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We use pulsed magnetic resonance to determine the multiple relaxation times in glycerin and mineral oil. For
mineral oil we find T1 = 57.7± .3ms, T2 = 37.6± .2ms, and T ∗

2 = .35± .03ms. The corresponding values for
glycerin are T1 = 45.6± .2ms, T2 = 22.2± .1ms, and T ∗

2 = .35± .03ms

I. INTRODUCTION

Nuclear magnetic resonance is the phenomenon where
an atomic nuclei will absorb and re-emit electromagnetic
radiation. There are two main techniques used in NMR
experiments: continous wave and pulsed NMR. In both
types of NMR a sample is placed in a magnetic field to
align the nuclear spins and then perturbed with an out-
side source. Continuous wave NMR, as can be implied
from its name, uses a continuous source to perturb a ma-
terial. This technique involves an indirect measurement
of the important relaxation times in the system because
the magnet producing the B-field will have some spatial
inhomogeneity. It is the genius of Erwin Hahn who in
1950 developed the technique of pulsed NMR. This tech-
nique uses a series of pulses to perturb the system rather
than a continuous wave.

Nuclear magnetic resonance has many practical ap-
plications such as nuclear magnetic resonance imaging
which allows us to probe human bodies without harmful
radiation. In this paper we use pulsed NMR to determine
the spin-lattice and the spin-spin relaxation times in glyc-
erin and mineral oil samples. Section II will present the
theory of pulsed NMR, section III details the methods
used in our experiments, section IV presents our find-
ings, and section V is left for final remarks.

II. THEORY

Magnetic resonance is experienced in any atom that
has both a magnetic moment and angular momentum.
The magnetic moment is determined by the following
equation:

~µ = γ ~J. (1)

In this equation ~µ is the magnetic moment γ is defined to
be the gyromagnetic ratio, the ratio of the dipole moment

to the angular momentum, and ~J is the angular momen-
tum. Because of the quantization inherent in quantum
mechanics we know that the angular momentum is quan-
tized in units of ~ to be

~J = ~~I, (2)

where I is the spin of the nucleus. In our work we choose
to study hydrogen nuclei with spin states, I = ± 1

2 .

Suppose we have a collection of hydrogen nuclei that
are in thermal equilibrium without an applied external
magnetic field. Then classically the magnetization vec-
tors of these atoms will be randomly oriented and the
magnetic energy will sum to zero. If we then apply a
magnetic field to this ensemble we can develop a new
thermal equilibrium for the system. With an applied
magnetic field there now exists a total magnetic energy:

U = −~µ · ~B. (3)

If our coordinate system is such that the B-field is aligned
along the z axis the energy is:

U = −γ~IzB0, (4)

where Iz is the spin component along the z-axis and Bo
is the magnitude of the magnetic field. As stated pre-
viously, the hydrogen atom has only two values for Iz,
namely, Iz = ± 1

2 . If we apply this magnetic field to
an ensemble of protons then we have a simple two state
system with U− 1

2
= γ~B0

2 and U 1
2

= −γ~B0

2 .

Because nature tends to minimize the energy of an
ensemble the spins of these protons will tend to align
parallel with the magnetic field, but, as with any physical
process, this process does not take place instantaneously.
This process is described in the following equation:

dMz

dt
=
M0 −Mz

T1
. (5)

In equation 5, M0 is the magnetization when all the spins
are aligned with the B-field and T1 is referred to as the
spin-lattice relaxation time. Equation 5 can be solved to
give:

Mz(t) = M0(1− exp(− t

T1
)). (6)

It is equation 6 that explains why T1 is considered a
relaxation time– it is the characteristic time of when the
exponential reaches 1

e of its initial value. In our case, the

magnetization reaches e−1
e of its maximum value. After

a sufficiently long time the population of each state can
be determined from a basic Boltzmann statistics in the
following equation:

N2

N1
= exp(−∆U

kT
) = exp(−~ω0

kT
), (7)
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where ∆U is the energy difference in energies where the
energy of each state is defined in Equation 4 and ω0 is
the frequency of light required to produce a transition
between the two states.

It is now only natural to question what happened to
the net magnetizations in the magnetic field. This can be
resolved through the classical model of magnetic fields.
If we consider the protons to be loops of current we can
define the torque due to the B field to be:

~µx ~B =
1

γ

d~u

dt
. (8)

Equation 8 can be solved to show that the magnetic mo-
ment will precess about the applied magnetic field with a
frequency ω0 which is the transition frequency from equa-
tion 7. This then implies that the total magnetization in
the x and y directions will sum to 0.

Suppose we wish to achieve a magnetization in the x-y
plane. We can do this by by blasting our sample of pro-
tons with a radio frequency perpendicular to the applied
B-field with a frequency ω0 as set in equation 7. A pulse
that is kept on long enough such that the resulting mag-
netization ends up in the x-y plane is called a π

2 pulse
because it rotates the magnetization through π

2 radians.
A pulse kept on such that the magnetization is ends up
along the -z axis is called a π pulse. These pulses will be
important in describing the methods used to determine
the multiple relaxation times.

If we use a π
2 pulse we can quantify the remaining mag-

netization in either the x or y direction by the following
equation:

dMi

dt
= −Mi

T2
, (9)

where the index i stands for either the x or y direction
and T2 is another relaxation time which results from the
local magnetic fields produced by neighboring nuclei.

The previous paragraphs were a very classical interpre-
tation. In terms of quantum mechanics, what the radio
frequency does is converts the magnetization from a com-
plete |+z > state to a superposition of |+z > and |−z >.
The corresponding coefficients for this superposition are
such that the probability of being in either of these states
is 1

2 and the total probability sums to 1.

III. METHODS

We completed 3 different experiments that all use the
same equipment set up as seen in Figure 1. Notice that in
the figure, the sample and the coil are drawn incorrectly.
If we consider the schematic to be seen from above then
then sample will be going into the page with the coil
wrapped around it.

FIG. 1. A schematic of the nmr apparatus. The pulse pro-
grammer sets the pulse amplitude and time between pulses
and triggers the oscilloscope for the proper burst. The RF
synthesizer creates RF that is then amplified before hitting
the sample. The receiver amplifies the EMF and the current
is sent to two detectors. The amplitude detector measures the
FID amplitude. The mixer amplifies the signal and checks
that the RF frequency matches the frequency of the energy
levels within our sample. The oscilloscope is used to collect
both signals.

A. Determination of T1

To determine T1 we first hit our relevant sample, glyc-
erin or mineral oil, with a π pulse, wait a specific delay
time, and then apply our π

2 pulse. The reason we must
apply this second pulse is because we can only measure
spins in the x-y direction. This second pulse puts the
spins in the x-y direction and the magnetization we mea-
sure here is proportional to the magnetization right be-
fore this pulse. By varying the delay time we can find
the magnetization as a function of delay time. Fitting
our amplitudes with exponential fitting algorithms then
determines the spin-lattice relaxation time.

B. Determination of T2

Determining T2 involves applying a π
2 pulse followed

by a specific delay time and then a π pulse. This second
π pulse is necessary because of the inhomogenities in the
static B-field. This means that some of the spins will be
in a higher magnetic field and this leads to a decoherence
of the magnetization in the x-y plane. The π pulse flips
these magnetizations by π radians allowing the slower
spins to ”catch up” and recohere with the faster moving
spins. After the π pulse we observe what is known as
the spin-echo. This echo is the result of all the spins
recohering and giving a measurable voltage that occurs
at a time 2τ where τ is our delay time. We repeat these
π pulses multiple times and measure the amplitudes of
the decaying spin-echo as a function of time to determine
T2, the spin-spin relaxation time, for our sample.
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C. Determination of T ∗
2

The experimental procedure outlined in subsection B
appears to be slightly complicated. If T2 is the decay
time associated from flipping the magnetization into the
x-y plane, which occurs after a π

2 pulse, why can we not
just use this single pulse and measure the decay of the
signal it produces? In fact, we do measure this signal
and determine a new decay constant, T ∗

2 , but since the
inhomogenities in the static B field exist, the decoherence
of the magnetization will lead to a false value for T2. T ∗

2

is a useful physical quantity in two particular cases: (1)
if the spin-spin relaxation time is less than 0.3ms then
T ∗
2 is the true T2 and (2) we can relate the value of T ∗

2 to
the variation in the magnetic field through either of the
following two equations1:

1

T ∗
2

=
1

T2
+

1

T1
+ γ∆B, (10)

or

1

T ∗
2

=
1

T2
+ γ∆B, (11)

where equation 11 applies for T1 values significantly
larger than T2 values.

D. Measuring the gyromagnetic ratio

To measure the gyromagnetic ratio we used a guass-
meter that was placed in the center of the magnet which
produces the static field. We then recorded the frequecny
and can determine the gyromagnetic ratio through the
following relation:

γ =
ω

B
(12)

IV. RESULTS AND DISCUSSION

We find that mineral oil has a spin-lattice relaxation
time of T1 = 57.3 ± 0.3ms and a spin-spin relaxation
time of T2 = 37.6± 0.2ms. The corresponding values for
glycerin are T1 = 45.6 ± 0.2ms and T2 = 22.2 ± 0.1ms.
The T ∗

2 for both materials comes out to be T ∗
2 = 0.35±

0.03ms. The gyromagnetic ratio is determined to be γ =
2.8 ∗ 104 ± 0.1 rad

s∗gauss . The plots describing these values

are seen in figures 2-5
The higher value of T1 in mineral oil when compared

to glycerin means that it takes longer to establish equi-
librium in this system. This is due to the interactions
with the lattice, the backbone structure, of the min-
eral oil liquid. This occurs because when the nuclei are
transitioning to this equilibrium state they must give off
some of their energy to the surrounding lattice as obeying
the conservation of angular momentum where the lattice

must have the proper angular momentum states available
for the nucleus to transition between its two spin states.

We also see that the T2 value for mineral oil is larger
than that in glycerin. The T2 value has to do with in-
teractions between the local magnetic fields, which in a
classical sense are produced from the nearby spinning nu-
clei. A larger decay time here implies that there is less
of an effect from these nearby nuclei.

The fact that both T ∗
2 values are the same because,

as mentioned before, if T ∗
2 > 0.3ms, it is not an accu-

rate measurement of the true spin-spin relaxation time.
We can use this value to determine the importance of
T1 in equation 10 and 11. For mineral oil we measure
∆B including and excluding T1 to be 1.0047 ∗ 10−4 and
1.0109∗10−4 respectively. This gives a percent difference
of 0.6152 which means that T1 is large enough to ignore
in these calculations. A similar thing can be said about
glycerin with ∆B equal to 9.96 ∗ 10−5 and 1.0043 ∗ 10−4

with percent difference 0.83.

FIG. 2. A plot of the voltage, which is proportional to the
magnetization, as a function of time for mineral oil. Fitting
this curve determines the spin-lattice relaxation time to be
57.3 ± 0.3ms.

FIG. 3. A plot of the magnetization as a function of time for
glycerin from which we determine T1 to be 22.2 ± 0.1ms.
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FIG. 4. Decay of the spin echos in mineral oil. The spin-spin
relaxation time is 37.6 ± 0.2ms.

FIG. 5. Spin echo decays in glycerin. Here we find T2 to be
22.2 ± 0.1ms.

V. CONCLUSIONS

Through the use of pulsed NMR we were able to de-
termine the different interactions present in glycerin and
mineral oil. We determined both the spin-spin and spin-
lattice relaxation times in both of these materials. We
also showed that the effect of T1 is negligible in deter-
mining the spatial inhomogeneity of the magnet. With
these factors in mind we have a better understand of how
pulsed NMR can be used to probe material properties on
a small scale.
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