


1. (12 pts) Draw a complete curved arrow mechanism for the Robinson annulation reaction below. If an intermediate is resonance stabilized, you don't need to show all resonance structures.

2. (4 pts) Show how you would accomplish the following synthesis, assuming any necessary reagents are available.

3. (4 pts) Predict the product(s) of the following reaction:

Name: _____

	1 1A 1 Hydrogen 1.01 3 Li Lithium 6.94	2 2A 4 Beryllium 9.01											13 3A 5 B Boron 10.81 13	14 4A 6 Carbon 12.01	15 5A 7 N Nitrogen 14.01	16 6A 8 0 0xygen 16.00	17 7A 9 Fuorine 19.00	18 8A 2 Helium 4.00 10 Neon 20.18 18
22.46	Na Sodium 22.99	Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Aluminum 26.98	Si	Phosphorus 30.97	Sulfur 32.07	CI Chlorine 35.45	Ar Argon 39.95
	19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn ^{Zinc} 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
	37 Rb Rubidium 85.47	38 Sr Strontium 87,62	39 Y Yttrium 88,91	40 Zr Zirconium 91,22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Buthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112,41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
-	55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200,59	81 TI Thallium 204,38	82 Pb Lead 207.2	83 Bi Bismuth 208,98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Badon (222)
	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherlordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)							,443.07	(2.0)	(((((((((((((((((((((((((((((((((((((((
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.				hen	58 Ce Cerium 140,12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 Ho Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.04	71 Lu Lutetiun 174.97
				90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencit (262)	

Copyright © 2003 California Department of Education