ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

GROTH

 \mathbb{E}_{∞} -monoids and groups

ADDITIVE ∞ CATEGORIES

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT
OF ALGEBRAIC
K-THEORY

Additive ∞ -categories and canonical monoidal structures I

Moritz Groth

Radboud University Nijmegen

05.04.2013, Progress in Higher Category Theory, Halifax

REFERENCE

ADDITIVE ∞CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

MORITZ GROTH

 \mathbb{E}_{∞} -monoids and groups

Additive ∞ -categories

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT
OF ALGEBRAIC
K-THEORY

joint with David Gepner and Thomas Nikolaus (arXiv):

'Universality of multiplicative infinite loop space machines'

PLAN

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -MONOIDS AND GROUPS

Additive ∞ categories

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT OF ALGEBRAIC K-THEORY

- ${\color{red}\mathbb{I}} \ {\mathbb{E}}_{\infty} ext{-MONOIDS}$ and ${\mathbb{E}}_{\infty} ext{-GROUPS}$ in $\infty ext{-CATEGORIES}$
- 2 Preadditive and additive ∞ -categories
- 3 Monoids in presentable ∞ -categories
- 4 ∞ -CATEGORICAL VARIANT OF ALGEBRAIC K-THEORY

CALIBRATION OF NOTATION AND TERMINOLOGY

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞categories

MONOIDS IN PRESENTABLE ∞-CATS

 ∞ -variant of algebraic K-theory

Notation and terminology as in *Higher Topos Theory* and *Higher Algebra*.

 ∞ -category = simplicial set with inner-horn-filling-property

Alternative choices:

- quasi-category
- weak Kan complex
- inner Kan complex
- quategory
- **.** . . .

\mathbb{E}_{∞} -Monoids in ∞ -categories

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞ Categories

Monoids in Presentable ∞ -CATS

∞-VARIANT OF ALGEBRAIC K-THEORY Segal's picture on \mathbb{E}_{∞} -monoids:

 \mathcal{F} in $_*$ category of finite pointed sets, pointed maps $\langle n \rangle \in \mathcal{F}$ in $_*$ finite pointed set $(\{0,1,\ldots,n\},0)$ pointed map with $\rho_i^{-1}(1) = \{i\}$ \mathcal{C} category with finite products

DEFINITION

An \mathbb{E}_{∞} -monoid in \mathcal{C} is a functor $M \colon \mathcal{N}(\mathcal{F}in_*) \to \mathcal{C}$ such that the canonical maps

$$\rho_* \colon M_n \to M_1 \times \ldots \times M_1, \quad n \geq 0,$$

are equivalences.

\mathbb{E}_{∞} -groups in ∞ -categories

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞ categories

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT OF ALGEBRAIC K-THEORY An \mathbb{E}_{∞} -monoid $M \colon \mathcal{N}(\mathcal{F}in_*) \to \mathcal{C}$ gives rise to

- multiplication maps μ : $M_1 \times M_1 \rightarrow M_1$,
- shear maps $\sigma = (\mu, \pi_2)$: $M_1 \times M_1 \rightarrow M_1 \times M_1$.

DEFINITION

An \mathbb{E}_{∞} -monoid in \mathcal{C} is an \mathbb{E}_{∞} -group if equivalently:

- **11** There is an **inversion** map $M_1 \rightarrow M_1$.
- The shear maps are equivalences.
- The underlying commutative monoid in $Ho(\mathcal{C})$ is a group object.

PREADDITIVE ∞-CATEGORIES

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞ -categories

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT OF ALGEBRAIC

DEFINITION

Let $\mathcal C$ be a pointed ∞ -category with finite coproducts and finite products. Then $\mathcal C$ is **preadditive** if the canonical maps $X \sqcup Y \to X \times Y$ are equivalences.

For such pointed ∞ -category $\mathcal C$ with finite coproducts and finite products the following are equivalent:

- **■** The ∞ -category \mathcal{C} is preadditive.
- **The homotopy category** Ho(C) is preadditive.
- 3 The forgetful functor $\mathrm{Mon}_{\mathbb{E}_{\infty}}\!(\mathcal{C}) \to \mathcal{C}$ is an equivalence.

Preadditive ∞-categories II

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞ -categories

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT
OF ALGEBRAIC

EXAMPLE

If $\mathcal C$ has finite products, then $\mathrm{Mon}_{\mathbb E_\infty}\!(\mathcal C)$ is preadditive.

COROLLARY

If $\mathcal C$ has finite products, then the forgetful functor $\mathrm{Mon}_{\mathbb E_\infty}(\mathrm{Mon}_{\mathbb E_\infty}(\mathcal C)) \to \mathrm{Mon}_{\mathbb E_\infty}(\mathcal C)$ is an equivalence.

In preadditive \mathcal{C} , canonical \mathbb{E}_{∞} -monoid structures arise from fold maps $\nabla\colon X\oplus X\to X$. Associated to these we have shear maps $\sigma=(\nabla,\pi_2)\colon X\oplus X\to X\oplus X$.

ADDITIVE ∞-CATEGORIES

ADDITIVE
CATEGORIES

AND

CANONICAL

MONOIDAL

STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞ categories

PRESENTABLE ∞-CATS

∞-VARIANT OF ALGEBRAIC K-THEORY

DEFINITION

A preadditive ∞ -category is **additive** if the shear maps $\sigma \colon X \oplus X \to X \oplus X$ are equivalences.

PROPOSITION

- A preadditive ∞ -category $\mathcal C$ is additive iff $\operatorname{Ho}(\mathcal C)$ is additive iff $\operatorname{Grp}_{\mathbb E_\infty}(\mathcal C) \to \mathcal C$ is an equivalence.
- $\textbf{2} \ \ \textit{If \mathcal{C} has finite products, then $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is additive and the functor $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})) \to \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is an equivalence. }$

PRESENTABILITY OF MONOIDS AND GROUPS

ADDITIVE ∞CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

ADDITIVE ∞-CATEGORIES

Monoids in presentable ∞ -cats

∞-VARIANT OF ALGEBRAIO K-THEORY Let $\mathcal{P}r^L$ be the ∞ -category of presentable ∞ -categories with morphisms the left adjoint functors.

PROPOSITION

Let $\mathcal C$ be a presentable ∞ -category. Then the ∞ -categories $\mathrm{Mon}_{\mathbb E_\infty}(\mathcal C)$ and $\mathrm{Grp}_{\mathbb E_\infty}(\mathcal C)$ are presentable.

- Mon_{\mathbb{E}_{∞}}(\mathcal{C}) is an accessible localization of $\mathcal{C}^{N(\mathcal{F}in_*)}$.
- $\qquad \text{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \text{ is an accessible localization of } \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}).$

COROLLARY (GROUP COMPLETION)

Given $C \in \mathcal{P}r^{L}$ then there are adjunctions:

$$\mathcal{C}
ightleftharpoons \mathsf{Mon}_{\mathbb{E}_{\infty}}\!(\mathcal{C})
ightleftharpoons \mathsf{Grp}_{\mathbb{E}_{\infty}}\!(\mathcal{C})$$

$\operatorname{Mon}_{\mathbb{E}_{\infty}}(-), \operatorname{Grp}_{\mathbb{E}_{\infty}}(-)$ AS LOCALIZATIONS

ADDITIVE ∞CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

MORITZ GROTH

 \mathbb{E}_{∞} -MONOIDS AND GROUPS

ADDITIVE ∞ CATEGORIES

Monoids in presentable ∞ -cats

∞-VARIANT OF ALGEBRAIO K-THEORY The assignments $\mathcal{C}\mapsto \mathrm{Mon}_{\mathbb{E}_\infty}(\mathcal{C})$ and $\mathcal{C}\mapsto \mathrm{Grp}_{\mathbb{E}_\infty}(\mathcal{C})$ are obviously functorial in product-preserving functors.

PROPOSITION

The assignments $\mathcal{C}\mapsto \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathcal{C}\mapsto \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ define functors $\mathrm{Mon}_{\mathbb{E}_{\infty}}(-)\colon \mathcal{P}r^L\to \mathcal{P}r^L$ and $\mathrm{Grp}_{\mathbb{E}_{\infty}}(-)\colon \mathcal{P}r^L\to \mathcal{P}r^L$.

THEOREM

- I The functor $\mathrm{Mon}_{\mathbb{E}_{\infty}}(-) \colon \mathcal{P}\mathrm{r}^{\mathrm{L}} \to \mathcal{P}\mathrm{r}^{\mathrm{L}}$ is a localization with local objects the preadditive, presentable ∞ -categories.
- 2 The functor $\operatorname{Grp}_{\mathbb{E}_{\infty}}(-)\colon \mathcal{P}r^L \to \mathcal{P}r^L$ is a localization with local objects the additive, presentable ∞ -categories.

SOME IMMEDIATE CONSEQUENCES

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞-Categories

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT OF ALGEBRAIO K-THEORY Let C, D be presentable ∞ -categories, and let S be the ∞ -category of spaces ('free homotopy theory on Δ^0 ').

COROLLARY ('PREADDITIVIZATION')

If $\mathcal D$ is preadditive, then $\mathcal C \to \mathrm{Mon}_{\mathbb E_\infty}(\mathcal C)$ induces a canonical equivalence $\mathrm{Fun}^L(\mathrm{Mon}_{\mathbb E_\infty}(\mathcal C),\mathcal D) \to \mathrm{Fun}^L(\mathcal C,\mathcal D)$. In particular, we obtain $\mathrm{Fun}^L(\mathrm{Mon}_{\mathbb E_\infty}(\mathcal S),\mathcal D) \simeq \mathcal D$.

COROLLARY ('ADDITIVIZATION')

If $\mathcal D$ is additive, then $\mathcal C \to \mathrm{Grp}_{\mathbb E_\infty}(\mathcal C)$ induces a canonical equivalence $\mathrm{Fun}^L(\mathrm{Grp}_{\mathbb E_\infty}(\mathcal C),\mathcal D) \to \mathrm{Fun}^L(\mathcal C,\mathcal D)$. In particular, we obtain $\mathrm{Fun}^L(\mathrm{Grp}_{\mathbb E_\infty}(\mathcal S),\mathcal D) \simeq \mathcal D$.

A REFINED PICTURE OF THE STABILIZATION

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoid: and groups

Additive ∞ -categories

Monoids in presentable ∞ -cats

∞-VARIANT OF ALGEBRAIO K-THEORY $\begin{array}{ll} \mathcal{P}r_{Pt}^{L} & \textit{pointed} \ \textit{presentable} \ \infty\textrm{-categories} \\ \mathcal{P}r_{Pre}^{L} & \textit{preadditive} \ \textit{presentable} \ \infty\textrm{-categories} \\ \mathcal{P}r_{Add}^{L} & \textit{additive} \ \textit{presentable} \ \infty\textrm{-categories} \\ \mathcal{P}r_{St}^{L} & \textit{stable} \ \textit{presentable} \ \infty\textrm{-categories} \\ \end{array}$

THEOREM (STABILIZATION)

- The stabilization of presentable ∞ -categories factors as $\mathcal{P}r^L \rightleftarrows \mathcal{P}r^L_{P_t} \rightleftarrows \mathcal{P}r^L_{P_{re}} \rightleftarrows \mathcal{P}r^L_{Add} \rightleftarrows \mathcal{P}r^L_{S_t}$.
- 2 In particular, for $\mathcal{C} \in \mathcal{P}r^L$, the suspension spectrum functor factors as

$$\Sigma^\infty_+\colon \mathcal{C}\to \mathcal{C}_*\to Mon_{\mathbb{E}_\infty}\!(\mathcal{C})\to Grp_{\mathbb{E}_\infty}\!(\mathcal{C})\to Sp(\mathcal{C}).$$

∞-CATEGORICAL 'DIRECT SUM' K-THEORY

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -MONOIDS AND GROUPS

Additive ∞categories

Monoids in Presentable ∞-Cats

∞-VARIANT OF ALGEBRAIC K-THEORY

Classical picture:

C symmetric, monoidal category

 $\widetilde{\mathcal{C}}$ largest subgroupoid of \mathcal{C}

 $|\widetilde{\mathcal{C}}|$ associated \mathbb{E}_{∞} -space

K(C) K-theory spectrum via group-completion

Some steps towards an ∞ -categorical variant are:

- $\begin{tabular}{ll} \hline \textbf{1} & \textbf{The inclusion } \mathcal{S} = \mathcal{G}rpd_{\infty} \to \mathcal{C}at_{\infty} \ admits \ a \ right \ adjoint \\ & \textbf{given by } \mathcal{C} \mapsto \widetilde{\mathcal{C}}. \\ \hline \end{tabular}$

∞-CATEGORICAL 'DIRECT SUM' K-THEORY II

ADDITIVE ∞ CATEGORIES
AND
CANONICAL
MONOIDAL
STRUCTURES I

Moritz Groth

 \mathbb{E}_{∞} -monoids and groups

Additive ∞categories

MONOIDS IN PRESENTABLE ∞-CATS

∞-VARIANT OF ALGEBRAIC K-THEORY

DEFINITION

The algebraic K-theory $\mathcal{S}ym\mathcal{M}on\mathcal{C}at_{\infty}\to Sp$ is defined as the composition

$$Mon_{\mathbb{E}_{\infty}}\!(\mathcal{C}at_{\infty}) \to Mon_{\mathbb{E}_{\infty}}\!(\mathcal{S}) \to Grp_{\mathbb{E}_{\infty}}\!(\mathcal{S}) \to Sp(\mathcal{S}).$$

Will be discussed further by *Thomas Nikolaus* in the second part of this talk!

Thanks for your attention!