On higher quasi-categories

Dimitri Ara

Radboud Universiteit Nijmegen

2013 CMS Summer Meeting, June 6 2013

Quasi-categories and complete Segal spaces

Quasi-categories

Definition

A **quasi-category** is a simplicial set X such that for every solid diagram

$$\begin{array}{ccc} \Lambda_n^k \longrightarrow X & n \ge 2, & 0 < k < n, \\ \downarrow & & \\ \Delta_n & & \end{array}$$

there exists a dotted arrow making the triangle commute.

Theorem (Joyal)

There exists a model structure on simplicial sets whose cofibrations are the monomorphisms and whose fibrant objects are the quasi-categories.

Complete Segal spaces

Definition

A simplicial space X (i.e., a bisimplicial set) is a **complete Segal** space if

- 1. X is Reedy fibrant;
- 2. $X_n = \operatorname{Map}(\Delta_n, X) \to X_1 \times_{X_0} \cdots \times_{X_0} X_1 = \operatorname{Map}(I_n, X)$ is a simplicial weak equivalence;
- 3. $X_0 = Map(\Delta_0, X) \rightarrow X_{1,eq} = Map(J, X)$ is a simplicial weak equivalence.

Proposition (Rezk)

There exists a model structure on simplicial spaces whose cofibrations are the monomorphisms and whose fibrant objects are the complete Segal spaces. Comparison of the two notions (Joyal-Tierney)

Theorem

- If X is a complete Segal space, then $X_{\bullet,0}$ is a quasi-category.
- If X is a quasi-category, then

 $([m], [n]) \mapsto \operatorname{Hom}_{\widehat{\Delta}}(\Delta_m \times \Pi_1(\Delta_n), X)$

is a complete Segal space.

Theorem

These constructions define two pairs of Quillen equivalences between quasi-categories and complete Segal spaces.

A-localizer theory

Definition and main theorem

Definition

An A-localizer is a class \mathcal{W} of arrows of \widehat{A} satisfying the following conditions:

- 1. \mathcal{W} satisfies the 2-out-of-3;
- 2. trivial fibrations (r(Monos)) are in \mathcal{W} ;
- 3. $\mathcal{W}\cap\mathrm{Monos}$ is stable under pushout and transfinite composition.

Theorem (Cisinski)

Let $\mathcal W$ be a class of morphisms of $\widehat A$. The following assertions are equivalent:

- (Â, W, Monos, r(W ∩ Monos)) is a combinatorial model category;
- ▶ *W* is an (accessible) localizer.

Examples

Theorem (Cisinski)

Let $\mathcal{W}_{\mathrm{KQ}}$ be the Δ -localizer generated by $\{\Delta_n \to \Delta_0; n \ge 0\}$. The $\mathcal{W}_{\mathrm{KQ}}$ -model structure is the Kan-Quillen model structure.

Theorem (Joyal)

Let \mathcal{W}_J be the Δ -localizer generated by $\{I_n \to \Delta_n; n \ge 0\}$. The \mathcal{W}_J -model structure is the model structure for quasi-categories.

Proposition

Let \mathcal{W}_{R} be the $(\Delta \times \Delta)$ -localizer generated by

 $\{f; \forall n \geq 0 \ f_{n,\bullet} \in \mathcal{W}_{\mathrm{KQ}}\} \cup \{I_n \to \Delta_n; n \geq 0\} \cup \{J \to \Delta_0\}.$

The \mathcal{W}_{R} -model structure is the model structure for complete Segal spaces.

Simplicial completion

Definition

Let \mathcal{W} be an A-localizer. The simplicial completion \mathcal{W}_{Δ} of \mathcal{W} is the $(A \times \Delta)$ -localizer generated by

 $\{f; \forall n \geq 0 \ f_{\bullet,n} \in \mathcal{W}\} \cup \{X \times \Delta_1 \to X; X \in \mathsf{Ob}(\widehat{A})\}.$

Proposition (Cisinski)

We have $\mathcal{W}={p^*}^{-1}(\mathcal{W}_\Delta)$ where $p:A\times\Delta\to A$ is the projection.

Theorem (Cisinski)

Let \mathcal{W} be an (accessible) A-localizer. Then there are "two" Quillen equivalences between the \mathcal{W} -model structure and the \mathcal{W}_{Δ} -model structure.

Quasi-categories and complete Segal spaces

Theorem (Follows from Joyal-Tierney)

The localizer of complete Segal spaces is the simplicial completion of the localizer of quasi-categories.

Consequences

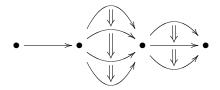
- ► We recover the two Quillen equivalences of Joyal and Tierney.
- The model structures of quasi-categories and complete Segal spaces can be canonically deduced from one another.

n-quasi-categories

The category Θ_n of Joyal

Objects

Globular pasting schemes of dimension $d \leq n$:



Morphisms

Strict n-functors between the free strict n-categories on these globular pasting schemes.

Proposition (Makkai-Zawadowski, Berger, Weber) The inclusion $\Theta_n \subset n$ -Cat induces a fully faithful nerve n-Cat $\rightarrow \widehat{\Theta_n}$.

A conjecture of Cisinski and Joyal

Cellular spines

To each representable S of $\widehat{\Theta_n}$, one can associate a **spine** $I_S \subset S$.

Conjecture

Let \mathcal{W} be the Θ_n -localizer generated by the cellular spines. Then the \mathcal{W} -model structure is a model for (∞, n) -categories.

The conjecture is slightly wrong

For instance, the equivalence of 2-categories

$$0 \underbrace{\sim}_{\sim} 1 \xrightarrow{} 0 \longrightarrow 1$$

does not belong to \mathcal{W} .

n-quasi-categories

Definition

Let D_i be the free-living *i*-arrow and J_i be the free-living invertible *i*-arrow. There is a canonical equivalence of (i + 1)-categories $J_{i+1} \rightarrow D_i$.

Definition

Let $\mathcal{W}_{\mathrm{QCat}_n}$ be the Θ_n -localizer generated by

 $\{I_T \rightarrow T; T \in \Theta_n\} \cup \{J_{i+1} \rightarrow D_i; 0 < i < n\}.$

The \mathcal{W}_{QCat_n} -model structure is called the **model structure of** *n*-quasi-categories.

A fibrant object of this structure is called an *n*-quasi-category.

n-quasi-categories and Θ_n -spaces

 Θ_n -spaces (Rezk)

Definition

Let $\mathcal{W}_{\operatorname{Rezk}_n}$ be the $(\Theta_n \times \Delta)$ -localizer generated by $\{f; \forall S \in \Theta_n \ f_{S, \bullet} \in \mathcal{W}_{\operatorname{KQ}}\}$

and

$$\{I_T \rightarrow T; T \in \Theta_n\} \cup \{J_{i+1} \rightarrow D_i; 0 \le i < n\}.$$

The $\mathcal{W}_{\mathrm{Rezk}_n}\text{-}\mathsf{model}$ structure is called the model structure of $\Theta_n\text{-}\mathsf{spaces}.$

A fibrant object of this structure is called a Θ_n -space.

Theorem (Rezk)

The model structure of Θ_n -spaces is cartesian.

n-quasi-categories and Θ_n -spaces

Theorem

The localizer of Θ_n -spaces is the simplicial completion of the localizer of n-quasi-categories.

Corollary

▶ If X is a Θ_n -space, then $X_{\bullet,0}$ is an n-quasi-category.

• If X is an n-quasi-category, then

$$(S, [n]) \to \operatorname{Hom}_{\widehat{\Theta_n}}(S \times \Pi_1(\Delta_n), X)$$

is a Θ_n -space.

Moreover, these constructions define two pairs of Quillen equivalences between n-quasi-categories and Θ_n -spaces.

Thanks for your attention!