highly compressible, two-

dimensional, supersonic free-jet that is bounded by shock waves which occur because  

the fluid pressure is adjusting to ambient conditions. The inset to figure 1.1 shows a 

general picture of the flow field in a free-jet expansion (Miller 1988). Because the 

expansion is not confined by diverging nozzle walls, as found in rocket nozzles, the 

expansion is called a free-jet. As the gas expands in the supersonic region, the 

pressure, temperature, and density decrease rapidly, while the velocity increases. 

Several rigorous numerical calculations of axisymmetric free-jet supersonic 

expansions for ideal gases have been used in molecular beam research since the 1960s 

(Miller 1988). The primary objective of this thesis is to extend the free-jet analysis 
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using non-ideal gas assumptions for the expansions of fluids in a supercritical state 

under stagnation conditions, an important technological area referred to as Rapid 

Expansion of Supercritical Solutions (RESS). 

Supercritical fluids are very important topics in chemistry and chemical 

engineering because they are often the processing medium in the regime intermediate 

between gases and liquids where they exhibit liquid-like solubilities and gas-like 

diffusivities and viscosity. The high characteristic density makes it possible for 

supercritical fluids to dissolve compounds that would typically be relatively insoluble 

under sub-critical or ideal gas conditions (Levit et al. 2002), or to dissolve temperature 

sensitive materials at low temperatures. 

The supercritical fluid exists as a single phase beyond the critical point of any 

substance. Figure 1.2 is a phase diagram for carbon dioxide, one of the most prevalent 

and useful supercritical solvents; it is the fluid we study in this thesis. The critical 

temperature for CO2 is 31.1C and its critical pressure is 73 bar. These are mild 

critical conditions, which is why CO2 is widely used in supercritical fluid applications. 

In addition, carbon dioxide is inexpensive, leaves no toxic residue, and is non-

flammable (Clifford 1999). One of the earliest applications of supercritical CO2 as a 

solvent was to decaffeinate coffee, while today it is used for such diverse applications 

as proteins encapsulation for drug delivery (Mishima et al. 2000). The second most 

widely used supercritical fluid is water with a critical temperature of 374C and a 

critical pressure of 221 bar. Supercritical water has been used in toxic waste cleanup in 
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combination with combustion of hydrocarbons (Tester et al. 1993; Maharrey and 

Miller 2001), as well as to dissolve and grow ceramic alumina thin films in a RESS 

apparatus (Brand and Miller 1989). There are several texts now available which 

review the properties and wide array of applications of supercritical fluids (McHugh 

and Krukonis 1986; Clifford 1999; Arai 2001; Sun 2002). 

Supercritical fluids were found to dissolve low-vapor pressure solids more than a 

century ago by Hanney and Hogarth (1879). Solubility in supercritical fluids depends 

on two main factors: vapor pressure of the solute and the solvating effect of the fluid, 

both which depend on density. As an example, the behavior of the solubility of 

naphthalene in CO2 as a function of pressure at constant temperature is shown in 

figure 1.3, where our calculations were made using the Peng-Robinson equation of 

state (defined below) and the experimental data were taken from Tsekhanskaya et al. 

(1964). The solubility rises sharply near the critical point of the solvent due to 

solvation arising from attractive forces between the solvent and the solute molecules. 

The sensitivity of the solubility with both temperature and pressure is shown more 

vividly in figure 1.4, also calculated with the Peng-Robinson equation of state. It is 

this ability to manipulate the solubility of solutes at relatively moderate temperatures 

and pressures that renders the supercritical fluid so important to chemical engineers. It 

is also this sensitivity that makes it very important to understand the characteristics of 

any flow field in which a supercritical fluid solvent and its solutes move because the 

precipitation of solutes is a primary factor in most industrial processes, especially 

RESS. The rapid expansion of supercritical solutions has been studied for nearly 
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twenty years since the early papers of Smith and coworkers (Matson et al. 1986; 

Matson et al. 1987) to fabricate nano-scale particles, growth thin films, and as an 

interface to instrumentation such as mass spectrometers and gas chromatographs. A 

schematic of a typical RESS experiment is shown in figure 1.1. A solute is dissolved 

in a supercritical solvent at high pressure and the solution is then expanded in a free-

jet expansion during which the solvent density and pressure decrease rapidly causing 

small clusters of solutes to come out of the solution and deposit onto a surface. An 

excellent overview of the RESS process, including the fluid mechanics of the subsonic 

and supersonic flows, is provided by Weber and Thies (2002). RESS can be used to 

generate ceramic precursors (Matson et al. 1986; Peterson et al. 1986), polymeric 

powders and fibers (Lele and Shine 1992; Tom et al. 1994), and fine powders of 

pharmaceutical or organic compounds with a narrow size distribution (Chang and 

Randolph 1989; Tom and Debenedetti 1991; Ksibi et al. 1995). We are also interested 

in using the RESS process to form small clusters for molecular beam experiments. 

Although the RESS has been studied extensively, there has been little advancement in 

quantitative predictions for this complicated process. Not only are the gas dynamics 

difficult because the fluids are non-ideal and the flows involve shock waves, but the 

clustering formation kinetics, particle growth in the expansion, and subsequent surface 

interactions are not well understood. Some of the most detailed analyses are those by 

Debenedetti and coworkers (Kwauk and Debenedetti 1993; Weber et al. 2002) who 

incorporated classical condensation theory into an approximation of the free-jet 

expansion, and Reverchon and Pallado (1996) who also used one-dimensional 
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approximations of the expansion and compared them with temperature measurements 

far out in the expansion. Türk (Helfgen et al. 2003) has also recently applied a one-

dimensional flow model to study the formation of small organic particles in RESS 

expansions. All of these research groups examined the morphologies as a function of 

source geometry, pressure, and temperature.  

The general guidelines for forming large or small particles by controlling the 

source geometry, such as capillary or sharp-edged orifice sources, and source 

conditions including solute concentration, pressure, and temperature are beginning to 

be understood qualitatively. However, there have been no measurements of the extent 

and nature of the solute clustering within RESS expansions. Nearly all studies collect 

the products on a surface and examine the subsequent films.    

The most difficult part of RESS fluid mechanics is modeling the supersonic free-

jet expansion. There have been several axisymmetric calculations of free-jet 

supersonic expansions assuming ideal gas conditions, but none for a real gas. The 

schemes used previously include the method of characteristics and time marching 

techniques such as MacCormack, Lax-Wendroff (Sinha et al. 1971; Forney 1991), and 

piece-wise linear Godunov methods (Colella and Woodward 1984; Saito et al. 1986). 

Because the method of characteristics cannot calculate the flow field beyond the 

region of the shock, time marching methods are needed to capture the shock wave 

structure for the entire flow. They also have the ability to deal with the subsonic 

regions of the flow field. 
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The primary goal of this thesis is to solve the axisymmetric, two-dimensional, 

free-jet expansion of a supercritical fluid, characterized by a useful non-ideal gas 

equation of state, such as the Redlich-Kwong or Peng-Robinson equations of state  

which can be extended to multicomponent systems of interest to chemical engineers. 

These equations of state incorporate both the repulsive excluded volume and attractive 

potential real gas effects. We begin this research program by studying a pure 

supercritical fluid solvent, CO2, without the added complication of solutes in order to 

assess the suitability of our numerical approach.  

We have primarily studied the free-jet expansion of pure CO2 originating from 

small orifices rather than capillary tubes in order to ignore the effects of viscosity, heat 

transfer, and clustering or condensation in the subsonic flow. The subsonic expansion 

from stagnation to sonic conditions in the orifice flow is essentially inviscid and 

adiabatic (hence isentropic) providing a well defined inlet boundary condition for our 

free-jet calculations and for our experiments.  

Chapter 2 presents the primary result of this thesis research, the numerical method 

used to solve the axisymmetric free-jet expansion based upon the Redlich-Kwong and 

Peng-Robinson equations of state to model CO2. We have made calculations for the 

expansion into the atmosphere and for the expansion impacting a flat plate to simulate 

the use of RESS to grow a thin film. Chapter 3 presents experimental data for mass 

flow rate, optical shadowgraph measurements of the free-jet and shock wave structure, 

impact pressure and temperature along the plate, and temperature in the expansion, for 
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supercritical CO2 and for argon, in order to provide a test of the calculations without 

the effects of the non-ideal gas thermodynamics. Chapter 4 presents some calculations 

and experiments for expansions from a capillary source, for comparison with the 

orifice source, because it is widely used in RESS technologies. Chapter 5 presents a 

preliminary analysis of the condensation of pure CO2 in the free-jet expansion, and 

introduces the future work to be done with a time-of-flight mass spectrometer facility, 

directly coupled to a supercritical fluid nozzle source, to study the clustering of CO2 

solvent and solutes in RESS applications.
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Figure 1.1:  Schematic of RESS experiment and free-jet expansion 
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Figure 1.2:  Phase diagram for carbon dioxide
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Figure 1.3:  Solubility of naphthalene in carbon dioxide at constant temperature 
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Figure 1.4:  Effects of pressure and temperature on the solubility of naphthalene in 

carbon dioxide 
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CHAPTER 2 

THEORY AND NUMERICAL CALCULATIONS 

2.1  Introduction and Approximations  

As we described above, the fluid flow into the free-jet expansion begins at 

essentially stagnation conditions in a source chamber at To and Po , and then undergoes 

an acceleration to sonic conditions at the source exit, or throat, of the expansion. The 

fluid then exits and undergoes the supersonic free-jet expansion, which is the principal 

topic of this thesis. The free-jet flow is supersonic because the source pressures are 

high such that the expansion pressure at the source exit is still well above the ambient 

pressure of the atmosphere. In order to decrease the pressure further, the flow into an 

increasing area must be supersonic. The expansion must ultimately adjust itself to the 

ambient conditions through shock waves, which are accounted for in the numerical 

method. The exception to this adjustment, relevant to molecular beam sources, is 

expansion into a vacuum where no shocks occur but the flow passes from continuum 

flow to free molecular flow, requiring kinetic theory analyses. 

There are two limiting geometries of subsonic nozzle sources wherein the initial
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subsonic acceleration to the exit is accomplished; a short converging nozzle and a long 

constant diameter capillary tube. The converging nozzle source is approximated as an 

isentropic acceleration because the viscosity and heat conduction effects are small if 

the nozzle is short. There is a thin viscous boundary layer effect which can be 

calibrated as an effective diameter, or nozzle discharge coefficient, but the main core 

of the flow is adiabatic and isentropic. Discharge coefficients are typically between 

0.9 and 1.0 for the range of Reynolds numbers encountered. At the other extreme, the 

capillary source is dominated by a viscous pressure drop along the capillary and 

requires a more sophisticated calculation to predict the nozzle exit conditions.  

Regardless of how the flow is accelerated to the sonic exit conditions, the free-jet 

calculation of interest in this thesis begins at the nozzle exit, where we will assume 

uniform nozzle exit conditions that provide uniform entrance conditions for our free-

jet calculation. This is an approximation which is not exact for capillary sources nor 

thin orifices, but it has been shown for ideal gases that the approximation does not 

effect the flow significantly beyond one or two source diameters (Murphy and Miller 

1984). Although we also investigate free-jets from capillary sources (chapter 4 below),  

most of this thesis concentrates on the isentropic orifice source because it provides the 

most well defined initial conditions for the free-jet, both experimentally and 

theoretically. This source therefore provides the best check on our calculations and 

measurements.  
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Except near solid boundaries and in the jet boundary shear layers, the neglect of 

viscosity and heat conduction is a good approximation. For the supercritical fluids and 

conditions considered here, the more serious approximation is that we assume a 

homogeneous fluid, neglecting clustering and condensation effects. An introduction to 

the type of analysis required to incorporate condensation is given in chapter 5. 

Finally, the real gas equations of state are selected to represent ones utilized by 

chemical engineers in the supercritical fluid field, especially those readily adaptable to 

mixtures of supercritical fluid solvents with solutes. The primary task of this thesis 

was to include such equations of state into the rigorous numerical analysis of the 

supersonic free-jet. As we discuss below, this requires care in selecting initial 

stagnation conditions (e.g. avoiding expansions for which pressures can become 

negative) determining the best strategy to establish the initial guess for the numerical 

time marching technique, and accurate evaluation of thermodynamic properties 

including the speed of sound. 

2.2  Numerical Method Used in the Free-Jet Calculations 

To calculate the flow, a shock capturing method that automatically finds and 

obtains the location of the Mach disk was chosen. The capturing method finds where 

the shock will occur by solving the governing differential equations. The disadvantage 

of the capturing method is that the shock is spread over a finite number of points on 

the computational grid which means that the location of the shock is not precise to 
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within a few grid points. The calculated shock’s thickness is therefore larger than the 

actual thickness of the shock. 

When using the shock capturing method, experience shows that the solution using 

the conservative form of the differential equations is stable and smooth, while the non-

conservative form oscillates before and after the shock, and the shock location may 

appear in the wrong location (Anderson 1995). This property is due to the fact that the 

conservative form conserves the flux of mass, , momentum, u, and v, and energy,  

(e+1/2(u
2 

+ v
2
)), and the difference equations automatically satisfy the Rankine-

Hugonot relations across each cell including those of the shock. 

Since we assume the flow is inviscid, the equations solved are Euler’s equations. 

Steady state Euler’s equations are hyperbolic when the flow is supersonic, and elliptic 

when the flow is subsonic. Introducing the time variable into the differential equations 

makes them hyperbolic with respect to time, whether the flow is subsonic or 

supersonic, and allows us to solve a steady state problem using an unsteady form of 

Euler’s equations. These time-dependent equations are solved until the solution 

converges to the steady state solution. 

Although the method of characteristics is regarded as the most accurate for the 

isentropic supersonic free-jet expansion, the time-dependent methods, in addition to 

correctly capturing the shock wave structure and including the kinetic effects, are 

needed to extend the calculation to the viscous subsonic flow region. Many texts 
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provide recipes for and summarize the advantages and disadvantages of various finite 

difference numerical methods applicable to the free-jet supersonic expansion (Hirsch 

1990; Hoffman 1992; Chung 2002). One of the difficulties of incorporating real gas 

effects into the supersonic compressible flow calculation is the need to calculate the 

speed of sound at each grid point and time step. This evaluation for the speed of sound 

is especially important in methods which incorporate compression and rarefaction 

waves, such as the piecewise-linear method (Saito et al. 1986). This method is a 

sequel to Godunov’s flux splitting method based on the concept of utilizing localized 

solutions of the one-dimensional Rieman problem to estimate the flow behavior in 

two-dimensional flow. Often for hypersonic nozzles, wherein flows originate from 

high temperature and pressure, it is sufficient to consider only the finite volume 

repulsive potential correction to ideal gases (Candler 2003). However, the supercritical 

fluid flows of this thesis originate from high pressure and sufficiently low 

temperatures that it is necessary to consider both the finite volume and the attractive 

potential corrections to ideal gas behavior. We have chosen the finite difference, two-

step Lax-Wendroff method because it has the following advantages: It is suitable for 

the hyperbolic partial differential equations of the free-jet; it has been utilized 

successfully for ideal gas free-jet expansions; the real fluid equations of state are 

easily incorporated; and the speed of sound enters explicitly only in the stability 

criteria for the time increment.  
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2.3  Quasi-One-Dimensional Approximation 

An approximation to the two-dimensional axisymmetric equations are the quasi-

one-dimensional equations (QOD). The QOD equations are often used in compressible 

flow to study subsonic-to-supersonic expansions in nozzles where a physical nozzle 

area A(x) is prescribed (Miller 1988; Anderson 1990). The equations are quasi-one-

dimensional because the properties are assumed to change only in the flow coordinate 

x along the nozzle centerline, and to be constant normal to this direction. The QOD 

equations are obtained rigorously from the exact axisymmetric equations by 

integrating over the direction normal to the centerline. They can be easily solved as 

exact algebraic equations or with the time marching Lax-Wendroff method (Anderson 

1995). This QOD problem can therefore serve as a test for the numerical solution of 

the time-dependent  method. 

Unfortunately the free-jet has no physical nozzle boundary so the area A(x) is not 

prescribed. However, a common approach is to solve the axisymmetric free-jet (ASFJ) 

problem for Mach number along the centerline, and then use these rigorous results to 

work backwards with the QOD equations to identify an effective A(x) which will 

mimic the ASFJ. For our QOD studies we have taken an A(x) which closely mimics 

the ideal gas expansion with constant specific heat ratio γ = 1.4, which as we show 

below is a useful approximation for CO2. In addition, we have identified stream tubes 

from our ASFJ calculations below to determine an effective A(x), by tracing a 

streamline back from the Mach disk to the inlet, thus defining a stream tube or 
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effective diverging nozzle contour in which the central core of the expansion occurs 

(figure 2.28). The QOD calculations can also be easily extended into the subsonic 

regime upstream of the sonic exit. We obtained an A(x) approximation for this regime 

based on early pitot tube data for real nozzles (Ashkenas and Sherman 1966). 

We use the QOD results to compare equations of state, to test our time marching 

numerical calculation, and to make preliminary assessments of kinetic effects, such as 

vibrational relaxation (Anderson 1970) or condensation. Investigators in Rapid 

Expansion of Supercritical Solutions (RESS) have used the QOD to investigate the 

expansion (Reverchon and Pallado 1996; Weber and Thies 2002). 

2.4  Isentropic Calculations 

The inlet conditions for the free-jet are established by an exact isentropic 

calculation from stagnation conditions (Po, To, ho, so) to sonic conditions at the orifice 

exit. Together with the thermodynamic relations for enthalpy, h, entropy, s, and the 

speed of sound, c, this requires the simultaneous solution of three equations for the 

three unknowns, ρ, T, and u:  

                                             h(ρ,T) + u2 /2 = ho(ρo,To) 

                                             s(ρ,T) = so(ρo,To) 

                                           u = c(ρ,T)                                                             (2.1) 



 

 

21 

Together with the exit orifice diameter this calculation also provides the flow rate. 

We have assumed no streamline curvature at the inlet to the free-jet, which is an 

approximation best achieved by a short converging nozzle (Miller et al. 1982).  

2.5  Governing Differential Equations 

2.5.1  Free-Jet Equations 

As stated before, the preferred method of solving the governing differential 

equations is the conservative form of Euler’s equations. The conservative form 

preserves the flux of all quantities, , u, v, and (e+1/2(u2 + v2)). The conservative, 

two-dimensional axisymmetric, inviscid flow equations are: 
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 The first equation (2.2) represents the conservation of mass. The second and 

third equations (2.3) and (2.4) are the conservation of momentum in the axial and 

radial directions respectively. The fourth equation (2.5) is the conservation of energy. 
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In these equations,  is the density of the fluid, u is the velocity in the axial direction, 

v is the velocity in the radial direction, P is the pressure, and e is the internal energy 

per unit mass. With additional equations of state for P(,T) and e(,T), we have six 

total differential equations for six unknowns, , u, v, e, T, and P. The equations are 

non-dimensionalized with respect to the properties at the stagnation chamber, To, Po, 

o, and with respect to the orifice diameter D, as follows: 
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where R is the gas constant per unit mass. 

The resulting non-dimensional conservative equations, for axisymmetric, inviscid 

flow, are then written in vector form as follows: 
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where “E” is the solution vector, “F” and “G” are the flux vectors and “H” is the 
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source term. Zo is the compressibility at the stagnation condition, Zo= Po /oRTo, and 

for an ideal gas Zo = 1. 

The flow is axisymmetric and therefore only one-half of the flow is calculated. 

Figure 2.1 shows the grid used for the free-jet impacting a vertical plate, with the plate 

placed at a distance Xp = 9.4D, where D is the orifice diameter. The grid is 

rectangular with 226 x 240 points. The indices i and j denote equally spaced grid 

points in the axial and radial directions, respectively (x =r = D/24). The numerical 

algorithm can be adjusted for an arbitrary plate location, and for our results, Xp was 

varied from 5D to 15D. We found that for the free-jet into the atmosphere, the grid in 

the axial direction needs to be at least equal to 20D in order for the numerical 

calculation to reach a steady state solution. The first 12 grid points on the left side of 

the grid are assigned to the orifice radius. To avoid the singularity of the equations at r 

= 0, we shift the grid points nearest to the axis of symmetry by r/2 from the exact 

location of the axis, and use a symmetry boundary condition.  

The two-step Lax-Wendroff method proposed by Sinha (Sinha et al. 1971) and 

modified later by Forney (Forney 1991) was chosen for the calculation. We assume 

that the flow properties at time t are known and we use a Taylor series expansion in 

time to get the new flow field at t +t. The numerical solution will directly give us E1, 

E2, E3, and E4 for each time step and then we solve for , u, v, e, T and P as follows: 
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Once , u, v, e, T, and P are calculated, we can calculate the elements of the 

vectors “F”, “G” and “H”. 

A full time step is used in the predictor step with forward differencing: 
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where E
*
 is a spatial smoothing term : 
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and Si,j is the artificial viscosity. The artificial viscosity we used is known to be 

successful with the two-step Lax-Wendroff technique (Anderson 1995): 
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The arbitrary parameters, Cx and Cy, are chosen after observing their effect on 

the solution. Typical values of Cx and Cy are between 0.01 and 0.3, and Cx= Cy=0.15 

are used for this paper. 

Once the predicted values of the elements of vector “E” are calculated, we 

calculate the predicted  
p
, u

p
, v

p
, e

p
, T

p
, and P

p
 as described in equation (2.7). We then 

calculate the predicted elements of vectors “F”, “G”, and “H”, henceforth called “F
p
”, 

“G
p
”, and “H

p
”. This process is repeated for all interior grid points shown in figure 

2.1. Unlike the internal points, the value of the elements of vectors “F”, “G”, and “H” 

at the boundary are imposed at all time steps. They are then used with the internal 

values to calculate the corrected quantities in the next corrector step. 

A full time step is used in the corrector step with backward differencing: 
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Each step is first order accurate since the expansion contains only first order terms 

in the relevant Taylor series. It becomes second order accurate when these two steps 

are combined. This reduces the amount of computing time, while maintaining the 

accuracy of the computation. 

The smoothing term E
*
 and the artificial viscosity term Si,j were used separately in 

the difference equations. The smoothing term E
*
 was first used to find a steady state 

solution of the problem. However, the barrel shock and the Mach disk appear much 

sharper when the calculation is extended by using the artificial viscosity Si,j for several 

additional time steps. In agreement with Forney (1991), we found that the smoothing 

technique was sufficient to locate the shock and damp out oscillations, and that 

running with artificial viscosity will actually cause the solution to degenerate after 

10,000 time steps. By trial and error, and by comparing with known ideal gas results, 

we therefore only used the artificial viscosity term for about 1000 additional time steps 

to improve the accuracy of the smoothing solution, discussed below. 

The method is explicit, which means that the time step used in the calculation can 

not be arbitrarily chosen but is constrained by stability requirements. The Courant 

Friedrich and Lewy (CFL) criteria for stability is used to calculate the time step 

(Hirsch 1990): 
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This limitation on t requires the calculation of the speed of sound, c, at each grid 

point at the end of each time iteration in order to determine the new time step for the 

next iteration. The speed of sound c(ρ,T) = (dP/dρ)s
1/2

 enters explicitly into the 

calculation for the stability constraint on the time step. In order to achieve the 

accuracy required using any of our equations of state, we numerically evaluated the 

derivative (dP/dρ)s, at any ρ, and T by selecting a small Δρ about the local ρ and 

calculating the associated ΔP for an isentropic process using both P(ρ,T) and s(ρ,T) 

equations of state. Since for the CO2 free-jet the vibrational degrees of freedom are 

frozen, we essentially compute the frozen speed of sound which is an appropriate 

speed for these numerical methods. 

We set initial conditions for , u, v, e, T and P, for all the interior grid points in 

order to start the finite difference solution. Although for fixed boundary conditions the 

steady state solution of CO2 is independent of initial conditions, we found that there is 

a narrow range of acceptable initial values for which convergence can be achieved 

when using the real gas equations of state. By trial and error we found that a realistic 

set of initial conditions come from the steady state solution of the ideal gas. The 

solution of the ideal gas free-jet, with  = 1.4, is used as the initial conditions for the 

real gas CO2 calculation. For this initial ideal gas expansion, sonic conditions u
*
, 

*
 

and T
*
 are applied as the initial condition for all points in the axial direction i =1 to 

imax when j =1 to12. Ambient conditions are applied for all points in the axial 

direction when j =13 to jmax, as follows: 
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The boundary conditions are the governing elements of the entire computation, 

and there is a set of boundary conditions that works with each method. Guided by 

others (Sinha et al. 1971), we found that the following set of boundary conditions 

converge to a steady and stable solution. For the two types of problems we are solving, 

free-jet impacting the plate and free-jet into the atmosphere, the boundary conditions 

were the same except for the far right hand side of the grid boundary. 

For the boundary conditions on the inflow, j =1 to 12 are the grid points that 

correspond to the orifice. This is where the jet exits the orifice and sonic conditions 

were applied: 

 
 

 

  )14.2(Tt,j,1T

t,j,1

0t,j,1v

ut,j,1u

:12j1

















 

The jet conditions, 
*
, u

*
, and T

*
 were obtained by solving the isentropic 

expansion from the stagnation chamber to the orifice exit, where Mach number equals 

one, as shown in section 2.7.1 below. 
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The boundary conditions for all grid points above the orifice are based on ambient 

conditions, with zero velocity in both axial and radial directions: 
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For the boundary conditions on the top boundary, ambient conditions are used for 

the density and the temperature. The velocity in the radial direction is calculated by 

linear extrapolation using the two adjacent interior grid points. The velocity in the 

axial direction is set equal to zero: 
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For the boundary conditions on the outflow and the free-jet into a plate, a 

reflection boundary is used (Moretti 1968): 
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For the boundary conditions on the outflow and the free-jet into the atmosphere, 

we apply the condition of zero-gradient of the flow parameter: 
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For the boundary conditions on the centerline, symmetry boundary conditions are 

used: 
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2.5.2  Quasi-One-Dimensional Equations 

The quasi-one-dimensional, inviscid, equations are written in the conservative 

form as follows: 
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Together with the equations of state, P = P(,T) and e = e(,T), we have a total of 

five equations, to solve for five unknowns , u, e, T, and P, assuming the geometry 

A(x) is specified. 
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Again, the equations are non-dimensionalized with respect to the properties at the 

stagnation chamber, To, Po, o, and co, and the throat diameter D, as follows: 
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The non-dimensional equations of the conservative, quasi-one-dimensional,       

inviscid flow are written in vector form as follows: 
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where k1 = Po /oco
2
, and k2 = eo /co

2
, are dimensionless constants. 

The convergent-divergent area used in our calculations is shown in figure 2.2. As 

noted above, it is selected to approximate the rate of expansion of the ASFJ and is 

discussed below. A grid of 510 points is used to model the convergent-divergent area. 

The first grid point, labeled point 1, corresponds to the inlet from the stagnation 

chamber. The last point on the grid, labeled imax, corresponds to the exit of the 
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nozzle. The points are equally spaced. The distance between two points is denoted by 

x and is equal to D/40, where D is the diameter at the throat. 

The numerical difference method used is the same as the method discussed above 

for the axisymmetric free-jet calculation except that for this one-dimensional 

approximation we were able to use the artificial viscosity damping directly, avoiding 

the use of the smoothing term. 

For the boundary conditions at the inlet of the nozzle all the properties, except the 

velocity, are specified as constant inlet conditions. The velocity must be unspecified to 

permit the calculations to determine the flow rate of the choked flow, and is calculated 

by linear extrapolation using two adjacent interior grid points: 
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At the exit of the nozzle, the pressure is specified and the rest of the properties are 

calculated by linear extrapolation using the two adjacent interior grid points. The value 

of P set as a boundary condition at the exit determines the shock location inside the 

nozzle. 

Artificial viscosity was discussed for the axisymmetric free-jet above. For the 

QOD calculations, the artificial viscosity term added to the difference equations is 

(Anderson 1995): 

  )23.2(EE2E
pp2p

|pp2p|C
S 1i

t
i

t
1i

t

1i
t

i
t

1i
t

1i
t

i
t

1i
t

x
j,i

t










  



 

 

33 

The arbitrary parameter Cx was taken as Cx = 0.2 in the QOD calculations.  

2.6  Thermodynamics and Equations of State 

The additional equations needed to complete the calculations above are the 

equations of state for the thermodynamic variables: P = P(,T), e = e(,T), h = h(,T), 

and s = s(,T), where P is the pressure, e is the internal energy, h is the enthalpy, and s 

is the entropy of the fluid. 

For an ideal gas, with constant specific heats, Cp and Cv, these relations would 

be: P = RT, e = CvT, h = CpT, and s = Cp ln(T2/T1)-R ln(P2/P1), where R is the gas 

constant per unit mass. The complexity greatly increases for supercritical CO2, which 

is a real gas, rather than an ideal gas. We have used several equations of state in our 

calculations, including Redlich-Kwong and Peng-Robinson cubic equations (Sandler 

1999), as well as the 27-parameter equation (Huang et al. 1984). The cubic equations 

of state are readily adaptable to many mixtures of solutes with solvents because they 

have been well studied by chemical engineers and the mixture interaction parameters 

are available (Clifford 1999; Sandler 1999; Poling et al. 2000). 

The Redlich-Kwong equation of state is: 
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where Tc is the critical temperature of the fluid and Pc is its critical pressure. 

The Peng-Robinson equation of state is: 
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where  is the acentric factor. 

An additional equation of state for carbon dioxide which we have used, the 27-

parameter expansion derived by Huang et al. (1984) is: 
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where T= T/ Tc, = /c, T= 1-T, = 1-. The parameters b1,…..,b8, and 

c21,…..,c27 are given in the Appendix A. 

Calculations of e, h, and s are taken from standard texts (Wark 1995; Sandler 

1999). The enthalpy and entropy, using the Redlich-Kwong relation, become: 
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The enthalpy and entropy using the Peng-Robinson equation of state become: 
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where B = Pb/RT 

The enthalpy and entropy using the 27-parameter equation of state become: 
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We have used three approaches to compute the ideal gas contribution for hIG and 

sIG. An empirical heat capacity Cp,o(T) (Wark 1995) is used to determine the enthalpy 

and the entropy changes of an ideal gas between T1 and T2 as follows:  
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where (Wark 1995) cp,o = R (2.401 + 8.735e
-3

T – 6.607e
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T
2
 + 2.002e

-9
T

3
)  

Over the range of temperatures encountered in our supercritical CO2 expansions  

(below 350C) only the degenerate ν2 = ν3 bending modes of CO2 are excited (Tien 

and Lienhard 1971; Hecht 1990). As suggested in figure 2.3, at 350C only 6% of the 
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molecules are in the first excited state of this bending mode. Therefore, in addition to 

use of an empirical heat capacity Cp(T) to determine ΔhIG, we have also used the 

rigorous statistical mechanics relation (Anderson 1970; Tien and Lienhard 1971; 

Hecht 1990) to incorporate the contribution to h, s, and e of these modes for most of 

our calculations, and in particular to establish the inlet conditions to the free-jet 

expansion.  

Using statistical mechanics results, the ideal gas contribution to the enthalpy hIG is 

given by: 
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The constant hadj is chosen such that hIG is equal to zero at T= 273 K. v is the 

characteristic vibrational temperature which for carbon dioxide is v = 960.1 K (Hecht 

1990). 

Similarly, the ideal gas contribution to the entropy sIG is given by:  
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where, Tref = 273 K, Pref = 1 bar, and sadj is chosen such that sIG = 0 at T= 273 K and        

P= 1 bar. 

Figure 2.4 shows the calculation of the enthalpy versus temperature for carbon 

dioxide using the Redlich-Kwong equation of state with the empirical Cp= Cp(T), and 
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compares it to the Redlich-Kwong enthalpy calculated using the exact statistical 

mechanics expression for hIG. The two different methods of calculating enthalpy give 

similar results to within 4%. 

Finally, as we show below the vibrational bending mode freezes on the expansion 

very near the nozzle throat. Therefore a good approximation for the free-jet is to 

assume a constant Cp= 7/2 R. This is the third approach we have used to calculate hIG 

and sIG. 

Often for many steps in the calculations, we needed to invert an equation of state 

such as h(, T) or s(,T) in order to calculate T, given h and , or s and . Subroutines 

that use the secant method (Press et al. 1994) provide such a root finding calculation 

and an example subroutine is given in the Appendix B. The initial guess in these 

subroutines is critical in order to find the correct solution and it was chosen based on 

the latest available solution in the expansion. 

In order to verify the accuracy and consistency of our subroutines for the 

thermodynamic properties, we evaluated the differential equation of state relation     

de-Tds = Pdv which should be satisfied rigorously for a constant composition fluid. 

We verified the accuracy or our subroutines by integrating the relation over a range of 

conditions relevant to our CO2 expansion and we found that the equation was satisfied 

to within 0.1%.  
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In the next section we present the results of our calculations. We first discuss 

results using the QOD approximation, which guided us in the modeling used for the 

full two-dimensional axisymmetric calculations. The rigorous results are then 

presented for the axisymmetric expansions, which are the primary results of this 

thesis. 

2.7  Computational Results 

2.7.1  Quasi-One-Dimensional 

The running time for the QOD calculation , using real gas equations of state for 

supercritical CO2, on a Dell PC with a P4 CPU 1.80 GHz at 1 GB RAM, is 2 minutes. 

The solution reaches steady state after 4000 time steps at which point the flow field 

variables stop changing. The results presented in this section are for the following 

stagnation conditions: To= 343 K, Po= 80 bar. The pressure at the exit, Pexit , was fixed 

and set equal to 1 bar. The nozzle throat diameter D is 50 μm, and the length of the 

nozzle in the supersonic region is 11.5 nozzle diameters.  

Figures 2.5, 2.6 and 2.7 compare the solution for the temperature and pressure 

profiles and for the Mach number for a CO2 expansion using the Redlich-Kwong 

equation of state to that assuming an ideal gas,  = 1.4. These results show that the 

ideal gas approximation is remarkably good except for temperature after the shock. 

The Peng-Robinson equation of state gave similar results to those of the Redlich-

Kwong  equation of state and some results are summarized in table 2.1 which is 
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discussed further below. We found that the 27-parameter equation of state yields a 

negative pressure upstream of the shock and we were therefore unable to achieve 

convergence to a steady state solution in the divergent part of the nozzle for this 

equation of state. For the isentropic expansion to the throat, the 27-parameter equation 

of state gives similar results as Peng-Robinson or Redlich-Kwong. 

Figure 2.8 shows the temperature profile for the Redlich-Kwong equation of state, 

using the exact statistical mechanics equations in the thermodynamic properties, with 

and without the vibrational modes. These results show, as discussed above, that the 

vibrational modes make only a small contribution to the energy of the expansion. 

Calculations for vibrational relaxation below support this approximation even further 

by showing that the vibrational bending modes freeze downstream of the throat. 

Therefore, a reasonable approximation is to assume that only the rotational and 

translational degrees of freedom contribute to the ideal gas enthalpy in the free-jet. 

Therefore when comparing the rigorous equation of state results for supercritical CO2 

to ideal gas results, we use hIG = 3.5RT or the γ = 1.4 results. 

Figure 2.9 shows the trajectory of the expansion when Po= 80 bar and Po= 137 

bar. Both expansions enter into the two-phase region. The expansion at Po= 137 bar 

may actually cross the spinodal curve, where super-saturation is unstable and any 

perturbation should cause condensation to occur. This condensation could only be 

inhibited at very low densities where there are insufficient collisions, which should not 
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be the case for this expansion under supercritical conditions. This suggests that our 

assumption of no condensation may be a poor one under these conditions. 

To test the accuracy of the numerical method used, properties at three different 

locations along the nozzle were calculated analytically and compared to the numerical 

solution. The three positions were at the throat, before the shock, and after the shock. 

For an ideal gas, the QOD equations can be simplified to algebraic relations which  

can be solved analytically, and the properties of the flow can be calculated at any 

location along the nozzle (Anderson 1990). Unfortunately, for the real gas there is no 

exact algebraic solution.   

To calculate exactly the properties of CO2 at the throat of the QOD where sonic 

conditions occur and the mass flow rate is determined, we had to solve the 

conservation equations (2.1), for isentropic flow from the stagnation source to the 

throat. These equations were solved using the following iterative algorithm at the 

sonic throat conditions: 
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To calculate the properties before the shock, specified at the calculated A(x) for 

the flow, in the divergent section of the nozzle, the same set of equations (2.1) are 

solved using the same algorithm with elimination of the first step, since the mass flow 

rate was determined by the sonic conditions at the throat. 

To calculate the properties after the shock, we solved the conservation equations 

for a normal shock, known as the Rankine-Hugonot relations between properties 

upstream 2 and downstream 3: 
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The algorithm used to solve Rankine-Hugonot equations is: 
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Table 2.1 compares exact and time marching numerical solutions of the QOD 

equations at the three positions described above, using Redlich-Kwong, Peng-

Robinson, and (γ = 1.4) ideal gas equations of state. These results show that the time 

marching calculation works well but is least reliable downstream of the shock. 

Because the different equations of state give similar results, most of our ASFJ 

calculations below were done with the simplest equation of state, the Redlich-Kwong, 

in order to probe the supercritical fluid effects in the supersonic free-jet expansion. 

To further understand the contribution of the vibrational modes, we examined the 

vibrational relaxation (Anderson 1970) for the degenerate ν2,3 modes of CO2, using the 

QOD expansion. The approach to equilibrium of the vibrational energy is (Bradley 

1962):  

)34.2(
EE

dx

Ed
u

dt

Ed veq,vvv




  

where Ev,eq is the equilibrium vibrational energy evaluated at the local temperature of 

the gas, and  is the vibrational relaxation time. Two different relations of  for CO2 

were taken from the literature (Anderson 1969; Yamazaki et al. 1980; Vincenti 1986): 
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where Z is the collision number for vibrational to translational energy transfer,  is the 

binary collision frequency, c is the mean molecular speed,  is the mean free path, d is 

the diameter of the CO2 molecule, and n is the number density of molecules per unit 

volume.  

Equation 2.34 is integrated along the nozzle from the inlet to the exit. A plot of 

the fraction of initial vibrational energy remaining, Evib / Evib,o, versus distance, x/D, 

for the same 80 bar and 343 K expansion is shown in figure 2.10. This result shows 

that vibrational energy stops cooling, freezes, and has negligible contribution to the 

expansion beyond the sonic exit. Hence, as already suggested above, a reasonable 

ideal gas approximation for CO2 under our conditions is expected to be a constant γ = 

1.4 free-jet expansion. Further, when using the real gas equation of state, a reasonable 

Cp for the ideal gas contribution to enthalpy and entropy is simply Cp = 3.5R to 

account for the translational and rotational modes. 

2.7.2  Two-Dimensional Axisymmetric Free-Jet Impacting a Plate 

The process of obtaining a solution for an axisymmetric free-jet using the 

Redlich-Kwong equation of state consisted of three steps: first, the ideal gas codes 

were run for 2000 time steps to obtain initial conditions for Redlich-Kwong, as stated 
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above. Then the Redlich-Kwong codes using the smoothing term were also run for 

2000 time steps. Finally, the Redlich-Kwong codes with the artificial viscosity term 

was used to finish the calculation (using the solution obtained from the smoothing 

codes as initial conditions) and were run for 1000 time steps. The total computational 

time for all three runs for CO2 ASFJ, on a Dell PC with a P4 CPU 1.80 GHz at 1 GB 

RAM, is 3 hours. 

Figure 2.11 shows our calculated density contours for a supercritical CO2 ASFJ 

expansion, at 70
o
C and 80 bar, directed at a flat plate, and indicates the rapid changes 

through the barrel and normal shock waves. Figure 2.12 is the density contours for a 

supercritical CO2 expansion at 70C and 137 bar. A comparison of the graphs shows 

that the Mach disk moves downstream at the higher pressure and that the diameter of 

the Mach disk increases at higher pressure. This is consistent with ideal gas results 

developed by Bier and Schmidt (1961). Figure 2.13 is the density contours for the 

supercritical CO2 expansion at 70C and 137 bar, when the plate is set closer to the jet 

at Xp = 7.5D. It shows that the Mach disk becomes more rounded when the plate is 

closer to the source.  

As a comparison to an ideal gas, a plot of the calculated density contours of an 

ideal gas with both  = 1.4 and  = 5/3 are shown in figure 2.14 and figure 2.15 

respectively. As expected the shape of the shock structure of CO2 (figure 2.11) more 

closely resembles the ideal gas,  = 1.4, expansion. 
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Figures 2.16 and 2.17 show the axisymmetric profile for temperature and 

pressure, respectively, along the centerline for the supercritical CO2 at 70C, for three 

different values of  Po= 80, 137, and 200 bar. The results demonstrate the ability of the 

numerical method to capture the shock waves. The source pressure effect on the 

temperature downstream of the shock due to the real gas effects is significant, and 

important to RESS experiments. 

Figures 2.18 and 2.19 show the centerline temperature and pressure calculated 

using only smoothing and then adding numerical viscosity for a supercritical CO2 

expansion at 70C and 80 bar. Additionally, on this plot, is the ideal gas  = 1.4 

calculation. The artificial viscosity improved the solution up to the shock but 

introduced numerical oscillation beyond that point. Just as we found from the QOD 

calculation, the ideal gas approximation is a reasonable first approximation, but the 

important result is that the real gas solution has a much lower temperature downstream 

of the shock compared to the ideal gas, which returns close to the stagnation 

temperature. This result is expected by analogy with the thermodynamic Joule-

Thompson effect.  

To test the accuracy of the numerical method for this ASFJ, we compared 

calculated profiles for an ideal gas,  = 1.4, along the centerline up to the shock 

location with well known results from the method of characteristics (Miller 1988; 

Ashkenas and Sherman 1966). Figure 2.20 shows a comparison between the numerical 

solution for the temperature profile, using both the smoothing and the numerical 



 

 

47 

viscosity techniques, and the exact solution from the method of characteristics. The 

Mach disk and flow properties are more accurately defined by including the numerical 

viscosity on the final time steps, and the Lax-Wendroff results are accurate within 8%.  

As we noted above, most of our numerical calculations are based on the Redlich-

Kwong equation of state because of its simplicity and because it is well used by 

chemical engineers to treat supercritical CO2. Further, the QOD calculations (Table 

2.1) showed that there is little difference between the Peng-Robinson and Redlich-

Kwong equations of state. Our axisymmetric numerical codes are adaptable to any 

equation of state and, as an example, we compare pressure and temperature centerline 

profiles in figures 2.21 and 2.22 for both equations of state. Once again, under our 

conditions, we find that either equation of state is suitable. Therefore in this thesis, all 

of the following calculations are made using only the Redlich-Kwong equation of 

state. When solutes are introduced, there may be more important differences as the 

equations of state are extended to binary systems.  

 Figures 2.23 and 2.24 show the ASFJ profiles for pressure and temperature along 

the plate, normalized by source conditions, for the same three cases. The plate 

pressure and temperature dependence on source pressure is that expected by the 

strength of the shock which is determined by its location in the expansion. At the 

plate, there is a core central region of higher pressure and temperature which falls off 

at a radial distance of about five source diameters. Experimental data is compared with 

these results in chapter 3 below. For some cases, the pressure profiles at the plate have 
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oscillations. These oscillations are not numerical but real oscillations observed 

experimentally and previously reported for ideal gases (Teshima 1990). A detailed 

example of these oscillations, after the solution has converged to steady state, is shown 

in figure 2.25 for pressure at the plate for a supercritical CO2 expansion at 80 bar. 

Figures 2.26 and 2.27 show our calculated velocity field at 70C, 80 bar and 137 

bar, for a plate placed at Xp = 9.4D. The flow after the shock is directed more strongly 

outward at higher pressure. Streamtubes from our ASFJ velocity solution were used to 

determine an effective area A(x) for the QOD calculations. These were calculated by 

integrating the equation for a streamline, r = ro + v/u dx,  from a point ro at the sonic 

inlet to the Mach disk, where u and v are the axial and radial components of the 

velocity field. At each step, this equation finds the radial position along the streamline. 

This usually falls between grid points so the next step in the integration requires 

interpolation of u and v at the adjacent nodes.  

Figure 2.28 shows the area profile, normalized by the sonic or throat area for the 

appropriate streamline, extracted from our ASFJ calculations for supercritical CO2 at 

Po= 80 and 137 bar as described, and compares it to the area profile obtained from the 

exact solution for an ideal gas,  = 1.4, isentropic expansion result. The two area 

profiles are quite similar and this result supports the use of the ideal gas QOD 

approximation analysis which previous researchers have used to investigate 

supercritical free-jet expansions.  
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The above streamlines, shown in figure 2.29, can also be used to calculate the 

percent of the mass flow passing through the Mach disk. This is accomplished by 

tracing the last streamline, denoted as j = 6 in figure 2.29, which does not cross the 

disk to its radial position at the inlet. Using this position, which occurs near r = D/4,  

we conclude that only about 25% of the total flow passes through the Mach disk. This 

result agrees qualitatively with the estimates of 20% based on ideal gas expansions by 

Weber and Ties (2002). 

2.7.3  Two-Dimensional Axisymmetric Free-Jet into Atmosphere 

The same procedure used in calculating the solution for the free-jet impacting the 

flat plate is used for the free-jet into the atmosphere. Figure 2.30 shows our calculated 

density contours for a supercritical CO2 ASFJ expansion into the atmosphere, at 70
o
C 

and 80 bar. Figure 2.31 shows our calculated velocity field for the jet at the same  

conditions. Figures 2.32 and 2.33 show the ASFJ profiles for pressure and temperature 

along the centerline. By comparing the density fields of the expansion into the 

atmosphere to the jet impacting the flat plate, it is shown that the Mach disk has much 

less curvature when the plate is removed and becomes more rounded as the plate is 

placed closer to the source. By comparing the velocity field of the two expansions, we 

see that the flow field is bent outward when the plate is placed in front of the jet. 

We had difficulties converging to a solution for the free-jet expansion into the 

atmosphere at a high stagnation pressure, Po= 200 bar, where multiple shocks can 

appear. We also believe this numerical difficulty may be due to the fact that at such 
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high pressures, the expansion has crossed the spinodal regime where the equation of 

state is unstable, and where condensation may be inevitable. In fact, under such 

conditions, our shadowgraph measurements below show a second shock forming in 

addition to CO2 condensation downstream of the Mach disk. We are still investigating 

this condensation phenomenon. 

In this chapter we have shown that our numerical method is able to converge to 

reasonable solutions for the free-jet expansions of supercritical fluids, capturing the 

required shock wave structure. In the next chapter, we describe experimental results 

which indicate that these calculations provide very reasonable results for the jet 

structure. We are therefore encouraged to extend the calculations to include solutes 

and possible condensation and/or precipitation effects, although as we show in chapter 

5, the latter may be too difficult to deal with in a quantitative manner. 
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Figure 2.1:  Rectangular computational grid 
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Figure 2.2:  Convergent-divergent nozzle profile 
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Figure 2.3:  Fraction of CO2 molecules in the n

th
 vibrational state  

of the degenerate bending mode 
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Figure 2.4:  Enthalpy of CO2 using Redlich-Kwong equation of state comparing 

two evaluations of the heat capacity 
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Figure 2.5:  QOD temperature profile, CO2 at To= 70C Po= 80 bar 
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Figure 2.6:  QOD pressure profile, CO2 at To= 70C Po= 80 bar 
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Figure 2.7:  QOD Mach number, CO2 at To= 70C Po= 80 bar 
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Figure 2.8:  QOD temperature profile with and without vibrational modes, CO2 at 

To= 70C Po= 80 bar 
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Figure 2.9:  QOD expansion PV trajectory 
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Figure 2.10:  Vibrational relaxation of CO2 
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Figure 2.11:  ASFJ CO2 computed density contours, Xp= 9.4D 
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Figure 2.12:  ASFJ CO2 computed density contours, Xp= 9.4D 
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Figure 2.13:  ASFJ CO2 computed density contours, Xp= 7.5D 

Po= 80 bar 

To= 70C 

Xp=9.4D 
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Figure 2.14:  ASFJ ideal gas,  =7/5, computed density contours, Xp= 9.4D 
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Figure 2.15:  ASFJ ideal gas,  =5/3, computed density contours, Xp= 9.4D 

Po= 80 bar 

To= 70C 
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Figure 2.16:  ASFJ CO2 centerline temperature profile 
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Figure 2.17:  ASFJ CO2 centerline pressure profile 
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Figure 2.18:  ASFJ CO2 centerline temperature at Po= 80 bar, To= 70C 
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Figure 2.19:  ASFJ CO2 centerline pressure at Po= 80 bar, To= 70C 
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Figure 2.20:  ASFJ for ideal gas, =7/5; centerline temperature  

at Po= 80 bar, To= 70C 
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Figure 2.21:  ASFJ CO2 comparing Redlich-Kwong and Peng-Robinson equation 

of state; centerline temperature at Po= 80 bar, To= 70C 
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Figure 2.22:  :  ASFJ CO2 comparing Redlich-Kwong and Peng-Robinson 

equation of state; centerline pressure at Po= 80 bar, To= 70C 
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Figure 2.23:  Calculated ASFJ CO2 pressure profile at the plate 
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Figure 2.24:  Calculated ASFJ CO2 temperature profile at the plate 
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Figure 2.25:  Calculated pressure oscillation at the plate at Po= 80 bar, To= 70C 
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Figure 2.26:  CO2 computed velocity vectors at Po= 80 bar 
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Figure 2.27:  CO2 computed velocity vectors at Po= 137 bar 
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Figure 2.28:  Effective QOD nozzle area 
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Figure 2.29:  Streamlines extracted from ASFJ CO2 at Po= 80 bar, To= 70C 
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Figure 2.30:  Computed density contours for CO2 ASFJ expansion into atmosphere 
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Figure 2.31:  Computed velocity vectors for CO2 ASFJ expansion into atmosphere 

Po= 80 bar 

To= 70C 
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Figure 2.32:  Centerline pressure for CO2 ASFJ expansion into atmosphere 
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Figure 2.33:  Centerline temperature for CO2 ASFJ expansion into atmosphere 
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Table 2.1:  Comparison between exact and numerical QOD solutions for Redlich-

Kwong (RK), Peng-Robinson (PR), and Ideal Gas (IG) 
 

at throat before shock after shock

Exact RK 0.54 0.00025 0.012

Lax-Wendroff RK 0.56 0.00025 0.011

Pressure Exact PR 0.57 0.00024 0.012

P/Po Lax-Wendroff PR 0.55 0.00024 0.012

Exact IG 0.53 0.00020 0.012

Lax-Wendroff IG 0.53 0.00024 0.011

Exact RK 0.83 0.088 0.74

Lax-Wendroff RK 0.86 0.090 0.69

Temperature Exact PR 0.86 0.084 0.72

T/To Lax-Wendroff PR 0.85 0.083 0.66

Exact IG 0.83 0.088 0.97

Lax-Wendroff IG 0.84 0.080 0.92
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CHAPTER 3 

EXPERIMENTAL SET-UP AND RESULTS  

3.1  Introduction 

We noted above that we have selected CO2 as the experimental supercritical fluid 

to investigate in this thesis because it is widely used as a supercritical solvent for 

Rapid Expansion of Supercritical Solutions (RESS) experiments, the equations of state 

are well established for CO2 as well as for mixtures of solutes, and the critical 

properties are reasonably easy to achieve, Tc = 31C and Pc = 73 bar. The experimental 

set-up described below is straightforward, utilizing commercial components and 

diagnostics. Because of the high supercritical pressures, it is necessary to work with 

very small orifices, less than 100 m, in order to maintain sufficiently low flow rates 

for the pumps to control and to have reasonable run times. The experiments are 

designed to validate the principal features of our calculations, including flow rate, 

shock structure, and temperature and pressure at the plate. This chapter deals with the 

orifice source, but we also report some preliminary results for capillary sources below 

in chapter 4. Once again, we have concentrated on the isentropic orifice source 

because it provides well defined inlet conditions for our free-jet calculations.
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3.2  Experimental Apparatus  

Figure 3.1 is a schematic of the experimental set-up, while figure 3.2 is a picture 

of the set-up. The fluid is compressed in an ISCO Model 100DX commercial piston 

driven syringe pump, capable of operating at pressures up to 10,000 psi with a 102 ml 

volume reservoir, and then directed into a VARIAN 8500 pump, capable of operating  

at 10,000 psi with a 250 ml volume piston. It is possible to operate the ISCO pump at 

a constant pressure or constant flow rate, while the VARIAN pump can only operate at 

constant volume flow rate. The piston of the VARIAN pump was redesigned to allow 

the addition of solute to the pump. 

All pressures are measured with Omega strain gauges, accurate to within 0.25%. 

The fluid leaves the syringe pump and passes through a water bath pre-heater to heat 

the fluid to the desired supercritical temperature before it enters the source stagnation 

chamber where a resistive heater controls the final stagnation temperature. A 

thermocouple enters directly into the stagnation chamber, just upstream of the nozzle, 

and is used to record the correct stagnation temperature. Figure 3.3 is a schematic of 

the nozzle block assembly, while figure 3.4 is a picture of the nozzle block showing 

the high pressure swagelok fitting into which the actual nozzle orifices are directly 

machined. The small nozzle orifices were made by drilling an aperture in the swagelok 

cap. We have primarily studied flows from two orifice diameters, 100 m and 50 m. 

The pumping capacity permitted us to reach up to 100 bar with the 100 m orifice and 
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200 bar with the 50 m orifice. A typical length over diameter of the orifices is five. 

The connections tubing used are standard 1/8 stainless steel with an inner diameter of 

0.055. All of the tubing connections are made with standard 1/8 swagelok stainless 

steel fittings, and 7 μm filters are used to prevent any particles from clogging the 

orifice. The size of the nozzle orifice is a compromise between being large enough to 

permit some resolution of the shock structure below and being small enough to be able 

to reach high pressures at reasonable flows with the pump. The system is fully capable 

of reaching pressures up to 500 bar and temperatures up to 200C. For the present CO2 

studies we have operated at temperatures near 70C and pressures between 80 bar and 

200 bar. 

The experimental procedure is as follows: The water bath is heated to 70C with 

an emersion resistive heater. A thermocouple is submerged inside the water bath to 

monitor continually the temperature of the bath. The length of the tubing that needed 

to be submerged in the hot water bath, in order to bring the temperature of flowing 

fluid from room temperature to within a few degrees of the desired source temperature 

70C, was calculated to be at least 100 cm. To maintain the temperature of CO2 at 

70C between the exit of the bath and the inlet of the orifice, we use a resistive heater 

inserted inside the nozzle block. The voltage and current are supplied to the resistive 

heater with a Hewlett Packard 6038A system power supply. The temperature of the 

stagnation chamber in the nozzle block is also monitored constantly during operation, 

with a type K Omega thermocouple. Carbon dioxide, purity 99.9%, was supplied from 
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a syphon type gas cylinder. After ensuring that all valves are closed (see figure 2.1) 

and heaters have been brought to the desired temperature, valve V1 is opened to fill the 

ISCO pump and CO2 is pressurized to the desired supercritical pressure. Valve V1 is 

then closed and valve V2 is opened to direct the high pressure CO2 to the VARIAN 

pump. This procedure is repeated until the piston in the VARIAN pump is filled with 

the high pressure CO2. Finally, we set the desired flow rate at the VARIAN pump and 

valve V3 is opened to allow the pressurized CO2 to flow inside the hot bath and to 

reach the desired stagnation temperature. 

A simple shadowgraph system is focused on the free-jet expansion and utilizes a 

lamp light source, a 10 cm diameter convex-convex lens, and a Nikon camera with a 

28-108 mm zoom lens which made it possible to take an enlarged image of the shock 

structure with a maximum f/3.5 aperture. A typical arrangement for the shadowgraph 

is shown in figure 3.5. The lens makes the light parallel before passing through the 

gas. The intensity of the light passing through the gas is a function of the density 

variation in the gas due to the density dependent refractive index (Liepman 1947). The 

shadowgraph technique is sensitive to the change in spacial gradient of density. The 

deflection of the light rays is proportional to the spacial gradient /x. In a region 

where /x is constant, the deflection of the rays is constant and no change in light 

intensity results on the screen. However, in a region where /x is not constant, that 

is 
2
/x

2
 is not zero, the deflection of the rays is not constant. This occurs in 
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particular at the shock wave where the density rises very suddenly causing a high 

curvature in the density variation and a dark line is produced on the screen. 

The plate used in the experiment is a 6.5 cm by 6.5 cm aluminum plate, 1.5 cm 

thick. The face of the plate is polished and perfectly smooth and flat. The plate is 

attached to a micrometer device to allow sensitive positioning of the plate to the 

accuracy of 10 m, or one tenth of a nozzle diameter, when D = 100 m. The vertical 

plate can be put as close as three nozzle diameters from the source and then removed  

to study the free-jet into the atmosphere.  

Figure 3.6 shows the experimental set-up for the pressure measurement at the 

plate. An Omega strain gauge low pressure transducer (model PX602) is inserted from 

the back of the plate and opened to the front surface through a 100 m orifice, 

minimizing the dead space in front of the strain gauge. The voltage and current are 

supplied to the pressure transducer with a Hewlett Packard 6634A system DC power 

supply. The plate was moved vertically, horizontally, and axially in order to obtain a 

profile. 

Measurement of temperature is much more difficult because of heat transfer 

effects, both at the plate and in the thermocouple bead itself. We did not make any 

corrections for heat transfer so our data must be considered to be qualitative, and as 

we show it is the least satisfactory data with which to compare our calculations. We 

did compare plastic plates with metal plates to ascertain the magnitude of the heat 
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transfer effect. To measure plate temperature, a 250 m sheath metal thermocouple 

(Omega  KMTSS-010G) shown in figure 3.7 is inserted (slip-fit) from the rear until it 

was flush with the front of the plate surface. We also made measurements with the 

thermocouple protruding about 100 μm in front of the plate. Again, to obtain some 

measure of the heat transfer effect, a 50 m type K thermocouple (Omega CHAL-002) 

was built by inserting the 2 wires inside a two-hole ceramic rod (Omega TRM-

005132). The inside diameter of the holes is 0.005 which allows the wires to be held 

tight in place in front of the free-jet. The outside diameter of the ceramic rod is 1/32 

and is inserted (press-fit) into the plate. The size of the thermocouple opening in the 

plate, together with the heat transfer effects, made it difficult to resolve the 

temperature profiles (see below). The resulting temperature profiles were similar for 

the three techniques and most of our results were taken with the flush mounted 250 

m thermocouple. 

As we noted above, the calculations predict that the real gas effects are most 

significant for temperature downstream of the Mach disk shock. Therefore, in order to 

obtain some idea of the temperature of the flow in the free-jet, we suspended a small  

100 m thermocouple bead onto two 50 m wires and moved it directly into the jet, 

probing through the Mach disk as shown in figure 3.8. Figure 3.9 shows a picture of 

this probe in which the bow shock structure in front of the probe is seen by the 

shadowgraph. We discuss the results for this  probe below, but clearly heat transfer 

effects are also important for this measurement. 
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3.3  Experimental Results and Comparisons with Theory 

As described above in chapter 2, the flow rate of supercritical CO2 through the 

nozzle orifice is accurately calculated using any of our equations of state, by assuming 

isentropic flow from stagnation conditions to choked sonic flow at the orifice exit or 

throat of the expansion. This flow rate is also the most accurate experimental 

measurement because of the quality of the piston driven displacement syringe pump. 

Nozzle diameters were calibrated by measuring the flow rates for ideal gas argon 

expansions, for which the equation of state is exact, and comparing with exact 

calculations. Heat transfer is negligible in such short nozzles so that the flow is 

adiabatic. We verified this by comparing runs with the nozzles completely emerged in 

a constant temperature bath to runs with the nozzle suspended in the ambient air. It is 

also necessary to convert the flow rate at the pump, which is a displaced volume flow 

rate, into a mass flow rate by using the equation of state to convert the measured 

temperature and pressure into a CO2 density. In all cases we did this consistently for 

each equation of state. That is, if our downstream analysis were based on the Redlich-

Kwong equation of state, then we used the Redlich-Kwong equation to determine 

properties at all locations, including the pump, nozzle stagnation chamber, the nozzle 

exit or throat, and in the free-jet itself.  

Even though the core of the nozzle flow is isentropic, there is a small viscous 

boundary layer which causes the flow diameter to be slightly less than the geometric 

diameter. In order to determine the effective flow diameter, we made accurate flow 
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rate measurements with argon and compared them with the isentropic ideal gas 

calculation to obtain the flow diameter, the only unknown in the calculation. Typically 

this gave us a discharge coefficient between 0.9-1.0, which we then used in our CO2 

calculations. The obvious approximation is that the boundary layers are similar for the 

ideal gas and the real CO2 gas. The Reynolds number for the supercritical CO2 flows 

is of order 10
5
 while for the argon flows is of order 5x10

5
. We also used the computed 

CO2 flow rates and compared them with the measured rate in order to set a discharge 

coefficient. The two methods gave similar results and we feel our calibrations should 

be valid to within 5%.  

Figures 3.10, 3.11 and 3.12 show data and theoretical comparisons for several 

source conditions and three different equations of state. The orifice diameters 

indicated have been corrected for the discharge coefficients and are nominally 100 μm 

and 50 μm in size. Clearly our calculations are quiet reasonable for the flow rates, and 

we feel confident that they provide us with good inlet conditions for our free-jet 

calculations. As with the QOD calculations the differences between the equations of 

state are not substantial and we have therefore proceeded to utilize the simplest 

Redlich-Kwong equation state for most of our axisymmetric free-jet (ASFJ) 

calculations. The accuracy of the experimental data does not warrant a more rigorous 

equation of state, like the 27-parameter model or the Peng-Robinson.  

Figure 3.13 is a shadowgraph of supercritical CO2 expansion from a 100 m 

orifice into the atmosphere, showing the shock structure. From the shadowgraph 
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pictures, we can measure the position (x/D)MD of the Mach disk shock waves to within 

0.25 orifice diameters. To verify the accuracy of our measurements, we compared 

results for the Mach disk location for the argon free-jet expansions into the atmosphere 

without a plate to that of well established  ideal gas results in figure 3.14. The Mach 

disk location for ideal gases is insensitive to the specific heat ratio and given by        

(x/D)MD = 0.67 (Po/Pb)
1/2

, where Pb is the background ambient pressure (Miller 1988).  

Figure 3.15 shows the experimental Mach disk location for the supercritical CO2 

free-jet expansion into the atmosphere together with numerically calculated results, 

and the ideal gas correlation (x/D)MD = 0.67 (Po/Pb)
1/2

. The calculated results are good 

except at the highest source pressure. Remarkably, the ideal gas approximation 

appears to be a good first order approximation for the supercritical CO2, a result useful 

to RESS researchers. Pictures of the expansion into the atmosphere at different 

stagnation pressures are shown in figure 3.16. Only the jet at Po = 200 bar was visible, 

due to the considerable condensation behind the Mach disk when the pressure is high. 

For this high pressure, the shadowgraph shown in figure 3.17 also indicates a different 

shock structure than that at lower pressure. Condensation at these higher source 

pressures may account for some of the poor agreement with theory.   

Figure 3.18 is a shadowgraph of a supercritical CO2 expansion from a 100 m 

orifice impacting a flat plate at Xp/D = 7. Figures 3.19 thru 3.21 show the 

experimental shock position as a function of the plate position for CO2 together with 

our numerical results at three different source pressures, Po = 80, 137 and 200 bar 
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respectively. It is clear that the Redlich-Kwong CO2, ASFJ numerical calculations 

provide reasonable results for the shock position, even at the highest pressure. Figure 

3.22 is a shadowgraph of supercritical CO2 expansion impacting a plate placed at 9.4 

nozzle diameters and at stagnation pressure Po = 200 bar showing clearly the 

condensation occurring downstream of the Mach disk. It is therefore somewhat 

surprising that the 200 bar case agrees so well for the shock location given that the 

observed condensation resulted in the calculations poorly matching the experimental 

data for pressure and temperature at the plate (see below). 

Figure 3.23 compares the shock position as a function of plate distance, for argon 

and CO2, at a stagnation pressures near Po = 80 bar. At these lower source pressures, it 

again appears that ideal gas results should provide a reasonable approximation for 

supercritical CO2. 

Figure 3.24 shows examples of the pressure profiles at the plate for experimental 

and calculated results, at 80 and 137 bar, for the plate located at Xp = 9.4D. The 

agreement between experiment and calculation is reasonable at these pressure values 

and might be improved by the addition of viscous effects. Figure 3.25 shows the 

pressure profiles at 200 bar, where the experimental agreement with the calculated 

result is poor and, as mentioned above, is likely due to condensation effects observed 

downstream of the Mach disk in the subsonic flow impacting the plate. Because of its 

complexity, condensation has been ignored in our calculations, even though it is 
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known that the expansion enters into the two phase regions of supercritical CO2. We 

discuss our preliminary analysis of condensation in chapter 5. 

Figure 3.26 shows the data for pressure profiles at two different plate distances, 

Xp = 7.5D and Xp = 9.4D for the expansion of supercritical CO2 at Po = 137 bar and 

To = 343 K. The pressure, as expected, increases when the plate is closer to the source, 

but the agreement with our calculations is reasonable at both plate locations. 

Figures 3.27 and 3.28 show data comparing experimental and computed 

temperature profiles on the flat plate near the centerline. Again, there are no heat 

transfer corrections made to this data, so the calculated temperature is just that of the 

fluid and due to the effect of the plate on the expansion. Figure 3.27 shows the 

condition where there is the closest match and figure 3.28 shows the case of the 

poorest. Again, we believe that as the pressure increases, the agreement with the 

calculation deteriorates because of condensation effects which would warm the flow 

due to the heat release. We had very similar data using the two different sized 

thermocouples discussed above. We did find that using the plastic plate produces a 

colder temperature reading, which is closer by 10% to the Redlich-Kwong calculations 

for CO2 at 200 bar, because the heat transfer with the plastic plate is reduced. A closer 

look at the details of the temperature profiles near the centerline at the plate show that 

the agreement is even poorer than shown by the broad profiles. Figure 3.29 shows 

more detail for the 80 bar case, indicating that the calculation does not reproduce the 
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undulation indicated by the data near the centerline. It will be a challenge to both our 

calculations and experiments to improve and understand these plate profiles.  

Again, to provide data for a fluid where the complications of the real gas effects 

are absent we also have measured and computed a few ideal gas argon plate profiles. 

Figures 3.30 and 3.31 show the pressure and temperature profiles at the plate for an 

ideal gas argon expansion at To= 22C and Po= 80 bar, and compares the experiments  

to the calculations for an ideal gas,  = 5/3, at the same stagnation conditions. The 

pressure profiles agree nicely, as for the supercritical CO2 expansions above. The 

calculated temperature at the centerline was equal to the stagnation temperature, as 

expected for an ideal gas, while the experimental measurements taken with the large 

diameter thermocouple recorded a lower value, likely due to heat transfer. As before,  

the off-axis profiles are in disagreement between the calculation and experiment.  

The computed pressure and temperature plate profiles all have a circular core of 

high pressure and temperature which then fall to lower values near a radial distance of 

r/D ~ 5. Researchers have often reported rings of solute deposits in RESS type 

experiments. It is possible that the coupling of solute precipitation in the fluid phase to 

our temperature and pressure profiles could help explain such phenomenon. 

Qualitative temperature measurements within the free-jet are especially difficult 

not only because of probe heat transfer effects and the small physical scale of these 

experiments, but because in the supersonic regime the thermocouple probe induces a 
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bow shock in front of itself as shown in figure 3.9. Nevertheless, because the flow 

temperature depends critically on the supercritical fluid equation of state and possibly 

on condensation kinetics, it was important to obtain at least a qualitative picture of the 

temperature profile. Figure 3.32 shows a profile obtained by moving the thermocouple 

along the jet axis, as described above. The shadowgraph camera probe was used to 

examine the distances and to observe the bow shock, which typically was less than 

0.25D in front of the thermocouple probe when the probe penetrated the Mach disk. 

The CO2 expansion is for 70
o
C and 80 bar through the 100 m orifice with the Mach 

disk at 5.8D. There are no corrections for probe heat transfer effects to the subsonic 

flow around the thermocouple, and we assume the small thermocouple bead 

equilibrates with the fluid. The calculated points upstream of the Mach disk assume 

the probe temperature would be close to the flow temperature just downstream of the 

induced bow shock along the jet axis. Using the experimental bow shock location, we 

then used our shock calculations to obtain the flow properties before and just after the 

shock; we did not solve for the two-dimensional flow downstream of the bow shock 

and around the probe. In the subsonic flow downstream of the Mach disk, it was 

assumed the probe reflected the numerically calculated local temperature along the jet 

axis. Clearly the data and calculations have several caveats but other than the 

displacement in axial position, which we do not yet understand, it qualitatively 

supports the calculations.  
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In summary, the calculations appear to reproduce the flow rate and jet structure 

reasonably well, including the pressure at the plate surface. The only deficiency is 

with the fluid temperature. While the limited data for temperature within the jet is 

encouraging, the data for the temperature at the plate is not satisfactory, and will 

require the computational acknowledgement of heat transfer between the fluid and the 

plate, and within the plate.  

We conclude that our numerical treatment is able to include the real gas effects 

for supercritical fluid expansions. The extension to solutes using the equations of state 

we have tested should be straightforward. However, the important caveats associated 

with condensation are evident in our experiments and represent a future course of 

study. We provide some preliminary work in chapter 5. 
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Figure 3.1:  Schematic of experimental set-up 

 
 

 

 

 

 

 
 

Figure 3.2:  Picture of the experimental set-up 
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Figure 3.3:  Mechanical drawing of the nozzle block 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Picture of the nozzle block 
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Figure 3.5:  Shadowgraph technique 
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Figure 3.6:  Set-up for pressure measurement at the plate 
 

 

 

 

 

 

Figure 3.7:  Set-up for temperature measurement at the plate 
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Figure 3.8:  Set-up for temperature measurement of the ASFJ into the atmosphere 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:  Shadowgraph of temperature measurement of the ASFJ into the 

atmosphere 
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Figure 3.10:  Experimental and calculated orifice mass flow rate using  

the 27-parameter equation of state 
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Figure 3.11:  Experimental and calculated orifice mass flow rate using  

Redlich-Kwong equation of state 
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Figure 3.12:  Experimental and calculated orifice mass flow rate using  

Peng-Robinson equation of state 
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Figure 3.13:  Shadowgraph of the free-jet of CO2 into the atmosphere  

(Po= 137 bar, To= 70C) 
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Figure 3.14:  Experimental Mach disk location for argon free-jet 
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Figure 3.15:  Experimental and calculated Mach disk location for CO2 free-jet 
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Figure 3.16:  Effect of source pressure on the appearance of condensation in the  

CO2 free-jet expansion 

Expansion at 

Po= 80 bar 
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Figure 3.17:  Shock structure of the CO2 free-jet at high pressure 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.18:  Shadowgraph of the CO2 free-jet impacting a flat plate 
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Figure 3.19:  Mach disk location as a function of plate distance for CO2  

at Po= 80 bar, To= 70C 
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Figure 3.20:  Mach disk location as a function of plate distance for CO2  

at Po= 137 bar, To= 70C 
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Figure 3.21:  Mach disk location as a function of plate distance for CO2   

at Po= 200 bar, To= 70C 
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Figure 3.22:  Condensation of CO2 downstream of the Mach disk 
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Figure 3.23:  Comparison of experimental Mach disk location as a function of 

plate location for CO2 and argon 

Po= 200 bar  

To= 70C 
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Figure 3.24:  Pressure profiles at the plate at Po= 80 and 137 bar, To= 70C 
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Figure 3.25:  Pressure profiles at the plate at Po= 200 bar, To= 70C 
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Figure 3.26:  Pressure profiles at the plate at Po= 137 bar for different plate 

distances, To= 70C 
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Figure 3.27:  Temperature profiles at the plate at Po= 80 and 137 bar, To= 70C  
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Figure 3.28:  Temperature profiles at the plate at Po= 200 bar 
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Figure 3.29:  Temperature at the plate, Po= 80 bar, To= 70C 
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Figure 3.30:  Pressure profile at the plate for argon at Po= 80 bar  
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Figure 3.31:  Temperature profile at the plate for argon at Po= 80 bar 
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Figure 3.32:  Probe temperature of CO2 free-jet into the atmosphere  

at Po= 80 bar, To= 70C 
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CHAPTER 4 

CAPILLARY  

4.1  Introduction 

Small tubular capillary sources are often used in the Rapid Expansion of 

Supercritical Solutions (RESS) experiments because they are easy to fabricate, and in 

addition to source temperature and pressure, they provide capillary length as one 

additional parameter to control precipitation of solutes from the supercritical fluid 

solvent. Although they are not the principal topic of this thesis, we present some 

preliminary studies of the capillary source because of its wide use by researchers. In 

order to examine such sources with our free-jet calculation and diagnostics, it is 

necessary to analyze the flow in the capillary from stagnation conditions to the sonic 

exit. For our orifice sources above, this was a straightforward isentropic flow 

calculation, but for the capillary, the typical analysis involves the quasi-one-

dimensional (QOD) approximation including viscous frictional effects, as well as heat 

transfer if the capillary is substantially heated or cooled (Reverchon and Pallado 1996;  

Maharrey and Miller 2001; Weber and Thies 2002). A strong pressure gradient exists 

in the constant area tube flow to overcome the viscous wall shear and accelerates the
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fluid from stagnation conditions to sonic conditions at the exit. Unlike the orifice flow 

in which the area change dominates the acceleration to sonic conditions, the capillary 

flow is not isentropic. For the capillaries in our studies, heat transfer is negligible, the 

flow is adiabatic, and it is referred to as Fanno flow in compressible gas dynamics 

(Fox and McDonald 1992). 

4.2  Theory and Experimental Results  

The steady state QOD conservation equations for the capillary flow are: 

)1.4(A/mu   

)2.4(0
D

dx
fu2udu

dP 2 


 

)3.4()T,(h
2

u
)T,(h ooo

2

  

where friction factors f are available in the literature as a function of Reynolds 

number, Re. We used standard text relations f = 0.316 Re
-1/4 

 or f = 64 Re, depending 

on if the flow is turbulent (Re >2300) or laminar (Fox and McDonald 1992). The 

Reynolds number is calculated as Re = uD/ = 4 m /(D) so that it would be  

constant down the tube except for the variation of viscosity with temperature and 

pressure. For our conditions, the range of Re is 76,000 to 245,000 so the flow is 

turbulent. 
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In addition, the above implies that, the one-dimensional integration requires the 

equation of state P(ρ,T) and the viscosity μ(ρ,T) relations. We are able to utilize any of 

our equations of state above. The following iterative scheme was used to solve the set 

of equations (4.1) thru (4.3), breaking the calculation into two steps, the isentropic 

acceleration from stagnation state 1 to the tube inlet at 2, followed by the friction 

Fanno flow to sonic conditions at the exit at state 3:  

      

1 2 3

i i+1

              

isentropic flow to inlet from 1 to 2: 

 
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step in x direction from 2 to 3: 



109 

  

 
 

;
PP

d

dP
c.13

0
D

xx
fu2)uu(u

PP
fromxcalculate.12

,TPP.11

,hTT.10

2

u
hh.9

u
u.8

)(guess.7

1i1i

1i1i

1i,S

2
1i

i1i2
i1i

i1i
1i

1i1i1i1i

1i1i1i1i

2
1i

o1i

1i

ii
1i

i1i1i





























































 

madjustto1#tobackgo,1Machif.15

c
Machthen,L0000.0LxIf.14

3

3

3
31i




u

 

Since the capillaries protrude into the stagnation chamber it is necessary to 

compute the capillary inlet properties assuming an isentropic acceleration from the 

stagnation reservoir to the capillary inlet (steps 2-6). The complete iteration involves 

assuming a mass flow rate, followed by an isentropic calculation to the capillary inlet, 

and then integrating the Fanno flow equations above to the exit (steps 7-15). At the 

exit the speed of sound is evaluated to determine if the flow is sonic (step 14), a 

necessary exit boundary condition for a Fanno flow. The mass flow rate is then 

iterated until the proper sonic exit condition is satisfied. The secant method was used 

in steps 5 and 10 to calculate h, given  and T. To calculate the speed of sound we 

numerically evaluated the derivative (dP/dρ)s, at any ρ, and T by selecting a small Δρ 
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about the local ρ and calculating the associated ΔP for an isentropic process using both 

P(ρ,T) and s(ρ,T) equations of state. The FORTRAN code for this calculation is given 

in the Appendix C.  

This calculation not only provides the flow rate but also the inlet conditions, P
*
, 

T
*
 for the subsequent supersonic free-jet expansion. The free-jet is subsequently 

solved exactly as was done for the orifices above. The viscosity of CO2, , is needed 

to calculate the friction factor and we used data from (Michels et al. 1957; Vukalovich 

and Altunin 1968; Herreman et al. 1971; Poling et al. 2000). The data for viscosity 

was programmed as a look-up table whose values are listed as a function of  and T. A 

subroutine that interpolates the data for viscosity in the table was used to calculate  

given  and T. Figures 4.1 and 4.2 show the resulting pressure and  temperature 

profiles along the capillary with inside diameter D = 100 m and a length versus 

diameter ratio L/D = 100, when To= 70C and Po= 100 bar upstream in the stagnation 

region using the Relich-Kwong equation of state. The very rapid decrease in 

temperature and pressure in the last ten diameters has serious consequences for 

precipitation of solutes in RESS experiments, and the possible onset of condensation 

for the solvent. However, in our experiments in this thesis, we do not include solutes 

and the conditions were such that the CO2 did not become super-saturated until exiting 

the capillary and expanding into the free-jet. 
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The experimental apparatus is identical to that described in chapter 3 above with 

the exception of the capillary source. In order to keep the comparison with the orifice 

source as nearly identical as possible, we used quartz capillary tubing (Scientific 

Instrument Supply, P/N16026351), with a 0.036 cm outside diameter and a 0.01 cm 

inside diameter. The diameters were verified directly using a microscope. The 

capillary length was cut so that the length-to-diameter ratio of the capillary is 100. A  

0.04 cm diameter hole was drilled into the same swagelok high pressure fitting used 

for the orifice sources and the capillaries were then inserted and cemented into the 

swagelok fitting, with about 0.1 cm projecting externally and the rest protruding back 

into the stagnation source. Figure 4.3 is a photo of the capillary source. Since a portion 

of the capillary protruded out from the metal nut, there was concern that the flow 

might not be adiabatic due to heat transfer to the ambient air. We therefore made 

several runs with the capillary submerged in a heated bath, so that the entire source 

was maintained at stagnation conditions. We found excellent agreement with the 

source in the air, which is consistent with our heat transfer analysis and previous 

laboratory studies with ideal gases (Murhpy and Miller 1984; Miller et al. 1982). We 

therefore feel that the adiabatic assumption is very reasonable for our experiments. An 

example of the results for flow rate is shown in figure 4.4. This calculation used the 

Redlich-Kwong equation of state for CO2, and is compared with data taken for a 

capillary made of quartz tubing, 100 m internal diameter and one cm long (L/D 

=100). The agreement is very satisfactory, and perhaps somewhat fortuitous given the 

assumptions of QOD tube flows. We also show the experimental results for the 100 
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μm orifice, which demonstrates the effect of the loss of stagnation pressure due to 

friction on mass flow rate. It would of course be much better to extend our two-

dimensional time marching calculations into the subsonic flow in order to treat the 

viscous flow properly, and more importantly, to provide a better inlet condition for the 

free-jet. The time marching calculation has this capability (Ben Moussa et al. 2003) 

and such an extension would be useful in the future, especially for application to 

RESS solute experiments. Previous probes of such Fanno flow in tubes for ideal gases 

have shown that the velocity profile is not one-dimensional at the exit. In connection 

with our molecular beam studies, we have previously made extensive comparisons 

between capillary and orifice sources for ideal gases (Murphy and Miller 1984; Miller 

et al. 1982) and found that the two sources provide nearly identical free-jet properties 

for the same source diameters provided the comparison is made at the same mass flow 

rate. The reason for this result is that for the adiabatic acceleration of an ideal gas to 

sonic conditions, the same flow rate yields the same pressure P
*
 and temperature T

*
 at 

the exit, where Mach number = 1. This is due to the fact that for an ideal gas, both the 

enthalpy and the speed of sound depend only on temperature, and the temperature at 

the sonic point depends only on the source or stagnation temperature. However, for the 

supercritical fluid, the enthalpy and the speed of sound depend on both temperature 

and pressure and the two parameters are strongly coupled in the accelerating flow. As 

a demonstration of these features, we plot the experimental mass flow rate of CO2 

versus the pressure at the throat P
*
 for both the capillary and orifice, at the same 

stagnation temperature To, in figure 4.5. The pressure at the throat is calculated using 
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the experimental stagnation pressure. Therefore it is not valid to scale the free-jet for 

the capillary source to the results for the isentropic orifice for supercritical fluids by 

assuming that the same mass flow rate will provide the same inlet conditions to the 

free-jet, as has been found for ideal gases. 

Figure 4.6 shows the experimental Mach disk location as a function of plate 

position for the orifice and the capillary, both 100 m in diameter, at the same mass 

flow rate. In both cases, To= 70C while Po= 80 bar for the orifice and 100 bar for the 

capillary. The calculated free-jet shock position is shown to be quiet good for either 

case provided we use the correct initial sonic conditions. The calculated properties at 

the sonic exit for this case are T
*
= 22C, P

*
= 48 bar for the orifice and T

*
= -28C and 

P
*
= 24 bar for the capillary.  

Figure 4.7 shows the pressure profile at the plate for the above two cases, orifice 

and capillary, at the same mass flow rate when the plate is placed at Xp = 9.4D. As 

expected, the capillary is not properly scaled using the same mass flow rate and the 

centerline pressure is lower, primarily because of the lower sonic pressure P
*
.  

Figure 4.8 compares the experimental pressure profile at the plate for the 

expansion from the capillary at Po= 100 bar to the calculated data using the calculated 

throat conditions for a capillary at Po= 100 bar (P
*
= 24 bar). Although the center 

pressure is satisfactory, clearly the profiles are not as well reproduced as for those 

found with the isentropic orifices. Although this feature requires further attention, we 
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feel that the principal cause is that the inlet velocity profile for the free-jet is not well 

specified for the flow exiting the capillary, and specifically, it is not nearly as one-

dimensional as for the orifice. The effect of such a streamline curvature at the sonic 

exit has been previously investigated for ideal gases by the method of characteristics 

(Murphy and Miller 1984).  

In general these preliminary results suggest that by using the Fanno flow 

calculation to fix the sonic conditions, we expect that our free-jet calculation will  

provide a reasonable approximation for the RESS expansion. 

To explore the properties of the capillary further, some preliminary experimental 

work with argon was also done, to eliminate the added complication of the non-ideal 

gas behavior. Figure 4.9 shows the Mach disk location for the free-jet into the 

atmosphere for argon as a function of stagnation pressure from the capillary and 

orifice, both 100 m in diameter. Because the argon is taken from a gas cylinder, we 

could not directly compare at the same mass flow rate, only at the same stagnation 

pressure. Again, as expected the pressure drop in the capillary tube causes the shock 

wave to occur sooner in the expansion.   

Figure 4.10 shows the Mach disk location as a function of Po for the argon free-jet 

impacting a flat plate when Xp = 9.4D for the 100 m capillary and compares it to the 

previous orifice results of chapter 3. Again, in agreement with the results for 
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supercritical CO2, the capillary pressure drop, and subsequent decrease in P
*
 at the 

source exit, causes the Mach disk location for the capillary to be closer to the sources.   

Figure 4.11 shows the pressure profile for argon at the plate, Xp/D = 9.4. The 

qualitative features and comparisons between the orifice and capillary sources are the 

same as in figure 4.7 for supercritical CO2. Figure 4.12 shows the related temperature 

profiles for the argon expansion. Even though we see the same qualitative flat profiles 

for the plate temperatures as we did for supercritical CO2, which we feel are due to 

heat transfer effects, it is satisfying that the temperature for the ideal gas is essentially 

the same for the two sources. This is expected for the adiabatic expansion of an ideal 

gas since the stagnation temperature, To, is conserved and there is no real gas Joule-

Thompson effect cooling the gas during the expansion and shock compression. 

Although straightforward, we have not extended our calculations to these ideal gas 

expansions from capillaries. 

These preliminary results for capillary sources will be extended to solutes in the 

near future because these sources are widely used for RESS experiments. However, 

the results show that the subsequent free-jet can be understood by correctly assessing 

the Fanno flow down the tube, and that the QOD Fanno calculation may be a useful 

approximation. The question of the friction induced velocity profile at the tube exit, 

and its effect on the free-jet expansion, remains to be investigated. Such future work 

should assume some profile shapes for the initial free-jet conditions. Early studies with 

ideal gases (Miller et al. 1982) will serve as a guide for the assumed profiles.  
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Figure 4.1:  Pressure drop along the capillary, D = 100 m, L/D = 100  

 

 

-50

-30

-10

10

30

50

70

90

0 0.2 0.4 0.6 0.8 1 1.2

x (cm)

T
 (

o
C

)

 
Figure 4.2:  Temperature drop along the capillary, D = 100 m, L/D = 100   

Po= 100 bar 

To= 70C 

Po= 100 bar 
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Figure 4.3:  Capillary source   
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Figure 4.4:  Experimental and calculated capillary mass flow rate using Redlich-

Kwong equation of state 

glass capillary 
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Figure 4.5:  CO2 mass flow rate versus calculated sonic throat pressure for 

capillary and orifice 
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Figure 4.6:  Experimental and calculated CO2 Mach disk location as function of 

plate distance for orifice and capillary at the same mass flow rate 

To=70C 
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Figure 4.7:  Experimental pressure profile at the plate for the orifice and capillary 

at the same CO2 mass flow rate; Xp= 9.4D 
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Figure 4.8:  Experimental and calculated capillary pressure profile at the plate 

(data corresponds to figure 4.7) 
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Figure 4.9:  Mach disk location as function of stagnation pressure for argon free- 

jet into atmosphere, To= 22C 
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Figure 4.10:  Mach disk location as function of stagnation pressure for argon free-

jet impacting a plate at Xp= 9.4 D
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Figure 4.11:  Argon experimental pressure profile at the plate for the orifice and 

capillary at Po= 80 bar, To= 22C; Xp= 9.4D 
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Figure 4.12:  Argon experimental temperature profile at the plate for the orifice 

and capillary at Po= 80 bar, To= 22C; Xp= 9.4D 
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CHAPTER 5 

CONDENSATION 

5.1  Introduction 

The analysis in the chapters above has assumed a pure homogeneous fluid, CO2, 

neglecting any clustering or condensation in the free-jet expansion. As we have 

shown, the expanding fluid does in fact enter the two phase regime (figure 2.9) where, 

if thermodynamic equilibrium were achieved, significant condensation would occur. 

However, the small geometric scale of the experiments and rapid rate of the 

supersonic expansion means that the time scale for kinetics is of the order of  

microseconds and equilibrium is not achieved for many processes. For example, in 

chapter 2, we showed that even the CO2 vibrational degrees of freedom cannot keep 

up with the rapid expansion despite the high supercritical fluid source pressures. We 

therefore do not expect equilibrium to be achieved and the flow is approximated as a 

supersaturated, metastable fluid. Certainly small clusters of CO2 molecules are 

forming and dissociating in the expansion, and at the highest pressures we clearly 

observe condensation in the jet, shown in figure 3.22 above. For application to Rapid 

Expansion of Supercritical Solutions (RESS) experiments, which include solutes in 

the
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supercritical fluid solvent, there is the added complication of the 

condensation/precipitation of the solute species, and such solute clusters could  

additionally serve as heterogeneous nucleation sites for the condensation of the 

supersaturated CO2. RESS investigators are primarily interested in the solute and they 

have decoupled the precipitation of the solute from the solvent, which is reasonable 

since the solute is naturally supersaturated in the expansion well before the solvent, 

usually upstream or near the throat area of the expansion where the fluid densities are 

high. For small concentrations of solutes such calculations are actually more 

straightforward because the condensation kinetics can be decoupled from the fluid 

dynamics. However, this thesis is concerned only with pure solvent CO2 expansions, 

and in this chapter we present some of our preliminary analysis based on classical 

nucleation theory. The analysis is certainly incomplete and requires additional 

experimental data to be able to determine the best approach. To that end, we also 

describe an experimental time-of-flight mass spectrometer facility being developed to 

probe these expansions and provide data on the clustering. Debendetti and colleagues 

have shown how to extend the classical condensation theory to solutes (Kwauk and 

Debenedetti 1993; Weber and Thies 2002) and if we were to extend our analysis to 

solutes we would follow their approach. As we will show, the treatment of clustering 

of pure CO2 in these high pressure expansions is difficult enough.   

There is a vast literature on condensation in expansions such as our free-jets, 

varying from the classical thermodynamic models to molecular collision kinetic 
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models. We will not review the details of the classical approach, but simply state and 

use well known equations. Our treatment follows closely that described and used by 

several investigators who have studied condensation in similar gas dynamic 

expansions, and the reader is referred to summaries by Stever (1958), Hill (1963),  

Wegener (1969), Kotake (1978), Abraham et al. (1981), and Bayazitoglu (1996). We 

also make limited use of the molecular kinetic approach utilized by Knuth (1977) to 

address issues for small clusters. It is clear that the small clusters formed in our free-

jets fall into a regime where neither the classical nor the kinetic results are accurate 

and, as we show, there are too many parameters to adjust to render any such analysis 

quantitative. Nevertheless, to understand the RESS expansion processes, such an 

analysis can be used to guide an understanding of the important parameters, and the 

results can be scaled empirically once clustering data is obtained. Again, this chapter 

is meant to serve as an introduction for future work on this very important aspect of 

understanding the expansion of supercritical fluids and their use for molecular beam 

experiments and film growth.  

5.2  Theoretical Results  

To investigate the clustering and condensation of CO2 in the rapid free-jet 

expansion, we utilize the quasi-one-dimensional (QOD) approach described in chapter 

2. The approach can be extended to the two-dimensional axisymmetric free-jet (ASFJ) 

analysis but the uncertainties in the thermodynamic and kinetic parameters do not 

warrant that effort at this point in our studies. The quasi-one-dimensional area 
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expansion A(x) used in this chapter has been determined by the methods described 

above and should be a reasonable approximation to the rate of expansion. As noted 

above, the QOD approach permits us to directly integrate the fluid equations so that 

we do not need to use the time marching numerical method. As we show below, the 

analysis predicts substantial condensation and it is therefore necessary to couple the 

kinetics and thermodynamics to the fluid dynamic equations of the flow in order to 

properly account for the loss of vapor phase molecules and the heat release in the 

condensation.  

The QOD steady state equations with condensation are: 

)1.5()1(mA  v  

)2.5(AdPAudu   

)3.5(hh2uh fgo
2   

 )4.5()T,(hh   

)5.5()T,(PP   

As before, we will also utilize the entropy relation in place of the momentum 

equation whenever possible, which with condensation takes the form: 

                                            Tds = δQ = hfg dμ                                                   (5.6) 

In these equations,  is the density of vapor, P is the vapor phase pressure and 

P(ρ,T) is the non-ideal equation of state (e.g. Redlich-Kwong),  is the liquid phase 
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mass fraction due to both nucleation and growth,  = mass liquid / mass (gas+liquid), 

and hfg is the latent heat per unit mass released during condensation. In addition to the 

new terms in the conservation of mass and total energy equations, it is necessary to 

properly treat the equations of state for h and s to account for the two phases, and to 

introduce the condensation equations which determine the mass fraction .  

Following classical nucleation theory, at each differential volume along the QOD 

nozzle flow, a meta-stable cluster of critical radius size r
*
 is formed at rate J (number 

per m
3
 per second). Clusters of size r > r

*
 may grow rapidly, while clusters r < r

*
 

evaporate rapidly. These critical clusters are then able to grow by monomer 

attachment through gas phase collisions at a rate dr/dt = u dr/dx along the nozzle; we 

neglect agglomeration of large clusters. The resulting mass fraction, μ , is then a sum 

over all of the clusters which have been generated and grown upstream of any 

particular nozzle position. The appropriate relations for these terms are (Wegener 

1969; Kotake 1978):  
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The cluster growth relation includes gain and loss terms to account for addition by 

attachment and evaporation. The relation for the mass fraction at position (i) includes 

a term for the generation of new clusters J(i) and a sum over all previous clusters 

generated at position k at rate J(k), and which have grown, dr(k), from position (k) to 

(i). The above relations account for the effects of small radius on vapor pressure.  

In these relations  is the surface tension, v is the molecular weight of the vapor 

CO2, L is the density of the liquid CO2, Pv is the pressure of the vapor (written as P in 

fluid flow equations of motion (5.2) above), Pvs

 is the saturation pressure of the vapor 

at temperature T, Pvs is the saturation pressure including Kelvin effects, αv  is a 

sticking coefficient correction for J, K is Boltzman constant, Ru is the universal gas 

constant, NA is Avogadro’s number, and u is the centerline velocity in the expansion. 

We have used the following values for these variables in our calculations for CO2 

(Zharkova 1978): 

 = (34.96 - 0.092 T) x 10
-3

 N/m                                     (5.11) 

L = (-1.0333x10
-3 

T + 1.4387) x 10
3
 Kg/m

3
                        (5.12) 
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  

Pvs = Pvs

 exp(2/LRTr)                                     (5.15) 

We also take for hfg = 40,200 Joules/ Kg for CO2 (Zharkova 1978) and  = 44.02 

Kg/mol. 

In the above relations, additional corrections, with additional parameters, to the 

surface tension and heat of condensation can be introduced to account for effects of 

small cluster radius (Hirschfelder 1954; Wegener 1969), and a sticking coefficient 

correction αv can be introduced to both J and dr/dx relations. We have made many 

such parametric studies but, as we shall see below, there are already enough 

parameters so that further parameterization is not felt to be justified, nor presented in 

this thesis, at this stage of our investigation. We can also obtain a wide range of results 

by such adjustments to the thermodynamic properties, especially surface tension, 

which are poorly understood for the small clusters predicted for our expansions but, 

again, the uncertainties do not warrant such parameterization until we obtain 

experimental results with which to compare.  

Because of the rapid rate of expansion, and subsequent large cooling rates, there 

have been several studies and calculations made (Collins 1955; Andres and Boudart 

1964) to correct the steady state nucleation rate, given above for J = Jss , by 

introduction of a nucleation lag time τ. This results in the following correction to J to 

give the time-dependent  nucleation rate: 
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Jt = Jss ( 1- exp(-t/τ))                                          (5.16) 

where t is the flow time and  
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We will show the effects of such a lag time below. 

This classical analysis indicates that the critical size clusters are often close to the 

expected size of dimers, only two CO2 molecules, well below the expected range of 

validity of the classical rate of formation relation given by J above. We have also 

therefore investigated the use of a kinetic formulation for J2 for dimers. This is a well 

known kinetic model which has been used to analyze free-jet expansions in molecular 

beam research (Knuth 1977; Murphy and Miller 1984; McDaniels et al. 2002). The 

dimer kinetic model is based on the following two-step mechanism, involving an 

intermediate dimer complex:  
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where Kf and Kr are the forward and reverse rate constant. 

The time rate of change of dimer mole fraction is (Knuth 1977; Murphy and 

Miller 1984): 
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K1 and K2 are the rate and equilibrium constant for equations (5.18) and (5.19).  and 

 are Lennard-Jones intermolecular potential parameters. For CO2,  = 3.996 x 10
-8

 

cm, (2,2) = 1.314 (305/ T)1/2, and /k = 190 K (Hirschfelder, 1954). 

This dimer formation rate can be rearranged to provide an equivalent dimer 

formation rate in the same units as J in the classical theory, which becomes: 
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where D is the diameter at the throat for the nozzle, and w2 is the mass fraction of 

dimer. 

In the following, we will compare this result with the classical result, and use it to 

replace J when the classical critical radius r
*
 is less than 5 x 10

-10
 m, about the size of a 

CO2 dimer. 

The parameters in the condensation model are clearly very sensitive to 

temperature and pressure and hence the expansion characteristics. When the 

condensed phase mass fraction becomes large, the kinetics are strongly coupled to the 

fluid flow conservation equations. Given the flow properties at position (i), the 
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following algorithm is used to calculate the flow properties at position (i+1) along the 

convergent-divergent nozzle: 

1.  calculate r
*
i, Ji, i , and i+1 
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The calculation begins downstream of the throat, and the condensation does not 

start until the flow enters into the super-saturation regime where Pv > P. Further, 

following results by Hill et al. (1963), the clusters are not assumed to begin to grow 

until r(k) > 1.3r
*
(i). To examine the approximation that the condensation is decoupled 

from the fluid dynamics, we simply set Δμ = 0. The total mass flow rate, m , is known 

in this calculation, for a given throat diameter and given stagnation conditions, from 

the solutions to Lax-Wendroff integration or from the isentropic orifice program 

above. The location of the shock in the diverging section is guessed and the properties 

at the exit of the nozzle are calculated using the Rieman shock equations, (see 

equations 2.33) followed by an isentropic calculation to the exit, neglecting any 
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further condensation downstream of the shock wave, which reheats the flow. The 

shock position is iterated until Pexit = 1 atm. 

The results indicated below are all for expansions for supercritical CO2 from 80 

bar and 70C with an orifice diameter of 50 m. We first give a few results which 

would be obtained assuming the condensation can be decoupled from the fluid 

mechanics. 

Figure 5.1 shows the critical radius size of nucleated clusters as a function of 

position in the expansion based on fluid properties decoupled from the condensation. 

The hard sphere diameter of a single CO2 molecule is ~ 4 x 10
-10

 meters. Figure 5.2 

shows three corresponding nucleation rates, J = Jss , Jt corrected for the nucleation time 

lag, and J2 , the kinetic dimer formation rate (note the scale change). We see that while 

large clusters are thermodynamically stable and can grow very near the throat (x < D) 

the rate of formation for such clusters is very small, and that large rates only occur 

when the critical radius is of order 2 angstrom. Figure 5.2 also shows that, for this 

decoupled approximation and this expansion, the effect of nucleation lag time is 

substantial. We also see that the kinetic rate for dimer formation is substantially less 

than predicted by the classical theory for the same r
*
, so that a reasonable model 

would be to use J2 when r
* 
< 5 x 10

-10
 m. Finally, for this decoupled case, figure 5.3 

shows the accumulated total condensed phase mass fraction along the nozzle for the 

three different models for J. It is clear that the decoupled calculation is not appropriate 

for any of these calculations because the total mass fraction rapidly exceeds one, even 
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when suppressed by limiting the formation rate to J2 or by considering the effects of 

nucleation lag time.  

The coupled equations are expected to reduce the condensation by accounting for 

the heat release and the loss of vapor density. The resulting effects are not necessarily 

intuitive because of the sensitivity of the nucleation kinetics to temperature and  

pressure, affected both by the expansion itself as well as the heat release and vapor 

mass reduction. For the same conditions as above, figure 5.4 shows the critical radius 

size along the expansion, figure 5.5 shows the nucleation rates for two of the models, 

and figure 5.6 shows the resulting mass fraction just upstream of the shock wave. We 

find that the critical radius size now does not become so small that a dimer kinetic 

model is not necessary, that the nucleation rates are much smaller, and not 

significantly effected by the nucleation lag time, and that the mass fractions, while 

larger than we expected, reach about 25% of the flow (the mole fraction of condensed 

phase would be much less). Again, we can move these results by altering the surface 

tension or assigning a sticking coefficient to the condensation and growth rates. To 

place these results into some perspective, if we had done a textbook equilibrium 

thermodynamic computation for an isentropic expansion to the same pressure ratio, 

neglecting the coupling, we would compute a mass fraction of 33%. 

Figures 5.7 and 5.8 give the resulting pressure and temperature profiles for the 

condensing flow. As a reference, the bottom curve on both plots represents the profiles 

when condensation is suppressed; the results agree exactly with our time-dependent  
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QOD calculations discussed in chapter 2. We find that, if this condensation model is 

correct, the shock wave position would move upstream by 0.6 diameter and the 

temperature upstream of the shock would be warmed by about 100 degrees. Neither of 

these two results were suggested, even qualitatively, by our experiments discussed in 

chapter 3. Previous work in this area suggests that it is certainly not surprising that this 

classical model might overestimate the condensation. If we had more quantitative data, 

especially better temperature profiles in the expansion or some spectroscopic 

measurement of cluster size, then we could empirically adjust some of the parameters 

in the model. 

In our calculations, we did not pursue condensation, growth, or evaporation 

beyond the shock wave, an analysis which needs to done eventually. However, we can 

comment on what we might expect from the present model. Figure 5.9 is a histogram 

of cluster size distribution, in brackets of half angstrom (0.5 x 10
-10

 m), just before the 

shock. We see a bimodal distribution, often found for these calculations, with growth 

to about 8.5 x 10
-10

 m size clusters; such a cluster size would contain about five CO2 

molecules with a mass of about 220 amu. Note that the classical model permits a 

continuum distribution of r
*
 while in reality r

*
 would increase incrementally as each 

cluster grows by the addition of one CO2 molecule. If we compute conditions 

downstream of the shock, we find T = 383 K and P = 0.87 bar, conditions which are 

outside the super-saturation regime (i.e. there would be no further nucleation). We 

would then expect that the existing clusters would begin to evaporate, provided there 

is sufficient heat transfer rates to the clusters to provide the necessary latent heat of 
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evaporation. Equation (5.9) could be used to compute the resulting negative dr/dx. In 

any event we would expect that the cluster distribution upstream of the shock we have 

computed to represent the maximum amount of cluster formation. 

Clearly, this important problem is unsolved and requires experimental data to 

proceed further. The time-of-flight mass spectrometer facility introduced and briefly 

discussed next can provide such data. 

5.3  Mass Spectrometer Time-of-Flight Facility 

To study the nature of the clustering in the free-jet expansion, we have interfaced 

a supercritical fluid expansion source directly to a time-of-flight (TOF) mass 

spectrometer system, capable of resolving masses up to 20,000 amu. If our 

condensation calculations above are a reasonable estimate of cluster size, then this 

facility can resolve the clusters in these CO2 experiments and provide a valuable 

complement to our theoretical calculations. The technique is referred to as direct 

coupled mass spectrometry (DCMS) and, while difficult to apply to such high pressure 

expansions, it has been achieved previously for supercritical fluid expansions 

(Maharrey and Miller 2001). The TOF is a home built mass spectrometer that has been 

used in studies of laser desorption ionization of metal oxides and proteins in the 

laboratory of Dr. Robert Continetti (Andres et al. 2000; Rohrbacher and Continetti 

2001). We have designed, fabricated, and tested the adaptation of our supercritical 

fluid sources to the TOF, greatly aided by Joe McDaniels. Unfortunately, quantitative 
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cluster characterization has not yet been achieved and a considerable effort remains to 

optimize the ionization source and appropriate differential pumping. 

Figure 5.10 is a schematic of the apparatus while figure 5.11 is a picture of the 

apparatus. The supercritical chamber that was added to the TOF to study the 

composition of the free-jet expansion is shown in figure 5.12. The beam source 

delivery system is identical to the one used in this thesis to study the free-jet 

expansions under ambient atmospheric conditions, and is shown with its accessories in 

figure 5.13. The design of the source chamber permits the free-jet expansion to be 

directed to a flat plate at atmospheric pressure, with a 100 μm hole in the plate, to pass 

a sample of the gases into the supercritical first vacuum chamber. The hat design also 

allows the plate to be removed and the nozzle block to be pushed inside the 

supercritical source chamber, as shown in figure 5.14, so that the expansion occurs 

directly into the first vacuum chamber. This avoids shock waves and passes the 

molecular beam directly into the mass spectrometer to accomplish the DCMS.  

The supercritical source chamber is pumped by a root blower pump and the base 

pressure is maintained at 10
-2

 torr. The supercritical chamber is separated from the 

TOF ionization source chamber by a conical skimmer, shown in figure 5.15. The 

source chamber is pumped by a diffusion pump and maintained at a base pressure of 

10
-6

 torr. The source chamber is separated from the detector chamber by a small 

aperture and a gate valve. The detector chamber is pumped by a turbo pump and is 

maintained at a base pressure of 10
-9

 torr.  
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The beam enters the source chamber through the skimmer to be ionized by  

electron bombardment with an electronic pulsing circuit that acts like a timing gate to 

release the ions in a very short time. The ions then enter the detection chamber 

through the small aperture that separates the ion source chamber from the detection 

chamber and travel a distance L to the detector. The TOF mass spectrometer measures 

the time it takes ions of different species that were produced at the same time to move 

from the source to the detector. If all ions are formed at the same energy E= 1/2 mv
2  

in the ionization source, and v = L/t, the mass of the ions reaching the detector can be 

calculated by the flight time t according to m= 2E t
2
/L

2
. A TOF mass spectrometer can 

theoretically measure unlimited mass ranges where a complete mass spectrum is 

acquired at one time. In reality though, it is limited by detection sensitivity, the timing 

resolution of the ionization source, and the timing dispersion possible by the length of 

the flight distance between the ionizer and detector. This TOF mass spectrometer has 

previously demonstrated sensitivity up to 20,000 amu. 

Recently, Dr. Kenichi Iwamoto has extended our development of this TOF 

facility (significantly improving the pumping and ionization characteristics of the 

machine) to probe free-jets and observe small clusters. This facility will become a 

crucial component for future studies of supercritical fluid for this laboratory, 

especially when solutes are added, providing a complete characterization of the 

expansion composition and an understanding of the RESS process. The calculations 

we have described in chapters 2-5 above can then be readily extended to more 

complicated but interesting and useful systems.
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Figure 5.1:  Critical size clusters r

*
 vs. x/D  

(CO2 at Po= 80 bar, To= 70C, decoupled QOD condensation calculation) 
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Figure 5.2:  Nucleation rate vs. x/D for different models 

(CO2 at Po= 80 bar, To= 70C, decoupled QOD condensation calculation) 
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Figure 5.3:  Mass fraction of condensed CO2 vs. x/D 

(Po= 80 bar, To= 70C, decoupled QOD condensation calculation) 
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Figure 5.4:  Critical size clusters r

*
 vs. x/D 

(CO2 at Po= 80 bar, To= 70C, coupled QOD condensation calculation) 
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Figure 5.5:  Nucleation rate vs. x/D for different models 

(CO2 at Po= 80 bar, To= 70C, coupled QOD condensation calculation) 
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Figure 5.6:  Mass fraction of condensed CO2 vs. x/D 

(Po= 80 bar, To=  70C, coupled QOD condensation calculation) 
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Figure 5.7:  Pressure profile for the condensing flow  

(CO2 at Po= 80 bar, To=  70C, coupled QOD condensation calculation) 
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Figure 5.8:  Temperature profile for the condensing flow  

(CO2 at Po= 80 bar, To=  70C, coupled QOD condensation calculation) 
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Figure 5.9:  Size distribution of clusters formed in the coupled condensation 

(CO2 at Po= 80 bar, To= 70C, coupled QOD condensation calculation) 
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Figure 5.10:  Schematic of the time-of-flight machine 

 

 
 

Figure 5.11:  Time-of-flight machine 

 
 

 

 

hat to hold 

the nozzle 

block 



 

 

146 

 

 

 

 

 

 
 

Figure 5.12:  Supercritical source chamber added to time-of-flight 

 

 

 

 
 

 

Figure 5.13:  Nozzle block with accessories to mount inside the hat  
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Figure 5.14:  The hat designed to permit direct coupled mass spectrometry 
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Appendix A: Equation of state for carbon dioxide 

The 27-parameter equation of state for CO2 derived by Huang et al. (1984) was 

used and given in chapter 2. This equation is repeated below: 

])T(c)(cexp[c

])T(c)(cexp[c

])T(cexp[c]cexp[b

]cexp[bbbbbb1
RT

P
Z

2
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2

2624
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

 

where T denotes temperature in K,  is density in Kg/m
3
, T = T/Tc ,  = /c , T = 

1-T,  = 1-, the parameters ci and bi are given below: 

i ci i Ci 

1 0.376194 15 -2.79498 

2 0.118836 16 5.62393 

3 -3.04379 17 -2.93831 

4 2.27453 18 0.988759 

5 -1.23863 19 -3.04711 

6 0.250442 20 2.32316 

7 -0.115350 21 1.07379 

8 0.675104 22 -0.599724E-4 

9 0.198861 23 0.885339E-4 

10 0.216124 24 0.316418E-2 

11 -0.583148 25 10. 

12 0.119747E-1 26 50. 

13 0.537278E-1 27 80,000. 

14 0.265216E-1   
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Appendix B: Subroutine to solve for T(,T) 

For many steps in the calculations, we needed to invert an equation of state in order to 

calculate T. Subroutines that use the secant method provided such a root finding 

calculation and an example of calculating T, given h(,T) and  is given below: 

 
 subroutine tfind (t,h,v,tstart) 

 implicit none 

 double precision t1,p1,h1,s1,v1,a,b,h1r,t,v,p,hr,h 

 double precision acp,bcp,ccp,dcp 

 double precision MW,R,Ru,tstart,tol 

 double precision tref,pref,vref,hadj,teta 

 teta=960.1 

 tref=273. 

 pref=1.e5 

 vref=1./2. 

 tol=1.0e-5 

 MW =44.02 

 Ru=8314. 

 R=Ru/MW 

  

 a=64.64e5/(MW**2.0) 

 b=0.02969/MW 

 t=200. 

     call rootfind(h,h1,h1r,t,a,b,v,t1,acp,bcp,ccp,dcp,tol) 

 end 

 

 

 subroutine rootfind(h,h1,h1r,t,a,b,v,t1,acp,bcp,ccp,dcp,tol) 

 implicit none 

 double precision f1,f2,h1,h,h1r,t1,t,tol,e,df,terr,fdum 

 double precision acp,bcp,ccp,dcp,a,b,v1,v,p1,ro1,s1,z1 

 integer i,n 

 e=1.e-6 

 n = 50 

 do 20 i= 1,50 

  

  call function (f1,h1,h,h1r,t,v,t1,a,b,acp,bcp,ccp,dcp) 

  call function (f2,h1,h,h1r,t+e,v,t1,a,b,acp,bcp,ccp,dcp) 

  df=(f2-f1)/e 

  fdum=t 

  t=t-f1/df 

  terr=(t-fdum)/t 

  if(abs(terr).lt.tol) then 

   goto 90 

  end if 

20 continue 

 

90 return 

 end 
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 subroutine function (func,h1,h,h1r,t,v,t1,a,b,acp,bcp,ccp,dcp) 

 implicit none 

 double precision func,h1,h,h1r,t,b,v,a,acp,bcp,ccp,dcp,t1 

 double precision MW,R,Ru 

 double precision tref,pref,vref,hadj,teta,hr,p 

 teta=960.1 

 tref=273. 

 pref=1.e5 

 vref=1./2. 

 

 MW =44.02 

 Ru=8314. 

 R=Ru/MW 

 p=((R*t)/(v-b))-(a/(t**(1.0/2.0)*v*(v+b))) 

 

 hr = -(((R*t)*(( (3*a)/(2*b*R*t**(3.0/2.0))*(log(1+(b/v)))) 

     &  -(p*v)/(R*t)+1)) ) 

 

 hadj = - ( (7./2.)*R*tref +  

     & R*(teta+( 2.*teta/(exp(teta/tref)-1. ) )) ) 

 

 func = h- 

     & ( hr + (7./2.)*R*t + R*(teta+( 2.*teta/(exp(teta/t)-1. ) )) 

     &   +hadj)  

 end  
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Appendix C: FORTRAN quasi-one dimensional codes for 

flow inside the capillary 

      program finalRedlich-Kwong 

 implicit none 

 double precision po,to,vo,ho,so,ro1,area2 

 double precision a,b,h1r,t2,s2,v2,p2,h2r,h2,ro2,s2r,s1r,v1,z1 

 double precision h3, v3, vel3, t3, ro3,p3,s3 

 double precision nu,d,l,re,fre,pi 

 double precision dpdv,gamma 

 double precision x,x2,x3 

 double precision MW,R,Ru 

 double precision tprime,pprime,c,mach 

 double precision acp,bcp,ccp,dcp 

 double precision mdot,vel2,eps,mdot_inc 

 integer i,k 

  

 open(18,file='results',status='unknown') 

 open(19,file='state2',status='unknown') 

 

c 'This program uses the Redlich-Kwong equations of state.' 

 eps=.0001 

 

 MW =44.02 

 Ru=8314. 

 R=Ru/MW 

 

 a=64.64e5/(MW**2.0) 

 b=0.02969/MW 

 

 ro1=100. 

 to = 343. 

 

 do 105 i=1,10000 

  ro1=ro1+.5 

  vo= 1.0/ro1  

  po=((R*to)/(vo-b))-(a/(to**(1.0/2.0)*vo*(vo+b))) 

  if(po/100000.gt.100.and.po/100000.lt.101)then 

  go to 106 

  end if 

105 continue 

106   continue 

 

 d=.000100 

 l=100*(100.e-6) 

 

 mdot=.007/1000. 

 mdot_inc=.001/1000. 

 

 do 112 k=1,600 
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333 if(mach.gt.1.0) then  

  mdot = mdot - mdot_inc 

  mdot_inc = mdot_inc*.5 

 end if 

 

 mdot=mdot+mdot_inc 

 

 call hfind(ho,to,vo) 

 call sfind(so,to,vo) 

  

 area2=(pi*d**2.0)/4.0 

 

 do 20 i=1,100 

  ro2=ro1-.001*ro1 

  v2= 1.0/ro2 

  vel2=mdot/(ro2*area2) 

  h2=ho-((vel2**2.0)/2.0) 

 

  call tfind (t2,h2,v2,to) 

 p2=((R*t2)/(v2-b))-(a/(t2**(1.0/2.0)*v2*(v2+b))) 

  

 call sfind (s2,t2,v2) 

 

 if (abs(s2-so)/so.lt.eps) then 

   go to 60 

  end if 

 ro1=ro2 

20 continue 

60 continue 

  

 dpdv=(-R*t2*((v2-b)**-2.0))+ ((a/t2**(1.0/2.0))*(2.0*v2+b)* 

     & ((v2**2.0+b*v2)**2.0)) 

 

c start analysis of flow in the tube with friction 

  

 x2=0.0 

 x=x2 

 do 30 i=1,30000 

  ro3=ro2-(0.02*ro2) 

  v3=1.0/ro3  

  vel3=(mdot/area2)/ro3 

  h3=ho-(vel3**2.0/2.0) 

   

 call tfindsv (tprime,s2,v3,t2) 

 

 pprime=((R*tprime)/(v3-b))-(a/(tprime**(1.0/2.0)*v3*(v3+b))) 

 c=sqrt((pprime-p2)/(ro3-ro2)) 

  

  mach=vel3/c 

 if(mach.gt.1.)then 

   write(6,*)'mach larger than 1' 

   go to 1100 

  end if 

  

call tfind(t3,h3,v3,t2) 

  call sfind(s3,t3,v3) 
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 p3=((R*t3)/(v3-b))-(a/(t3**(1.0/2.0)*v3*(v3+b))) 

 

 

  if (t3.gt.320.and.t3.lt.390.)then 

   call viscofind (t3,p3,nu) 

  else if (t3.lt.304.) then 

   nu = 10.e-6 

c    nu =  (exp ( 3.3882 +  

c     &   ( (1.3423*ro3/1000.)/(1.909-(ro3/1000.)) ) ) )/1000000. 

  else 

  nu=60.e-6 

  endif 

  

 re=mdot*(4.0/(pi*d*nu)) 

   if(re.lt.100000.)then 

   fre=.316*(re**(-1.0/4.0)) 

c friction factor below for laminar flow, Re less than 2300 

   else 

   fre=.316*(re**(-1.0/4.0)) 

 endif 

 

  x3=x2+ 

     &  d*((area2)/(-2.0*fre*mdot))*(2.0/(vel3+vel2))* 

     &  (((p3-p2))+((mdot/area2)*(vel3-vel2))) 

 

  x=x+(x3-x2) 

 write(18,81)100*x,t3,fre, nu,re 

81  format(f9.5,2x,f10.0,2x,f10.5,2x,f20.10,2x,f16.5) 

 

 if(x.gt.l)then 

  go to 80 

 end if 

  x2=x3 

 p2=p3 

  ro2=ro3 

 vel2=vel3 

  h2=h3 

 t2=t3 

  v2=v3 

 s2=s3 

30 continue 

1100 continue 

 

80 continue 

 write(6,*)mdot,mach 

 

 if(mach.gt..999.and. mach.lt.1.)then 

 write(6,*)'DONE' 

 go to 1101 

 end if 

 

112 continue 

1101 continue 

 write(6,*)'   rho=          ','To=         ','Po=' 

 write(6,*)1./vo,to,po/100000. 

103 format(f6.5,f7.2,3x,f7.2,1x,f15.2,3x,f6.2,2x, 
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     $     f7.4,3x,f9.2,2x,f7.2) 

 end 
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Appendix D: FORTRAN codes for the axisymmetric free-jet 

expansion of CO2 

 program plume 

 

 implicit none 

 integer nmax 

 integer imax,jmax 

 integer i,ii,n,j 

 double precision small, dx, dt, alp ,dy 

 double precision c1,cx,cy,gam,eps,phi 

c  i just changed the time step to .028/8, it was .028/4, but  

c  the program failed after ~1000 time steps 

c original imax=226, jmax=242 

 parameter (small = 1.0e-20, nmax =40000, imax = 226, jmax = 242,  

     &   dx = 1/24., dy = 1/24.,dt = .023/4., alp = 1.2) 

 

 double precision u(imax+1,jmax+1,4), u2(imax+1,jmax+1,4) 

 double precision du(imax+1,jmax+1,4) 

 double precision du1(imax+1,jmax+1,4) 

 double precision du2(imax+1,jmax+1,4) 

 double precision jj(imax+1,jmax+1,4) 

 double precision jj2(imax+1,jmax+1,4) 

 double precision f(imax+1,jmax+1,4) 

 double precision f2(imax+1,jmax+1,4) 

 double precision g(imax+1,jmax+1,4) 

 double precision g2(imax+1,jmax+1,4) 

 

 double precision up1(imax+1,jmax+1,4), u2p1(imax+1,jmax+1,4) 

 double precision dup1(imax+1,jmax+1,4) 

 double precision du1p1(imax+1,jmax+1,4) 

 double precision du2p1(imax+1,jmax+1,4) 

 double precision jjp1(imax+1,jmax+1,4) 

 double precision jj2p1(imax+1,jmax+1,4) 

 double precision fp1(imax+1,jmax+1,4) 

 double precision f2p1(imax+1,jmax+1,4) 

 double precision gp1(imax+1,jmax+1,4) 

 double precision g2p1(imax+1,jmax+1,4) 

 

 

 double precision  mach(imax+1, jmax+1) 

 double precision L,x,y 

 double precision ro(imax+1,jmax+1) 

 double precision t(imax+1,jmax+1) 

 double precision us(imax+1,jmax+1) 

 double precision vs(imax+1,jmax+1) 

 double precision us2(imax+1,jmax+1) 

 double precision vs2(imax+1,jmax+1) 

 double precision p(imax+1,jmax+1) 

 double precision pp1(imax+1,jmax+1) 

 double precision p2p1(imax+1,jmax+1) 
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 double precision p2(imax+1,jmax+1) 

 double precision e(imax+1,jmax+1) 

 double precision ep1(imax+1,jmax+1) 

 

 double precision e2(imax+1,jmax+1) 

 double precision ro2(imax+1,jmax+1) 

 double precision t2(imax+1,jmax+1) 

 

 double precision rop1(imax+1,jmax+1) 

 double precision tp1(imax+1,jmax+1) 

 double precision usp1(imax+1,jmax+1) 

 double precision vsp1(imax+1,jmax+1) 

 double precision us2p1(imax+1,jmax+1) 

 double precision vs2p1(imax+1,jmax+1) 

 double precision pressp1(imax+1,jmax+1) 

 double precision press2p1(imax+1,jmax+1) 

c double precision ep1(imax+1,jmax+1) 

 double precision e2p1(imax+1,jmax+1) 

 double precision ro2p1(imax+1,jmax+1) 

 double precision t2p1(imax+1,jmax+1) 

 

 double precision s(imax+1,jmax+1)  

 double precision h(imax+1,jmax+1) 

 

 

 double precision tt1,ppp1,ss1,to,roo,ao,po,ho,eo,cp,R,cv 

 double precision pj,roj,tj,ej,hj,uj,Zo,roamb,tamb,pamb 

 

 double precision  torif,roorif,MW,d,a,b 

 double precision acp,bcp,ccp,dcp 

 double precision  t1,p1,h1,v1,h1r 

 double precision rorc,ttc,vvc,eec,tinitp,tinitc,tol 

 double precision rorp,ttp,vvp,eep 

 double precision vo,vj 

 

c the files below are to be used as IC for viscosity 

 open(18,file='usrk',status='unknown') 

 open(19,file='vsrk',status='unknown') 

 open(20,file='temprk',status='unknown') 

 open(21,file='densityrk', status='unknown') 

 

 open(22,file='centerline',status='unknown') 

 open(40,file='plate',status='unknown') 

 

 open(51,file='usig',status='unknown') 

 open(52,file='vsig',status='unknown') 

 open(53,file='tempig',status='unknown') 

 open(54,file='densityig',status='unknown') 

 

 open (61,file='denscontour',status='unknown') 

 open (62,file='velocityu',status='unknown') 

 open (63,file='velocityv',status='unknown') 
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 tinitp=340. 

 tinitc=340. 

 

 tol=1.0e-5 

 

 

 MW=44.02 

 R=8314./MW 

 gam=1.4 

 a=64.64e5/(MW**2.0) 

 b=0.02969/MW 

 

 acp=2.401 

 bcp=8.735e-3 

 ccp=-6.607e-6 

 dcp=2.002e-9 

 

 t1=300. 

 p1=20.0e5 

 h1=404770 

 v1=.02536 

 h1r=((R)*t1)*(( (3*a)/(2*b*R*t1**(3.0/2.0))*(log(1+(b/v1)))) 

     &  -(p1*v1)/(R*t1)+1) 

 

 

  

 cp= (gam/(gam-1))*R 

 cv=cp-R 

 

c d is diameter of orifice 

c d=50.e-6 

 

 tamb=300. 

 roamb=1.7 

 

 pamb =  ((R*tamb)/( 1.0/ (roamb)-b))- 

     &   (a/(tamb**(1.0/2.0) 

     &   * (1.0/roamb )*( 1.0/roamb +b)))  

 write(6,*)'Zamb=',pamb/(roamb*tamb*R) 

 write(6,*)'pamb=',pamb,'roamb=',roamb 

 write(6,*)'tamb=',tamb 

 write(6,*) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c enter source conditions, fix two 

 to=343. 

c roo=445 when P ratio is 137 

c roo is 178 when P ratio is 80....roo is 257 when P ratio is 100. 

c see page 57B7 

 roo=178. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 vo=1./roo 

 po =  ((R*to)/( 1.0/ (roo)-b))- 

     &   (a/(to**(1.0/2.0) 

     &   * (1.0/roo )*( 1.0/roo +b)))  
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      ho=h1+h1r- 

     &  ((R*to)*(( (3*a)/(2*b*R*to**(3.0/2.0))*(log(1+(b/vo)))) 

     &  -(po*vo)/(R*to)+1)) 

     &      +(R)*((acp*(to-t1))+ 

     &  ((bcp/2.0)*((to**2.0)-(t1**2.0)))+ 

     &  ((ccp/3.0)*((to**3.0)-(t1**3.0)))+ 

     &  ((dcp/4.0)*((to**4.0)-(t1**4.0)))) 

 write(6,*)'po=',po,'roo=',roo 

 write(6,*)'to=',to 

 write(6,*)  

c ho=697639. 

c eo=cv*to 

 eo=ho-po/roo 

 Zo=po/(roo*R*to) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 tj=299. 

 roj=120. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 uj=213. 

 vj=1./roj 

 pj =  ((R*tj)/( 1.0/ (roj)-b))- 

     &   (a/(tj**(1.0/2.0) 

     &   * (1.0/roj )*( 1.0/roj +b)))  

 

      hj=h1+h1r- 

     &  ((R*tj)*(( (3*a)/(2*b*R*tj**(3.0/2.0))*(log(1+(b/vj)))) 

     &  -(pj*vj)/(R*tj)+1)) 

     &      +(R)*((acp*(tj-t1))+ 

     &  ((bcp/2.0)*((tj**2.0)-(t1**2.0)))+ 

     &  ((ccp/3.0)*((tj**3.0)-(t1**3.0)))+ 

     &  ((dcp/4.0)*((tj**4.0)-(t1**4.0)))) 

 

 

  

c hj=682640. 

 ej=hj-(pj/roj) 

 

c eps is = 1 for axisymmetric and eps = 0 for 2D problems 

 eps = 1.0 

 

 write(6,*)'pj=',pj,'roj=',roj 

 write(6,*)'tj=',tj 

 write(6,*)'uj=',uj 

c write(6,*) 'source',po,roo,to 

 

 do 10 i=1,imax 

  do 20 j=1,jmax 

   read(51,*)us(i,j) 

   read(52,*)vs(i,j) 

   read(53,*)t(i,j) 

   read(54,*)ro(i,j) 

  p(i,j) = ( ((R*t(i,j)*to)/( 1.0/ (ro(i,j)*roo)-b))- 

     &   (a/((t(i,j)*to)**(1.0/2.0) 

     &   * (1.0/(ro(i,j)*roo) )*( 1.0/(ro(i,j)*roo) +b))) )/po 

  e(i,j) =( (h1+h1r-((R*t(i,j)*to)*(( (3*a)/ 
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     &   (2*b*R*(t(i,j)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(i,j)*roo)))))) 

     &   -(p(i,j)*po*(1./(ro(i,j)*roo)))/(R*(t(i,j)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(i,j)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(i,j)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(i,j)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(i,j)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(i,j)*po)/(ro(i,j)*roo) ) ) )/(to*R) 

c write(61,*)ro(i,j) 

20 continue 

10 continue 

 

 

 

 y = dy/2. 

  

 do 50 j=1,jmax 

 

   do 60 i=1,imax 

    u(i,j,1) =  ro(i,j)  

    u(i,j,2) =  ro(i,j) * us(i,j) 

    u(i,j,3) =  ro(i,j) * vs(i,j) 

    u(i,j,4) = ( ( (1./2.)*(us(i,j)**2.+ vs(i,j)**2.) )   

     &       + e(i,j) )*ro(i,j) 

 

    f(i,j,1) = ro(i,j) * us(i,j) 

    f(i,j,2) = ro(i,j) * us(i,j) * us(i,j) 

     &          + p(i,j)*Zo 

    f(i,j,3) = ro(i,j) * us(i,j) * vs(i,j)  

    f(i,j,4) = ((( ( (1./2.)*(us(i,j)**2.+ vs(i,j)**2.) )   

     &       + e(i,j) )*ro(i,j))+p(i,j)*Zo)*us(i,j) 

  

    g(i,j,1) = ro(i,j) * vs(i,j) 

    g(i,j,2) = ro(i,j) * us(i,j) * vs(i,j)  

    g(i,j,3) = ro(i,j) * vs(i,j) * vs(i,j) 

     &       +p(i,j)*Zo 

    g(i,j,4) = ((( ( (1./2.)*(us(i,j)**2.+ vs(i,j)**2.) )   

     &       + e(i,j) )*ro(i,j))+p(i,j)*Zo)*vs(i,j)  

 

    jj(i,j,1) = eps * (  (1.0/y)*ro(i,j)*vs(i,j)  ) 

    jj(i,j,2) = eps * ( (1.0/y)*ro(i,j)*us(i,j)*vs(i,j) ) 

    jj(i,j,3) = eps * ( (1.0/y)*ro(i,j)*vs(i,j)*vs(i,j) ) 

    jj(i,j,4) = eps*( (1./y)*((( ( (1./2.)*(us(i,j)**2.+ 

     &       vs(i,j)**2.) )   

     &       + e(i,j) )*ro(i,j))+p(i,j)*Zo)*vs(i,j)  ) 

 

60   continue 

 

 y=y+dy 

 

50 continue 

 

c starting the loop in time for the Mac Cormack method 

 

 do 100 n = 1,nmax 
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cc The loop below is the first Macormic step ( predictor) 

 

  y = 0.0+dy+dy/2. 

 

  do 200 j = 2,jmax-1 

 

c time derivative, du1 arrays is calculated based on the initial values at time t 

 

    do 210 i = 2,imax-1 

     du1(i,j,1) = -( f(i+1,j,1)-f(i,j,1) )/(dx) 

     &       - ( g(i,j+1,1)-g(i,j,1) )/(dy) 

     &       -jj(i,j,1) 

     du1(i,j,2) = -( f(i+1,j,2)-f(i,j,2) )/(dx) 

     &       - ( g(i,j+1,2)-g(i,j,2) )/(dy)  

     &       -jj(i,j,2)    

     du1(i,j,3) = -( f(i+1,j,3)-f(i,j,3) )/(dx) 

     &       - ( g(i,j+1,3)-g(i,j,3) )/(dy)  

     &       -jj(i,j,3) 

     du1(i,j,4) = -( f(i+1,j,4)-f(i,j,4) )/(dx) 

     &       - ( g(i,j+1,4)-g(i,j,4) )/(dy) 

     &       -jj(i,j,4) 

 

c based on the du1 array, a new predicted value for u is calculated  

c this is the predicted value of u at t+1 

 

     up1(i,j,1) = (1.0/4.)*(u(i+1,j,1)+ u(i-1,j,1)+ 

     &       u(i,j+1,1) + u(i,j-1,1))  

     &       + du1(i,j,1)*(dt) 

     up1(i,j,2) = (1.0/4.)*(u(i+1,j,2)+ u(i-1,j,2)+ 

     &       u(i,j+1,2) + u(i,j-1,2))  

     &       + du1(i,j,2)*(dt) 

 

     up1(i,j,3) = (1.0/4.)*(u(i+1,j,3)+ u(i-1,j,3)+ 

     &       u(i,j+1,3) + u(i,j-1,3))   

     &       + du1(i,j,3)*(dt) 

     up1(i,j,4) = (1.0/4.)*(u(i+1,j,4)+ u(i-1,j,4)+ 

     &       u(i,j+1,4) + u(i,j-1,4)) 

     &       + du1(i,j,4)*(dt) 

 

c a predicted values for ro, us, vs, t are calculted at t+1 based on u at t+1 

 

     rop1(i,j) =  up1(i,j,1)  

     usp1(i,j) =  up1(i,j,2) / up1(i,j,1) 

     vsp1(i,j) =  up1(i,j,3) / up1(i,j,1) 

     ep1(i,j)  = ( -(1./2.)*(usp1(i,j)**2.+ vsp1(i,j)**2.) 

     &       ) + (up1(i,j,4)/rop1(i,j)) 

c  need subroutine 

 

 rorp = rop1(i,j)*roo 

 vvp = 1.0/rorp 

 eep = ep1(i,j) * (to*R) 

 

 ttp=tinitp 

 call rootfind(eep,h1,h1r,ttp,a,b,vvp,t1,acp,bcp,ccp,dcp,tol) 
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 tp1(i,j) = ttp/to 

 tinitp=ttp 

 

c     tp1(i,j) = ep1(i,j)*(R/cv) 

 

 

c     pp1(i,j) = rop1(i,j)*tp1(i,j) 

 pp1(i,j) =( ((R*tp1(i,j)*to)/( 1.0/(rop1(i,j)*roo)-b))- 

     &   (a/((tp1(i,j)*to)**(1.0/2.0) 

     &   * (1.0/(rop1(i,j)*roo))*( 1.0/(rop1(i,j)*roo)+b))) )/po 

 

 

c predicted f, g, and jj arrays based on predicted u at t+1 are calculated 

 

     fp1(i,j,1) = rop1(i,j) * usp1(i,j) 

     fp1(i,j,2) = rop1(i,j) * usp1(i,j) * usp1(i,j) 

     &        + pp1(i,j)*Zo 

     fp1(i,j,3) = rop1(i,j) * usp1(i,j) * vsp1(i,j)  

     fp1(i,j,4) = ((( ( (1./2.)*(usp1(i,j)**2.+  

     &       vsp1(i,j)**2.) )   

     &       + ep1(i,j) )*rop1(i,j))+pp1(i,j)*Zo)* 

     &       usp1(i,j) 

 

     gp1(i,j,1) = rop1(i,j) * vsp1(i,j) 

     gp1(i,j,2) = rop1(i,j) * usp1(i,j) * vsp1(i,j)  

     gp1(i,j,3) = rop1(i,j) * vsp1(i,j) * vsp1(i,j) 

     &        +pp1(i,j)*Zo 

     gp1(i,j,4) =  ((( ( (1./2.)*(usp1(i,j)**2.+  

     &       vsp1(i,j)**2.) )   

     &       + ep1(i,j) )*rop1(i,j))+pp1(i,j)*Zo)* 

     &       vsp1(i,j)  

 

     jjp1(i,j,1)=eps*( (1.0/y)*rop1(i,j)*vsp1(i,j) ) 

     jjp1(i,j,2)=eps*( (1.0/y)*rop1(i,j)*usp1(i,j)*vsp1(i,j) ) 

     jjp1(i,j,3)=eps*( (1.0/y)*rop1(i,j)*vsp1(i,j)*vsp1(i,j) ) 

     jjp1(i,j,4)= eps*( (1./y)*((( ( (1./2.)*(usp1(i,j)**2.+  

     &       vsp1(i,j)**2.) )   

     &       + ep1(i,j) )*rop1(i,j))+pp1(i,j)*Zo)* 

     &       vsp1(i,j)) 

 

c  write(6,*) 'test du', i,j,fp1(i+1,j,1),fp1(i-1,j,1) 

 

210     continue 

 

   y =  y + dy 

 

200  continue 

 

c between the two loops, predictor and corrector, impose the BC on the boundaries and calculate 

c the fp and gp at the boundaries. 

 

c  

c left side 

c 

 y=0.0+dy/2. 
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 do 4100 j=1,13 

  ro(1,j) = roj/roo 

  t(1,j) = tj/to 

  us(1,j) =  uj/ ((to*R)**(1./2.)) 

  vs(1,j) = 0.0 

c  need subroutine 

 p(1,j) =( ((R*t(1,j)*to)/( 1.0/(ro(1,j)*roo)-b))- 

     &   (a/( (t(1,j)*to)**(1.0/2.0) 

     &   * (1.0/(ro(1,j)*roo))*( 1.0/(ro(1,j)*roo)+b))) )/po 

 

c p(1,j) = ro(1,j)*t(1,j) 

c e(1,j) = t(1,j)*( cv/R  ) 

  e(1,j) =( (h1+h1r-((R*t(1,j)*to)*(( (3*a)/ 

     &   (2*b*R*(t(1,j)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(1,j)*roo)))))) 

     &   -(p(1,j)*po*(1./(ro(1,j)*roo)))/(R*(t(1,j)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(1,j)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(1,j)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(1,j)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(1,j)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(1,j)*po)/(ro(1,j)*roo) ) ) )/ (to*R) 

 

  up1(1,j,1) =  ro(1,j)  

  up1(1,j,2) =  ro(1,j) * us(1,j) 

  up1(1,j,3) =  ro(1,j) * vs(1,j) 

  up1(1,j,4) =  ( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j) 

 

 

  fp1(1,j,1) = ro(1,j) * us(1,j) 

  fp1(1,j,2) = ro(1,j) * us(1,j) * us(1,j) 

     &       + p(1,j)*Zo 

  fp1(1,j,3) = ro(1,j) * us(1,j) * vs(1,j)  

  fp1(1,j,4) =  ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j))+p(1,j)*Zo)*us(1,j) 

 

  gp1(1,j,1) = ro(1,j) * vs(1,j) 

  gp1(1,j,2) = ro(1,j) * us(1,j) * vs(1,j)  

  gp1(1,j,3) = ro(1,j) * vs(1,j) * vs(1,j) 

     &         +p(1,j)*Zo 

  gp1(1,j,4) =  ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j))+p(1,j)*Zo)*vs(1,j) 

 

  jjp1(1,j,1) = eps * ( (1.0/y)*ro(1,j)*vs(1,j) ) 

  jjp1(1,j,2) = eps * ( (1.0/y)*ro(1,j)*us(1,j)*vs(1,j) ) 

  jjp1(1,j,3) = eps * ( (1.0/y)*ro(1,j)*vs(1,j)*vs(1,j) ) 

  jjp1(1,j,4) = eps*( (1./y)*((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j))+p(1,j)*Zo)*vs(1,j) ) 

 

 y=y+dy 

 

4100     continue 

 

 do 4200 j=14,jmax 
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c  us(1,j) = -usp1(3,j) 

c  vs(1,j) = vsp1(3,j) 

c  ro(1,j) = rop1(3,j) 

c  t(1,j) = tp1(3,j) 

  us(1,j) =0.0 

  vs(1,j) = 0.0 

  ro(1,j) = roamb/roo 

  t(1,j) = tamb/to 

 p(1,j) =( ((R*t(1,j)*to)/( 1.0/(ro(1,j)*roo)-b))- 

     &    (a/((t(1,j)*to)**(1.0/2.0) 

     &   * (1.0/(ro(1,j)*roo))*( 1.0/(ro(1,j)*roo)+b))) )/po 

 

c p(1,j) = ro(1,j)*t(1,j) 

c e(1,j) = t(1,j)*( cv/R  ) 

  e(1,j) =( (h1+h1r-((R*t(1,j)*to)*(( (3*a)/ 

     &   (2*b*R*(t(1,j)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(1,j)*roo)))))) 

     &   -(p(1,j)*po*(1./(ro(1,j)*roo)))/(R*(t(1,j)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(1,j)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(1,j)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(1,j)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(1,j)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(1,j)*po)/(ro(1,j)*roo) ) ) )/(to*R) 

 

  up1(1,j,1) =  ro(1,j)  

  up1(1,j,2) =  ro(1,j) * us(1,j) 

  up1(1,j,3) =  ro(1,j) * vs(1,j) 

  up1(1,j,4) =  ( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j) 

 

 

  fp1(1,j,1) = ro(1,j) * us(1,j) 

  fp1(1,j,2) = ro(1,j) * us(1,j) * us(1,j) 

     &       + p(1,j)*Zo 

  fp1(1,j,3) = ro(1,j) * us(1,j) * vs(1,j)  

  fp1(1,j,4) =  ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j))+p(1,j)*Zo)*us(1,j) 

 

  gp1(1,j,1) = ro(1,j) * vs(1,j) 

  gp1(1,j,2) = ro(1,j) * us(1,j) * vs(1,j)  

  gp1(1,j,3) = ro(1,j) * vs(1,j) * vs(1,j) 

     &         +p(1,j)*Zo 

  gp1(1,j,4) =  ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j))+p(1,j)*Zo)*vs(1,j) 

 

  jjp1(1,j,1) = eps * ( (1.0/y)*ro(1,j)*vs(1,j) ) 

  jjp1(1,j,2) = eps * ( (1.0/y)*ro(1,j)*us(1,j)*vs(1,j) ) 

  jjp1(1,j,3) = eps * ( (1.0/y)*ro(1,j)*vs(1,j)*vs(1,j) ) 

  jjp1(1,j,4) = eps*( (1./y)*((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &       + e(1,j) )*ro(1,j))+p(1,j)*Zo)*vs(1,j) ) 

 

 y=y+dy 

 

4200     continue 

 



 

167 

 

 

 

 

 

c 

c right side 

c  

 

 y=0.+dy+dy/2. 

 

 do 2600 j=2,jmax 

 

  ro(imax,j) = rop1(imax-2,j)    

  us(imax,j) = -usp1(imax-2,j)  

 

c  us(imax-1,j) = 0. 

 

  vs(imax,j) = vsp1(imax-2,j)  

  t(imax,j) = tp1(imax-2,j) 

 p(imax,j) =  ( ((R*t(imax,j)*to)/( 1.0/(ro(imax,j)*roo)-b)) 

     &   -(a/( (t(imax,j)*to)**(1.0/2.0) 

     &  * (1.0/(ro(imax,j)*roo))*( 1.0/(ro(imax,j)*roo)+b))) )/po 

 

c  p(imax,j) = ro(imax,j)*t(imax,j) 

c e(imax,j) = t(imax,j)*(cv/R) 

 

  e(imax,j) =( (h1+h1r-((R*t(imax,j)*to)*(( (3*a)/ 

     &   (2*b*R*(t(imax,j)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(imax,j)*roo)))))) 

     &   -(p(imax,j)*po*(1./(ro(imax,j)*roo)))/ 

     &       (R*(t(imax,j)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(imax,j)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(imax,j)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(imax,j)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(imax,j)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(imax,j)*po)/(ro(imax,j)*roo) ) ) )/(to*R) 

 

 

 

c  have changed the BC at the right side to reflective BC 

 

c  ro(imax,j) = 2*rop1(imax-1,j) - rop1(imax-2,j)    

c  us(imax,j) = 2*usp1(imax-1,j) - usp1(imax-2,j) 

c  vs(imax,j) = 2*vsp1(imax-1,j) - vsp1(imax-2,j) 

c  t(imax,j) = 2*tp1(imax-1,j) - tp1(imax-2,j) 

 

 

 

  up1(imax,j,1) =  ro(imax,j)  

  up1(imax,j,2) =  ro(imax,j) * us(imax,j) 

  up1(imax,j,3) =  ro(imax,j) * vs(imax,j) 

  up1(imax,j,4) =   ( ( (1./2.)*(us(imax,j)**2.+ vs(imax,j)**2.) )   

     &      + e(imax,j) )*ro(imax,j) 

 

 

  fp1(imax,j,1) = ro(imax,j) * us(imax,j) 

  fp1(imax,j,2) = ro(imax,j) * us(imax,j) * us(imax,j) 

     &     + p(imax,j)*Zo 

  fp1(imax,j,3) = ro(imax,j) * us(imax,j) * vs(imax,j)  
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  fp1(imax,j,4) =  ((( ( (1./2.)*(us(imax,j)**2.+ vs(imax,j)**2.) )   

     &      + e(imax,j) )*ro(imax,j)) 

     &         +p(imax,j)*Zo)*us(imax,j) 

 

 

  gp1(imax,j,1) = ro(imax,j) * vs(imax,j) 

  gp1(imax,j,2) = ro(imax,j) * us(imax,j) * vs(imax,j)  

  gp1(imax,j,3) = ro(imax,j) * vs(imax,j) * vs(imax,j) 

     &      +p(imax,j)*Zo 

  gp1(imax,j,4) =   ((( ( (1./2.)*(us(imax,j)**2.+ vs(imax,j)**2.) )   

     &      + e(imax,j) )*ro(imax,j)) 

     &         +p(imax,j)*Zo)*vs(imax,j)  

 

 

  jjp1(imax,j,1) = eps * ( (1.0/y)*ro(imax,j)*vs(imax,j) ) 

  jjp1(imax,j,2) = eps * ( (1.0/y)*ro(imax,j)*us(imax,j)*vs(imax,j) ) 

  jjp1(imax,j,3) = eps * ( (1.0/y)*ro(imax,j)*vs(imax,j)*vs(imax,j) ) 

  jjp1(imax,j,4) = eps*( (1./y)*  ((( ( (1./2.)*(us(imax,j)**2.+  

     &     vs(imax,j)**2.) )   

     &      + e(imax,j) )*ro(imax,j)) 

     &         +p(imax,j)*Zo)*vs(imax,j)   ) 

 

 

 

 y=y+dy 

 

2600 continue 

 

c 

c top 

c fix top BC , use interpolation 

 

 y=dy*float(jmax) +dy/2.0 

 

 do 4300 i=1,imax 

  

  us(i,jmax) =0.0 

c vs(i,jmax) =  (1/.02366)*(1./1600.) 

c vs(i,jmax) =  ( roj/roamb )*(1./1600.) 

c  vs(i,jmax) = 0.0 

  vs(i,jmax) = 2*vs(i,jmax-1) - vs(i,jmax-2)    

 

  ro(i,jmax) = roamb/roo 

  t(i,jmax) = tamb/to 

 p(i,jmax) = ( ((R*t(i,jmax)*to)/( 1.0/(ro(i,jmax)*roo)-b))- 

     &   (a/( (t(i,jmax)*to)**(1.0/2.0) 

     &   * (1.0/(ro(i,jmax)*roo))*( 1.0/(ro(i,jmax)*roo)+b))) )/po 

 

c  p(i,jmax) = ro(i,jmax)*t(i,jmax) 

c e(i,jmax) = t(i,jmax)*(cv/R  ) 

  e(i,jmax) =( (h1+h1r-((R*t(i,jmax)*to)*(( (3*a)/ 

     &   (2*b*R*(t(i,jmax)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(i,jmax)*roo)))))) 

     &   -(p(i,jmax)*po*(1./(ro(i,jmax)*roo)))/ 

     &   (R*(t(i,jmax)*to))+1)) 

     &      +(R)* 
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     &      ((acp*((t(i,jmax)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(i,jmax)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(i,jmax)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(i,jmax)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(i,jmax)*po)/(ro(i,jmax)*roo) ) ) )/(to*R) 

 

  up1(i,jmax,1) =  ro(i,jmax)  

  up1(i,jmax,2) =  ro(i,jmax) * us(i,jmax) 

  up1(i,jmax,3) =  ro(i,jmax) * vs(i,jmax) 

  up1(i,jmax,4) =  ( ( (1./2.)*(us(i,jmax)**2.+ vs(i,jmax)**2.) )   

     &      + e(i,jmax) )*ro(i,jmax) 

 

  fp1(i,jmax,1) = ro(i,jmax) * us(i,jmax) 

  fp1(i,jmax,2) = ro(i,jmax) * us(i,jmax) * us(i,jmax) 

     &       + p(i,jmax)*Zo 

  fp1(i,jmax,3) = ro(i,jmax) * us(i,jmax) * vs(i,jmax)  

  fp1(i,jmax,4) = ((( ( (1./2.)*(us(i,jmax)**2.+ vs(i,jmax)**2.) )   

     &      + e(i,jmax) )*ro(i,jmax)) 

     &         +p(i,jmax)*Zo)*us(i,jmax) 

 

 

  gp1(i,jmax,1) = ro(i,jmax) * vs(i,jmax) 

  gp1(i,jmax,2) = ro(i,jmax) * us(i,jmax) * vs(i,jmax)  

  gp1(i,jmax,3) = ro(i,jmax) * vs(i,jmax) * vs(i,jmax) 

     &     +p(i,jmax)*Zo 

  gp1(i,jmax,4) = ((( ( (1./2.)*(us(i,jmax)**2.+ vs(i,jmax)**2.) )   

     &      + e(i,jmax) )*ro(i,jmax)) 

     &         +p(i,jmax)*Zo)*vs(i,jmax)  

 

 

  jjp1(i,jmax,1) = eps * ( (1.0/y)*ro(i,jmax)*vs(i,jmax) ) 

  jjp1(i,jmax,2) = eps * ( (1.0/y)*ro(i,jmax)*us(i,jmax)*vs(i,jmax) ) 

  jjp1(i,jmax,3) = eps * ( (1.0/y)*ro(i,jmax)*vs(i,jmax)*vs(i,jmax) ) 

  jjp1(i,jmax,4) = eps*( (1./y)*((( ( (1./2.)*(us(i,jmax)**2.+  

     &        vs(i,jmax)**2.) )   

     &      + e(i,jmax) )*ro(i,jmax)) 

     &         +p(i,jmax)*Zo)*vs(i,jmax)   ) 

 

4300 continue 

 

c  

c axis of symmetry 

c  

 

 y=0.0+dy/2. 

 

 do 4400 i=1,imax 

 

  us(i,1) = usp1(i,3) 

c  write(6,*) 'vs at i=2',vs(i,2) 

c 12/14: I will remove the v=0 condition on axis, since i applied 

c v at ghost row ( row 1) = v at row above axis( row 3) 

 

c  vs(i,2) = 0.0 

c  write(6,*) 'vs at i=2',vs(i,2) 

  vs(i,1) = - vsp1(i,3) 
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  ro(i,1) = rop1(i,3) 

  t(i,1) = tp1(i,3) 

 p(i,1) = ( ((R*t(i,1)*to)/( 1.0/(ro(i,1)*roo)-b))- 

     &   (a/((t(i,1)*to)**(1.0/2.0) 

     &   * (1.0/(ro(i,1)*roo))*( 1.0/(ro(i,1)*roo)+b))) )/po 

 

c  p(i,1) = ro(i,1)*t(i,1) 

c e(i,1) = t(i,1)*( cv/R ) 

 

  e(i,1) =( (h1+h1r-((R*t(i,1)*to)*(( (3*a)/ 

     &   (2*b*R*(t(i,1)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(i,1)*roo)))))) 

     &   -(p(i,1)*po*(1./(ro(i,1)*roo)))/(R*(t(i,1)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(i,1)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(i,1)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(i,1)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(i,1)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(i,1)*po)/(ro(i,1)*roo) ) ) )/(to*R) 

 

  up1(i,1,1) =  ro(i,1)  

  up1(i,1,2) =  ro(i,1) * us(i,1) 

  up1(i,1,3) =  ro(i,1) * vs(i,1) 

  up1(i,1,4) =   ( ( (1./2.)*(us(i,1)**2.+ vs(i,1)**2.) )   

     &      + e(i,1) )*ro(i,1) 

c write(6,*)'test',up1(i,j,1) 

  fp1(i,1,1) = ro(i,1) * us(i,1) 

  fp1(i,1,2) = ro(i,1) * us(i,1) * us(i,1) 

     &      + p(i,1)*Zo 

  fp1(i,1,3) = ro(i,1) * us(i,1) * vs(i,1)  

  fp1(i,1,4) = ((( ( (1./2.)*(us(i,1)**2.+ vs(i,1)**2.) )   

     &      + e(i,1) )*ro(i,1)) 

     &         +p(i,1)*Zo)*us(i,1) 

 

 

  gp1(i,1,1) = ro(i,1) * vs(i,1) 

  gp1(i,1,2) = ro(i,1) * us(i,1) * vs(i,1)  

  gp1(i,1,3) = ro(i,1) * vs(i,1) * vs(i,1) 

     &      +p(i,1)*Zo 

  gp1(i,1,4) = ((( ( (1./2.)*(us(i,1)**2.+ vs(i,1)**2.) )   

     &      + e(i,1) )*ro(i,1)) 

     &         +p(i,1)*Zo)*vs(i,1) 

 

 

  jjp1(i,1,1) = eps * ( (1.0/y)*ro(i,1)*vs(i,1) ) 

  jjp1(i,1,2) = eps * ( (1.0/y)*ro(i,1)*us(i,1)*vs(i,1) ) 

  jjp1(i,1,3) = eps * ( (1.0/y)*ro(i,1)*vs(i,1)*vs(i,1) ) 

  jjp1(i,1,4) = eps*( ((( ( (1./2.)*(us(i,1)**2.+ vs(i,1)**2.) )   

     &      + e(i,1) )*ro(i,1)) 

     &         +p(i,1)*Zo)*vs(i,1)  ) 

 

4400 continue 

 

 

cc The loop below is the second Macormic step ( corrector) 
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 y=0.+dy+dy/2. 

 

  do 220 j=2,jmax-1 

 

    do 230 i = 2, imax-1 

 

c we calculate a predicted value of the time derivative at time t+1 

c of arrau U by substituting the predicted values of f and g 

 

    du2p1(i,j,1) = -( fp1(i,j,1)-fp1(i-1,j,1) )/(dx) 

     &      - ( gp1(i,j,1)-gp1(i,j-1,1) )/(dy) 

     &      -jjp1(i,j,1) 

    du2p1(i,j,2) = -( fp1(i,j,2)-fp1(i-1,j,2) )/(dx) 

     &      - ( gp1(i,j,2)-gp1(i,j-1,2) )/(dy) 

     &      -jjp1(i,j,2) 

     du2p1(i,j,3) = -( fp1(i,j,3)-fp1(i-1,j,3) )/(dx) 

     &      - ( gp1(i,j,3)-gp1(i,j-1,3) )/(dy)  

     &      -jjp1(i,j,3) 

    du2p1(i,j,4) = -( fp1(i,j,4)-fp1(i-1,j,4) )/(dx) 

     &      - ( gp1(i,j,4)-gp1(i,j-1,4) )/(dy)  

     &      -jjp1(i,j,4) 

 

c an average value of the time derivative of U is calculated from the  

c mean of du at t and du at t+1 

 

    du(i,j,1) = du2p1(i,j,1)  

    du(i,j,2) = du2p1(i,j,2)  

    du(i,j,3) = du2p1(i,j,3)  

    du(i,j,4) = du2p1(i,j,4) 

c write(6,81) i,j,fp1(i+1,j,1),fp1(i-1,j,1),gp1(i,j+1,1),du(i,j-1,1) 

 

c calculate a corrected array U at t+1 based on the corrected time derivative du  

 

    u2p1(i,j,1) = (1./2.)*( u(i,j,1) + up1(i,j,1) + dt*du(i,j,1) ) 

c    u(i,j,1) + du(i,j,1)*dt 

c    &      + (phi/3.)*( (1.0/4.)*(u(i+1,j,1)+ u(i-1,j,1)+ 

c    &      u(i,j+1,1) + u(i,j-1,1)) - u(i,j,1) ) 

c     &    + cx* abs( rop1(i+1,j)*tp1(i+1,j)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam +  

c     &    rop1(i-1,j)*tp1(i-1,j)*gam ) 

c     &    * ( u2(i+1,j,1) - 2. * u2(i,j,1) + u2(i-1,j,1) ) 

c     &    / ( rop1(i+1,j)*tp1(i+1,j)*gam + 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i-1,j)*tp1(i-1,j)*gam  ) 

c     &    / ( ro(i+1,j)*t(i+1,j)*gam + 

c     &    2.0*ro(i,j)*t(i,j)*gam + ro(i-1,j)*t(i-1,j)*gam  ) 

c     &    + cy* abs( rop1(i,j+1)*tp1(i,j+1)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam +  

c     &    rop1(i,j-1)*tp1(i,j-1)*gam ) 

c     &    * ( u2(i,j+1,1) - 2. * u2(i,j,1) + u2(i,j-1,1) ) 

c     &    / ( rop1(i,j+1)*tp1(i,j+1)*gam + 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i,j-1)*tp1(i,j-1)*gam  ) 

c     &    / ( ro(i,j+1)*t(i,j+1)*gam + 

c     &    2.0*ro(i,j)*t(i,j)*gam + ro(i,j-1)*t(i,j-1)*gam  ) 

 

    u2p1(i,j,2) = (1./2.)*( u(i,j,2) + up1(i,j,2) + dt*du(i,j,2) ) 
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c    u(i,j,2) + du(i,j,2)*dt 

c     &      + (phi/3.)*( (1.0/4.)*(u(i+1,j,2)+ u(i-1,j,2)+ 

c     &      u(i,j+1,2) + u(i,j-1,2)) - u(i,j,2) ) 

 

 

c     &    + cx* abs( rop1(i+1,j)*tp1(i+1,j)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam  + rop1(i-1,j)*tp1(i-1,j)*gam ) 

c     &    * ( u2(i+1,j,2) - 2. * u2(i,j,2) + u2(i-1,j,2) ) 

c     &    / ( rop1(i+1,j)*tp1(i+1,j)*gam +2.0*rop1(i,j)*tp1(i,j)*gam 

c     &    + rop1(i-1,j)*tp1(i-1,j)*gam) 

cc     &    / ( ro(i+1,j)*t(i+1,j)*gam +2.0*ro(i,j)*t(i,j)*gam 

cc     &    + ro(i-1,j)*t(i-1,j)*gam) 

c     &    + cy* abs( rop1(i,j+1)*tp1(i,j+1)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam +  

c     &    rop1(i,j-1)*tp1(i,j-1)*gam ) 

c     &    * ( u2(i,j+1,2) - 2. * u2(i,j,2) + u2(i,j-1,2) ) 

c     &    / ( rop1(i,j+1)*tp1(i,j+1)*gam + 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i,j-1)*tp1(i,j-1)*gam  ) 

c     &    / ( ro(i,j+1)*t(i,j+1)*gam + 

c     &    2.0*ro(i,j)*t(i,j)*gam + ro(i,j-1)*t(i,j-1)*gam  ) 

 

    u2p1(i,j,3) =  (1./2.)*( u(i,j,3) + up1(i,j,3) + dt*du(i,j,3)) 

c    u(i,j,3) + du(i,j,3)*dt 

c     &      + (phi/3.)*( (1.0/4.)*(u(i+1,j,3)+ u(i-1,j,3)+ 

c     &      u(i,j+1,3) + u(i,j-1,3)) - u(i,j,3) ) 

 

c     &    + cx* abs( rop1(i+1,j)*tp1(i+1,j)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i-1,j)*tp1(i-1,j)*gam ) 

c     &    * ( u2(i+1,j,3) - 2. * u2(i,j,3) + u2(i-1,j,3) ) 

c     &    / ( rop1(i+1,j)*tp1(i+1,j)*gam  

cc     &    +2.0*rop1(i,j)*tp1(i,j)*gam  

cc     &    + rop1(i-1,j)*tp1(i-1,j)*gam ) 

c     &    / ( ro(i+1,j)*t(i+1,j)*gam  

c     &    +2.0*ro(i,j)*t(i,j)*gam  

c     &    + ro(i-1,j)*t(i-1,j)*gam ) 

c     &        + cy* abs( rop1(i,j+1)*tp1(i,j+1)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam +  

c     &    rop1(i,j-1)*tp1(i,j-1)*gam ) 

c     &    * ( u2(i,j+1,3) - 2. * u2(i,j,3) + u2(i,j-1,3) ) 

cc     &    / ( rop1(i,j+1)*tp1(i,j+1)*gam + 

cc     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i,j-1)*tp1(i,j-1)*gam  ) 

c     &    / ( ro(i,j+1)*t(i,j+1)*gam + 

c     &    2.0*ro(i,j)*t(i,j)*gam + ro(i,j-1)*t(i,j-1)*gam  ) 

 

    u2p1(i,j,4) =(1./2.)*( u(i,j,4) + up1(i,j,4) + dt*du(i,j,4) ) 

c     u(i,j,4) + du(i,j,4)*dt 

c     &      + (phi/3.)*( (1.0/4.)*(u(i+1,j,4)+ u(i-1,j,4)+ 

c     &      u(i,j+1,4) + u(i,j-1,4)) - u(i,j,4) ) 

 

c     &    + cx* abs( rop1(i+1,j)*tp1(i+1,j)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i-1,j)*tp1(i-1,j)*gam ) 

c     &    * ( u2(i+1,j,4) - 2. * u2(i,j,4) + u2(i-1,j,4) ) 

cc     &    / ( rop1(i+1,j)*tp1(i+1,j)*gam + 

cc     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i-1,j)*tp1(i-1,j)*gam ) 

c     &    / ( ro(i+1,j)*t(i+1,j)*gam + 

c     &    2.0*ro(i,j)*t(i,j)*gam + ro(i-1,j)*t(i-1,j)*gam ) 



 

173 

 

 

 

 

 

c     &    + cy* abs( rop1(i,j+1)*tp1(i,j+1)*gam- 

c     &    2.0*rop1(i,j)*tp1(i,j)*gam +  

c     &    rop1(i,j-1)*tp1(i,j-1)*gam ) 

c     &    * ( u2(i,j+1,4) - 2. * u2(i,j,4) + u2(i,j-1,4) ) 

cc     &    / ( rop1(i,j+1)*tp1(i,j+1)*gam + 

cc     &    2.0*rop1(i,j)*tp1(i,j)*gam + rop1(i,j-1)*tp1(i,j-1)*gam  ) 

c     &    / ( ro(i,j+1)*t(i,j+1)*gam + 

c     &    2.0*ro(i,j)*t(i,j)*gam + ro(i,j-1)*t(i,j-1)*gam  ) 

 

c calculate corrected ro, us, vs, and t at time t+1 

c calcualte corrected f,g and jj arrays at t+1  

 

     ro2p1(i,j) =  u2p1(i,j,1)  

     us2p1(i,j) =  u2p1(i,j,2) / u2p1(i,j,1) 

     vs2p1(i,j) =  u2p1(i,j,3) / u2p1(i,j,1) 

     e2p1(i,j)  = ( -(1./2.)*(us2p1(i,j)**2.+  

     &        vs2p1(i,j)**2.) 

     &       ) + (u2p1(i,j,4)/ro2p1(i,j)) 

c write(6,*)n,i,j,ro2p1(i,j) 

 rorc = ro2p1(i,j)*roo 

 vvc = 1.0/rorc 

 eec = e2p1(i,j) * (to*R) 

 

 ttc=tinitc 

c     write(6,*)'before sub', n,i,j,eec 

 call rootfind(eec,h1,h1r,ttc,a,b,vvc,t1,acp,bcp,ccp,dcp,tol) 

c     write(6,*)'before sub', ee,vv,ror,h1r 

 

 t2p1(i,j) = ttc/to 

 tinitc=ttc 

c write(6,*) n,i,ttc 

c end 

 

 

 

c     t2p1(i,j) = e2p1(i,j)*( R/cv  ) 

 

 p2p1(i,j) =(  ((R*t2p1(i,j)*to)/( 1.0/(ro2p1(i,j)*roo)-b))- 

     &    (a/((t2p1(i,j)*to)**(1.0/2.0) 

     &    * (1.0/(ro2p1(i,j)*roo))* 

     &       ( 1.0/(ro2p1(i,j)*roo)+b))) )/po 

 

c     p2p1(i,j) = ro2p1(i,j)*t2p1(i,j) 

     

c    ro2p1(i,j) = u2p1(i,j,1)  

c    us2p1(i,j) = u2p1(i,j,2) / u2p1(i,j,1) 

c    vs2p1(i,j) = u2p1(i,j,3) / u2p1(i,j,1) 

c    t2p1(i,j) = (gam-1.) * ( (u2p1(i,j,4)/ro2p1(i,j)) -  

c     &        ((1./2.)*(us2p1(i,j)**2.+ vs2p1(i,j)**2.)) ) 

   

     f2p1(i,j,1) = ro2p1(i,j) * us2p1(i,j) 

     f2p1(i,j,2) = ro2p1(i,j) * us2p1(i,j) * us2p1(i,j) 

     &         + p2p1(i,j)*Zo 

     f2p1(i,j,3) = ro2p1(i,j) * us2p1(i,j) * vs2p1(i,j)  

     f2p1(i,j,4) = ((( ( (1./2.)*(us2p1(i,j)**2.+ 

     &        vs2p1(i,j)**2.) )   
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     &        + e2p1(i,j) )*ro2p1(i,j)) 

     &        +p2p1(i,j)*Zo)*us2p1(i,j) 

 

     g2p1(i,j,1) = ro2p1(i,j) * vs2p1(i,j) 

     g2p1(i,j,2) = ro2p1(i,j) * us2p1(i,j) * vs2p1(i,j)  

     g2p1(i,j,3) = ro2p1(i,j) * vs2p1(i,j) * vs2p1(i,j) 

     &        +p2p1(i,j)*Zo 

     g2p1(i,j,4) =((( ( (1./2.)*(us2p1(i,j)**2.+ 

     &        vs2p1(i,j)**2.) )   

     &        + e2p1(i,j) )*ro2p1(i,j)) 

     &        +p2p1(i,j)*Zo)*vs2p1(i,j) 

 

     jj2p1(i,j,1)=eps*( (1.0/y)*ro2p1(i,j)*vs2p1(i,j) ) 

     jj2p1(i,j,2)=eps*( (1.0/y)*ro2p1(i,j)*us2p1(i,j)* 

     &     vs2p1(i,j) ) 

     jj2p1(i,j,3)=eps*( (1.0/y)*ro2p1(i,j)*vs2p1(i,j)* 

     &     vs2p1(i,j) ) 

     jj2p1(i,j,4)= eps*( (1./y)*((( ( (1./2.)*(us2p1(i,j)**2.+ 

     &        vs2p1(i,j)**2.) )   

     &        + e2p1(i,j) )*ro2p1(i,j)) 

     &        +p2p1(i,j)*Zo)*vs2p1(i,j)) 

 

230    continue 

 

 y=y+dy 

 

220  continue 

 

c this is the end of the loop, should reset all values calculated at t+1 to  

c values at t and go back to the top and repeat another time step 

 

    do 240 i = 2, imax-1 

 

   do 250 j = 2,jmax-1 

 

    u(i,j,1) = u2p1(i,j,1) 

    u(i,j,2) = u2p1(i,j,2) 

    u(i,j,3) = u2p1(i,j,3) 

    u(i,j,4) = u2p1(i,j,4) 

c    write(6,*) i,j,u(i,j,1),u(i,j,2),u(i,j,3),u(i,j,4)  

 

    f(i,j,1) = f2p1(i,j,1)  

    f(i,j,2) = f2p1(i,j,2)  

    f(i,j,3) = f2p1(i,j,3)  

    f(i,j,4) = f2p1(i,j,4) 

     

    g(i,j,1) = g2p1(i,j,1)  

    g(i,j,2) = g2p1(i,j,2)  

    g(i,j,3) = g2p1(i,j,3)  

    g(i,j,4) = g2p1(i,j,4) 

    

    jj(i,j,1) = jj2p1(i,j,1)  

    jj(i,j,2) = jj2p1(i,j,2)  

    jj(i,j,3) = jj2p1(i,j,3)  

    jj(i,j,4) = jj2p1(i,j,4) 

    



 

175 

 

 

 

 

 

    ro(i,j) = ro2p1(i,j) 

    us(i,j) = us2p1(i,j) 

    vs(i,j) = vs2p1(i,j) 

    t(i,j) = t2p1(i,j) 

 p(i,j)= p2p1(i,j) 

 e(i,j)=e2p1(i,j) 

250   continue 

 

240    continue 

 

 

c apply BC to the right, at i=imax for all j 

c a line fit using the 2 last two points is used. 

c  need to be modified to include the last five point in a quadratic curve fit 

c BC are applied to ro, us, vs, and t, then new U,f,g and jj arrays are calculated 

  

 

 y = 0.+ dy + dy/2. 

 

 do 260 j=2,jmax 

 

  ro(imax,j) = ro(imax-2,j)     

  us(imax,j) = -us(imax-2,j)  

   

c  us(imax-1,j) = 0. 

 

  vs(imax,j) = vs(imax-2,j)  

  t(imax,j) = t(imax-2,j) 

    

c  ro(imax,j) = 2*ro(imax-1,j) - ro(imax-2,j)    

c  us(imax,j) = 2*us(imax-1,j) - us(imax-2,j) 

c  vs(imax,j) = 2*vs(imax-1,j) - vs(imax-2,j) 

c  t(imax,j) = 2*t(imax-1,j) - t(imax-2,j) 

 

 p(imax,j) = ( ((R*t(imax,j)*to)/( 1.0/(ro(imax,j)*roo)-b))- 

     &   (a/( (t(imax,j)*to)**(1.0/2.0) 

     &  * (1.0/(ro(imax,j)*roo))*( 1.0/(ro(imax,j)*roo)+b))) )/po 

 

c  p(imax,j) = ro(imax,j)*t(imax,j) 

c e(imax,j) = t(imax,j)*( cv/R ) 

  e(imax,j) =( (h1+h1r-((R*t(imax,j)*to)*(( (3*a)/ 

     &   (2*b*R*(t(imax,j)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(imax,j)*roo)))))) 

     &   -(p(imax,j)*po*(1./(ro(imax,j)*roo)))/ 

     &       (R*(t(imax,j)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(imax,j)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(imax,j)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(imax,j)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(imax,j)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(imax,j)*po)/(ro(imax,j)*roo) ) ) )/(to*R) 

 

 

 

  u(imax,j,1) =  ro(imax,j)  

  u(imax,j,2) =  ro(imax,j) * us(imax,j) 
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  u(imax,j,3) =  ro(imax,j) * vs(imax,j) 

  u(imax,j,4) =  ( (( (1./2.)*(us(imax,j)**2.+ vs(imax,j)**2.) )   

     &      ) + e(imax,j) )*ro(imax,j) 

 

 

  f(imax,j,1) = ro(imax,j) * us(imax,j) 

  f(imax,j,2) = ro(imax,j) * us(imax,j) * us(imax,j) 

     &      + p(imax,j)*Zo 

  f(imax,j,3) = ro(imax,j) * us(imax,j) * vs(imax,j)  

  f(imax,j,4) =((( ( (1./2.)*(us(imax,j)**2.+ 

     &        vs(imax,j)**2.) )   

     &        + e(imax,j) )*ro(imax,j)) 

     &        +p(imax,j)*Zo)*us(imax,j)  

 

 

  g(imax,j,1) = ro(imax,j) * vs(imax,j) 

  g(imax,j,2) = ro(imax,j) * us(imax,j) * vs(imax,j)  

  g(imax,j,3) = ro(imax,j) * vs(imax,j) * vs(imax,j) 

     &     +p(imax,j)*Zo 

  g(imax,j,4) =  ((( ( (1./2.)*(us(imax,j)**2.+ 

     &        vs(imax,j)**2.) )   

     &        + e(imax,j) )*ro(imax,j)) 

     &        +p(imax,j)*Zo)*vs(imax,j)  

 

  jj(imax,j,1) = eps * ( (1.0/y)*ro(imax,j)*vs(imax,j) ) 

  jj(imax,j,2) = eps * ( (1.0/y)*ro(imax,j)*us(imax,j)*vs(imax,j) ) 

  jj(imax,j,3) = eps * ( (1.0/y)*ro(imax,j)*vs(imax,j)*vs(imax,j) ) 

  jj(imax,j,4) = eps*( (1./y)*((( ( (1./2.)*(us(imax,j)**2.+ 

     &        vs(imax,j)**2.) )   

     &        + e(imax,j) )*ro(imax,j)) 

     &        +p(imax,j)*Zo)*vs(imax,j) ) 

 

 y=y+dy 

260 continue 

 

c apply the BC to the left side of the mesh 

c from j=1 to 5 , apply sonic conditions, also p=po and t=to 

c from j=6 to 60, apply reflective BC, that is us = 0, only the velocity component  

c in the x direction 

 

 y=0.+dy+dy/2. 

 do 410 j=2,13 

  ro(1,j) = roj/roo 

  t(1,j) = tj/to 

  us(1,j) = uj/ ((R*to)**(1./2.)) 

  vs(1,j) = 0.0 

 p(1,j) = ( ((R*(t(1,j)*to))/( 1.0/(ro(1,j)*roo)-b))- 

     &   (a/((t(1,j)*to)**(1.0/2.0) 

     &   * (1.0/(ro(1,j)*roo))*( 1.0/(ro(1,j)*roo)+b))) )/po 

 

c p(1,j) = ro(1,j)*t(1,j) 

c e(1,j) = t(1,j)*( cv/R ) 

  e(1,j) =( (h1+h1r-((R*t(1,j)*to)*(( (3*a)/ 

     &   (2*b*R*(t(1,j)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(1,j)*roo)))))) 

     &   -(p(1,j)*po*(1./(ro(1,j)*roo)))/(R*(t(1,j)*to))+1)) 
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     &       +(R)* 

     &       ((acp*((t(1,j)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(1,j)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(1,j)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(1,j)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(1,j)*po)/(ro(1,j)*roo) ) ) )/(to*R) 

 

  u(1,j,1) =  ro(1,j)  

  u(1,j,2) =  ro(1,j) * us(1,j) 

  u(1,j,3) =  ro(1,j) * vs(1,j) 

  u(1,j,4) =  ( (( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )  

     &      ) + e(1,j) )*ro(1,j) 

 

 

  f(1,j,1) = ro(1,j) * us(1,j) 

  f(1,j,2) = ro(1,j) * us(1,j) * us(1,j) 

     &      + p(1,j)*Zo 

  f(1,j,3) = ro(1,j) * us(1,j) * vs(1,j)  

  f(1,j,4) =   ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &    + e(1,j) )*ro(1,j)) 

     &       +p(1,j)*Zo)*us(1,j) 

 

  g(1,j,1) = ro(1,j) * vs(1,j) 

  g(1,j,2) = ro(1,j) * us(1,j) * vs(1,j)  

  g(1,j,3) = ro(1,j) * vs(1,j) * vs(1,j) 

     &     +p(1,j)*Zo 

  g(1,j,4) =   ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &    + e(1,j) )*ro(1,j)) 

     &       +p(1,j)*Zo)*vs(1,j) 

 

  jj(1,j,1) = eps * ( (1.0/y)*ro(1,j)*vs(1,j) ) 

  jj(1,j,2) = eps * ( (1.0/y)*ro(1,j)*us(1,j)*vs(1,j) ) 

  jj(1,j,3) = eps * ( (1.0/y)*ro(1,j)*vs(1,j)*vs(1,j) ) 

  jj(1,j,4) = eps*( (1./y)*((( ( (1./2.)*(us(1,j)**2.+  

     &    vs(1,j)**2.) )   

     &    + e(1,j) )*ro(1,j)) 

     &       +p(1,j)*Zo)*vs(1,j)  ) 

 

 

 y=y+dy 

 

410 continue 

 

 do 420 j=14,jmax 

 

c  us(1,j) = -us(3,j) 

c  vs(1,j) = vs(3,j) 

c  ro(1,j) = ro(3,j) 

c  t(1,j) = t(3,j) 

  us(1,j) =0.0 

  vs(1,j) = 0.0 

  ro(1,j) = roamb/roo 

  t(1,j) = tamb/to 

 

 p(1,j) = ( ((R*(t(1,j)*to))/( 1.0/(ro(1,j)*roo)-b))- 

     &   (a/((t(1,j)*to)**(1.0/2.0) 
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     &   * (1.0/(ro(1,j)*roo))*( 1.0/(ro(1,j)*roo)+b))) )/po 

 

c p(1,j) = ro(1,j)*t(1,j) 

c e(1,j) = t(1,j)*( cv/R) 

  e(1,j) =( (h1+h1r-((R*t(1,j)*to)*(( (3*a)/ 

     &   (2*b*R*(t(1,j)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(1,j)*roo)))))) 

     &   -(p(1,j)*po*(1./(ro(1,j)*roo)))/(R*(t(1,j)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(1,j)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(1,j)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(1,j)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(1,j)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(1,j)*po)/(ro(1,j)*roo) ) ) )/(to*R) 

 

  u(1,j,1) =  ro(1,j)  

  u(1,j,2) =  ro(1,j) * us(1,j) 

  u(1,j,3) =  ro(1,j) * vs(1,j) 

  u(1,j,4) =  ( (( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )  

     &      ) + e(1,j) )*ro(1,j) 

 

 

  f(1,j,1) = ro(1,j) * us(1,j) 

  f(1,j,2) = ro(1,j) * us(1,j) * us(1,j) 

     &      + p(1,j)*Zo 

  f(1,j,3) = ro(1,j) * us(1,j) * vs(1,j)  

  f(1,j,4) = ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &    + e(1,j) )*ro(1,j)) 

     &       +p(1,j)*Zo)*us(1,j) 

 

  g(1,j,1) = ro(1,j) * vs(1,j) 

  g(1,j,2) = ro(1,j) * us(1,j) * vs(1,j)  

  g(1,j,3) = ro(1,j) * vs(1,j) * vs(1,j) 

     &     +p(1,j)*Zo 

  g(1,j,4) = ((( ( (1./2.)*(us(1,j)**2.+ vs(1,j)**2.) )   

     &    + e(1,j) )*ro(1,j)) 

     &       +p(1,j)*Zo)*vs(1,j) 

 

  jj(1,j,1) = eps * ( (1.0/y)*ro(1,j)*vs(1,j) ) 

  jj(1,j,2) = eps * ( (1.0/y)*ro(1,j)*us(1,j)*vs(1,j) ) 

  jj(1,j,3) = eps * ( (1.0/y)*ro(1,j)*vs(1,j)*vs(1,j) ) 

  jj(1,j,4) = eps*( (1./y)*((( ( (1./2.)*(us(1,j)**2.+  

     &    vs(1,j)**2.) )   

     &    + e(1,j) )*ro(1,j)) 

     &       +p(1,j)*Zo)*vs(1,j) ) 

 y=y+dy 

420 continue 

c apply BC at the top 

c p=po/50, t=to 

c non dimensional p=1/50, non dimensional t=1  

 

 

 y=float(jmax)*dy+dy/2. 

 

 do 430 i=1,imax 
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 us(i,jmax) =0.0 

c vs(i,jmax) =  (1/.02366)*(1./1600.) 

c vs(i,jmax) =  ( roj/roamb )*(1./1600.) 

  vs(i,jmax) = 2*vs(i,jmax-1) - vs(i,jmax-2)    

c  vs(i,jmax) = 0.0 

  ro(i,jmax) = roamb/roo 

  t(i,jmax) = tamb/to 

 

 p(i,jmax) =( ((R*t(i,jmax)*to)/( 1.0/(ro(i,jmax)*roo)-b))- 

     &   (a/( (t(i,jmax)*to)**(1.0/2.0) 

     &   * (1.0/(ro(i,jmax)*roo))*( 1.0/(ro(i,jmax)*roo)+b))) )/po 

 

c  p(i,jmax) = ro(i,jmax)*t(i,jmax) 

c e(i,jmax) = t(i,jmax)*( cv/R) 

  e(i,jmax) =( (h1+h1r-((R*t(i,jmax)*to)*(( (3*a)/ 

     &   (2*b*R*(t(i,jmax)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(i,jmax)*roo)))))) 

     &   -(p(i,jmax)*po*(1./(ro(i,jmax)*roo)))/ 

     &       (R*(t(i,jmax)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(i,jmax)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(i,jmax)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(i,jmax)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(i,jmax)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(i,jmax)*po)/(ro(i,jmax)*roo) ) ) )/(to*R) 

 

  u(i,jmax,1) =  ro(i,jmax)  

  u(i,jmax,2) =  ro(i,jmax) * us(i,jmax) 

  u(i,jmax,3) =  ro(i,jmax) * vs(i,jmax) 

  u(i,jmax,4) =  ( (( (1./2.)*(us(i,jmax)**2.+ vs(i,jmax)**2.) ) 

     &      ) + e(i,jmax) )*ro(i,jmax) 

 

 

  f(i,jmax,1) = ro(i,jmax) * us(i,jmax) 

  f(i,jmax,2) = ro(i,jmax) * us(i,jmax) * us(i,jmax) 

     &      + p(i,jmax)*Zo 

  f(i,jmax,3) = ro(i,jmax) * us(i,jmax) * vs(i,jmax)  

  f(i,jmax,4) =  ((( ( (1./2.)*(us(i,jmax)**2.+ vs(i,jmax)**2.) )   

     &    + e(i,jmax) )*ro(i,jmax)) 

     &       +p(i,jmax)*Zo)*us(i,jmax) 

 

  g(i,jmax,1) = ro(i,jmax) * vs(i,jmax) 

  g(i,jmax,2) = ro(i,jmax) * us(i,jmax) * vs(i,jmax)  

  g(i,jmax,3) = ro(i,jmax) * vs(i,jmax) * vs(i,jmax) 

     &     +p(i,jmax)*Zo 

  g(i,jmax,4) =    ((( ( (1./2.)*(us(i,jmax)**2.+ vs(i,jmax)**2.) )   

     &    + e(i,jmax) )*ro(i,jmax)) 

     &       +p(i,jmax)*Zo)*vs(i,jmax) 

 

 

  jj(i,jmax,1) = eps * ( (1.0/y)*ro(i,jmax)*vs(i,jmax) ) 

  jj(i,jmax,2) = eps * ( (1.0/y)*ro(i,jmax)*us(i,jmax)*vs(i,jmax) ) 

  jj(i,jmax,3) = eps * ( (1.0/y)*ro(i,jmax)*vs(i,jmax)*vs(i,jmax) ) 

  jj(i,jmax,4) = eps*( (1./y)*  ((( ( (1./2.)*(us(i,jmax)**2.+ 

     &     vs(i,jmax)**2.) )   

     &    + e(i,jmax) )*ro(i,jmax)) 
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     &       +p(i,jmax)*Zo)*vs(i,jmax)) 

430 continue 

c apply BC on the axis of symmetry 

cc fluxes of mass, momentum, energy are put to zero along the axis 

c apply reflection technique  

 y=0.+dy/2. 

 

 do 440 i=1,imax 

 

  us(i,1) = us(i,3) 

c  write(6,*) 'vs at i=2',vs(i,2) 

c 12/14: I will remove the v=0 condition on axis, since i applied 

c v at ghost row ( row 1) = v at row above axis( row 3) 

 

c  vs(i,2) = 0.0 

c  write(6,*) 'vs at i=2',vs(i,2) 

  vs(i,1) = -vs(i,3) 

  ro(i,1) = ro(i,3) 

  t(i,1) = t(i,3) 

 

 p(i,1) = ( ((R*t(i,1)*to)/( 1.0/(ro(i,1)*roo)-b))- 

     &   (a/((t(i,1)*to)**(1.0/2.0) 

     &   * (1.0/(ro(i,1)*roo))*( 1.0/(ro(i,1)*roo)+b))) )/po 

 

c  p(i,1) = ro(i,1)*t(i,1) 

c e(i,1) = t(i,1)*(cv/R ) 

  e(i,1) =( (h1+h1r-((R*t(i,1)*to)*(( (3*a)/ 

     &   (2*b*R*(t(i,1)*to)**(3.0/2.0)) 

     &   *(log(1+(b/(1./(ro(i,1)*roo)))))) 

     &   -(p(i,1)*po*(1./(ro(i,1)*roo)))/(R*(t(i,1)*to))+1)) 

     &       +(R)* 

     &       ((acp*((t(i,1)*to)-t1))+ 

     &   ((bcp/2.0)*(((t(i,1)*to)**2.0)-(t1**2.0)))+ 

     &   ((ccp/3.0)*(((t(i,1)*to)**3.0)-(t1**3.0)))+ 

     &   ((dcp/4.0)*(((t(i,1)*to)**4.0)-(t1**4.0))))- 

     &   ( (p(i,1)*po)/(ro(i,1)*roo) ) ) )/(to*R) 

 

 

  u(i,1,1) =  ro(i,1)  

  u(i,1,2) =  ro(i,1) * us(i,1) 

  u(i,1,3) =  ro(i,1) * vs(i,1) 

  u(i,1,4) =  ( (( (1./2.)*(us(i,1)**2.+ vs(i,1)**2.) )  

     &      ) + e(i,1) )*ro(i,1) 

 

 

  f(i,1,1) = ro(i,1) * us(i,1) 

  f(i,1,2) = ro(i,1) * us(i,1) * us(i,1) 

     &      + p(i,1)*Zo 

  f(i,1,3) = ro(i,1) * us(i,1) * vs(i,1)  

  f(i,1,4) =   ((( ( (1./2.)*(us(i,1)**2.+ vs(i,1)**2.) )   

     &    + e(i,1) )*ro(i,1)) 

     &       +p(i,1)*Zo)*us(i,1) 

 

 

  g(i,1,1) = ro(i,1) * vs(i,1) 

  g(i,1,2) = ro(i,1) * us(i,1) * vs(i,1)  
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  g(i,1,3) = ro(i,1) * vs(i,1) * vs(i,1) 

     &     +p(i,1)*Zo 

  g(i,1,4) = ((( ( (1./2.)*(us(i,1)**2.+ vs(i,1)**2.) )   

     &    + e(i,1) )*ro(i,1)) 

     &       +p(i,1)*Zo)*vs(i,1) 

 

 

  jj(i,1,1) = eps * ( (1.0/y)*ro(i,1)*vs(i,1) ) 

  jj(i,1,2) = eps * ( (1.0/y)*ro(i,1)*us(i,1)*vs(i,1) ) 

  jj(i,1,3) = eps * ( (1.0/y)*ro(i,1)*vs(i,1)*vs(i,1) ) 

  jj(i,1,4) = eps*( (1./y)*((( ( (1./2.)*(us(i,1)**2.+ 

     &       vs(i,1)**2.) )   

     &    + e(i,1) )*ro(i,1)) 

     &       +p(i,1)*Zo)*vs(i,1) ) 

 

 

 

440 continue  

  

  do 510 i=imax-1, imax-1 

   do 510 j = 2,jmax 

    if(p(i,j).lt.0.)then 

 write(6,*)i,j,p(i,j) 

 end if 

c    mach(i) = v(n+1,i) / sqrt( t(n+1,i) ) 

 

c write(6,*)ro(i,j)*t(i,j)*gam 

c write(18,*)ro(i,j)*t(i,j)*gam 

  

c    write(18,91) n,us(i,j),ro(i,j),t(i,j),ro(i,j)*t(i,j)*gam 

c    write(6,91) n,us(i,j),ro(i,j),t(i,j),ro(i,j)*t(i,j)*gam 

c     &    ( (us(i,j)**2.0  

c     &    + vs(i,j)**2.0)/(gam*t(i,j)) ) **(1./2.) 

c    write(6,*) n 

 

c    write(28,*)p(i,j) 

c    write(30,*)t(i,j) 

c    write(18,61) n,i,j,press(i,j),ro(i,j),e(i,j) 

510   continue 

  

 

 

 write(6,*)n 

 

100 continue 

 

 

c write plate profiles T and P 

 do 500 i=imax-1, imax-1 

  do 500 j=2,jmax 

    write(40,*)p(i,j), t(i,j) 

500 continue 

 

 

c write IC  for viscosity codes 

 do 555 i = 1,imax 



 

182 

 

 

 

 

 

   do 555 j = 1,jmax 

    write(18,*) us(i,j) 

    write(19,*) vs(i,j) 

    write(20,*) t(i,j) 

    write(21,*) ro(i,j) 

555  continue 

   

c write centerline properties 

 do 5003 j = 2,2 

   do 5003 i = 1,imax 

   write(22,*)ro(i,j), t(i,j),p(i,j) 

5003 continue   

 

c write for matlab density and velocity files  

 do 5551 i = 1,imax 

   do 5551 j = 2,jmax 

    write(61,*)ro(i,j) 

5551  continue  

 

 do 5550 i = 1,imax,8 

   do 5550 j = 2,jmax,8 

    write(62,*) 

     &      us(i,j) 

    write(63,*) 

     &      vs(i,j) 

5550 continue 

  

 

11 format(i4,5(f7.3,2x)) 

21 format ( 'u1=',f7.4,2x,'u2=',f7.4,2x,'u3=',f7.4) 

31 format(i4,f10.4,2x,f7.4,2x,f10.4) 

41 format(9(f7.3,2x)) 

51 format(i4,i4,7(f7.3,2x)) 

61 format(i4,i4,i4,3(f15.6,1x)) 

71 format(12x,3(f14.10,4x)) 

81 format(i4,i4,4(f7.3,2x)) 

91 format(i4,4(f15.4,1x)) 

101 format(i4,i4,4(f7.3,2x)) 

111 format(4(f12.4,2x)) 

 

 end 

 


