Categorical Aspects of Type Theory

André Joyal

UQÀM

CMS Meeting, Halifax, June 5, 2013

Introduction

Motivation: To understand Martin-Löf type theory.

Conceptual mathematics \rightarrow category theory.

Two questions:

- Is type theory soluble in category theory?
- Is category theory soluble in type theory?

I will not discuss the second question here.

Overview

Aspects of categorical logic:

- Locally cartesian closed categories
- Tribes

Homotopical logic:

- Weak factorization systems
- Homotopical algebra
- Pre-typoi
- Typoi
- Univalent typoi

Aspects of categorical logic

The basic principles of categorical logic was expressed in Lawvere's paper **Adjointness in Foundation** (1969). I will use these principles implicitly.

- Locally cartesian closed categories
- Tribes
- Π-tribes

Terminal objects and terms

Recall that an object \top in a category $\mathcal C$ is said to be **terminal** if for every object $A \in \mathcal C$, there is a unique map $A \to \top$.

If \top is a terminal object, then a map $u : \top \to A$ is called

- ▶ a **global section** of the *object* A, $u \in \Gamma(A)$
- ▶ an element of A,

 $u \in A$

▶ a **constant** of *sort A*,

 $u \in A$

▶ a **term** of **type** A,

u : *A*.

Cartesian product

Recall that the **cartesian product** $A \times B$ of two objects A and B in a category C is an object $A \times B$ equipped with a pair of *projection*

$$A \stackrel{p_1}{\longleftrightarrow} A \times B \stackrel{p_2}{\longrightarrow} B$$

having the following universal property: for any object $C \in \mathcal{C}$ and any a pair of maps

$$A \stackrel{f}{\longleftarrow} C \stackrel{g}{\longrightarrow} B$$
,

there is a unique map $h = \langle f, g \rangle : C \to A \times B$ such that $p_1 h = f$ and $p_2 h = g$.

Cartesian category

The map $h \mapsto (p_1 h, p_2 h)$ is a natural bijection between

$$\frac{\text{the maps } C \to A \times B}{\text{and the pairs of maps } C \to A, \ C \to B.}$$

A category $\mathcal C$ is **cartesian** if it has (binary) cartesian product and a terminal object \top .

Equivalently, a category $\mathcal C$ is cartesian if it has finite cartesian products.

Exponential

Let A and B be two objects of a cartesian category C.

An object [A, B] equipped with a map $ev : [A, B] \times A \rightarrow B$ is called the **exponential** of B by A if:

for every object $C \in \mathcal{C}$ and every map $f : C \times A \to B$ there exists a unique map $\lceil f \rceil : C \to [A, B]$ such that

$$C \times A \xrightarrow{|f| \times A} [A, B] \times A$$

$$\downarrow^{ev}$$

$$B$$

We write $\lambda^A f := \lceil f \rceil$.

Cartesian closed categories

The map $f \mapsto \lambda^A f$ is a natural bijection between

$$\frac{\text{the maps } C \times A \to B}{\text{and the maps } C \to [A, B].}$$

A cartesian category C is said to be **closed** if the object [A, B] exists for every pair of objects $A, B \in C$.

A cartesian category $\mathcal C$ is closed if and only if the functor

$$A \times (-) : \mathcal{C} \to \mathcal{C}$$

has a right adjoint [A, -] for every object $A \in \mathcal{C}$.

Cartesian closed categories(2)

Examples of cartesian closed categories

- the category of sets Set
- the category of (small) catégories Cat (Lawvere)
- the category of groupoids Grpd
- ▶ Every category $[\mathbb{C}, \mathbf{Set}]$
- ▶ The category of simplicial sets $[\Delta^{op}, \mathbf{Set}]$

Cartesian closed categories and lambda calculus

Every cartesian category $\mathcal A$ generates freely a cartesian closed category $CC[\mathcal A].$

- ▶ the morphism in CC[A] are represented by **lambda terms**;
- lambda terms have a normal form;
- ▶ the category CC[A] is **decidable** if A is decidable.

Lambek and Scott: Higher categorical logic.

Slice categories

Recall that the *slice category* \mathcal{C}/A has for objects the pairs (X, p), where p is a map $X \to A$ in \mathcal{C} . The map $p: X \to A$ is called the *structure map* of (X, p).

A morphism $(X, p) \rightarrow (Y, q)$ in \mathcal{C}/A is a map $u: X \rightarrow Y$ in \mathcal{C} such that qu = p,

Push-forward

To every map $f: A \to B$ in a category $\mathcal C$ we can associate a **push-forward** functor

$$f_!: \mathcal{C}/A \to \mathcal{C}/B$$

by putting $f_1(X, p) = (X, fp)$ for every map $p: X \to A$,

$$\begin{array}{c|c}
X = & X \\
\downarrow p \\
A \xrightarrow{f} & B.
\end{array}$$

Pull-back

Recall that the **fiber product** of two maps $X \to A$ and $Y \to A$ in a category C is their cartesian product $X \times_A Y$ as objects of the category C/A.

The square is also called a pullback square.

Base changes

In a category with finite limits $\mathcal C$ the push-forward functor $f_!:\mathcal C/A\to\mathcal C/B$ has a right adjoint

$$f^{\star}: \mathcal{C}/B \to \mathcal{C}/A$$

for any map $f:A\to B$. The functor f^* takes a map $p:X\to B$ to the map $p_1:A\times_BX\to A$ in a pullback square

$$\begin{array}{cccc}
A \times_B X & \xrightarrow{p_2} & X \\
\downarrow^{p_1} & & \downarrow^{p} \\
A & \xrightarrow{f} & B.
\end{array}$$

The map p_1 is said to be the **base change** of the map $p: X \to B$ along the map $f: A \to B$.

Locally cartesian closed categories(1)

A category with finite limits \mathcal{C} is said to be **locally cartesian closed** (lcc) if the category \mathcal{C}/A is cartesian closed for every object $A \in \mathcal{C}$.

A category with finite limits $\mathcal C$ is lcc if and only if the base change functor $f^*:\mathcal C/B\to\mathcal C/A$ has a right adjoint

$$f_{\star}: \mathcal{C}/A \to \mathcal{C}/B$$

for every map $f: A \rightarrow B$ in C.

Locally cartesian closed categories(2)

If
$$X=(X,p)\in \mathcal{C}/A$$
, then $f_\star(X)\in \mathcal{C}/B$ is called the **internal product** of X along $f:A\to B$, and denoted
$$\Pi_f(X):=f_\star(X).$$
 If $Y=(Y,q)\in \mathcal{C}/B$, there is a natural bijection between
$$\frac{\text{the maps}}{\text{and the maps}} \frac{Y\to \Pi_f(X)}{f^\star(Y)\to X} \frac{\text{in }\mathcal{C}/B}{\text{in }\mathcal{C}/A}$$

Locally cartesian closed categories(3)

Examples of Icc categories

- the category Set
- every category $[\mathbb{C}, \mathbf{Set}]$
- every Grothendieck topos
- every elementary topos

Non-examples

The category **Cat**

The category **Grpd**

Logical functors

Definition

A functor $F:\mathcal{C}\to\mathcal{D}$ between lcc categories is **logical** if it preserves

- finite limits;
- internal products.

The last condition means that the comparison map

$$F\Pi_f(X) \to \Pi_{F(f)}(FX)$$

is an isomorphism for any pair of maps $X \to A$ and $f : A \to B$ in C.

Logical functors(2)

If $\mathcal C$ is a locally cartesian closed category, then

- ▶ the Yoneda functor $y : C \to \hat{C} = [C^{op}, \mathbf{Set}]$ is logical;
- ▶ the base change functor $f^* : C/B \to C/A$ is a logical for every map $f : A \to B$ in C.

Generic terms

Let $i: \mathcal{C} \to \mathcal{C}/A$ be the base change functor. By definition, $i(X) = (A \times X, p_1)$ for every $X \in \mathcal{C}$.

Theorem

The functor $i: \mathcal{C} \to \mathcal{C}/A$ is logical and \mathcal{C}/A is obtained from \mathcal{C} by adding freely a term $x_A: i(A)$.

More precisely, $i(\top) = (A, 1_A)$ and $i(A) = (A \times A, p_1)$.

The diagonal $A \to A \times A$ is a map $x_A : i(\top) \to i(A)$.

Generic terms(2)

For any logical functor $F: \mathcal{C} \to \mathcal{E}$ with values in a lcc category \mathcal{E} and any term a: F(A),

there exists a logical functor $F': \mathcal{C}/A \to \mathcal{D}$ and a natural isomorphism $\alpha: F \simeq F' \circ i$

such that $\alpha_A(a) = F'(x_A)$.

Moreover, the pair (F', α) is unique up to a unique iso of pairs.

Thus, $C/A = C[x_A]$ and the term $x_A : i(A)$ is **generic**.

Tribes(0)

A class of maps ${\mathcal F}$ in a category ${\mathcal C}$ is said to be

closed under base changes if

$$X o B$$
 in $\mathcal F \longrightarrow A imes_B X o A$ exists and belong to $\mathcal F$

$$\begin{array}{ccc}
A \times_B X & \longrightarrow X \\
\in \mathcal{F} \downarrow & & \downarrow \in \mathcal{F} \\
A & \xrightarrow{f} & B
\end{array}$$

for any map f:A o B in $\mathcal C$

Tribes(1)

Definition

Let $\mathcal C$ be a category with terminal object \top . We say that a class of maps $\mathcal F\subseteq \mathcal C$ is a **tribe structure** if the following conditions are satisfied:

- every isomorphism belongs to \mathcal{F} ;
- $ightharpoonup \mathcal{F}$ is closed under composition and base changes;
- ▶ the map $X \to \top$ belongs to \mathcal{F} for every object $X \in \mathcal{C}$.

We shall say that the pair (C, \mathcal{F}) is a **tribe**.

A map in \mathcal{F} is a **family** or a **fibration** of the tribe.

Tribes(2)

The **fiber** of a fibration $p: X \to A$ at a point $a: T \to A$ is the object X(a) defined by the pullback square

A fibration $p: X \to A$ is an **internal family** $(X(a): a \in A)$ of objects parametrized by the codomain of p.

Tribes(3)

The full subcategory of \mathcal{C}/A whose objects are the fibrations $X \to A$ is denoted $\mathcal{C}(A)$.

The category $\mathcal{C}(A)$ has the structure of a tribe where a morphism $f:(X,p)\to (Y,q)$ in $\mathcal{C}(A)$ is a fibration if $f:X\to Y$ is a fibration in \mathcal{C} .

And object of C(A) is a type which **depends** on the type A.

If $u: A \to B$, then the base change functor $u^*: \mathcal{C}(B) \to \mathcal{C}(A)$ is an operation of **change of parameters**: we have

$$u^{\star}(Y)(a) = Y(u(a))$$

for every every fibration $Y \rightarrow B$ and every term a : A.

Tribes (4)

Definition

A **morphism of tribes** $F : \mathcal{C} \to \mathcal{D}$ is a functor which

- takes fibrations to fibrations;
- preserves base changes of fibrations;
- preserves terminal objects.

For example, the base change functor

$$u^*: \mathcal{C}(B) \to \mathcal{C}(A)$$

is a morphism of tribes for any map $u: A \to B$ in a tribe C.

Variables=generic terms

The base change functor $i: \mathcal{C} \to \mathcal{C}(A)$ is a morphism of tribes.

Theorem

The tribe C(A) is obtained from C by adding freely a term $x_A : i(A)$.

The term $x_A : i(A)$ is **generic**.

Types and contexts

An object $p: E \to A$ of C(A) is a **type** E(x) in **context** x: A.

Type theorists write

$$x : A \vdash E(x) : type$$

where E(x) is the general fiber of the map $p: E \to A$,

$$E(x) \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$\uparrow \qquad \qquad \times A$$

The object *E* is the **total space** of the fibration $p: E \rightarrow A$,

$$E=\sum_{x:A}E(x).$$

Terms and types

A **term** t(x) of type E(x) is a section t of the map $p: E \to A$.

Type theorists write

$$x: A \vdash t(x): E(x)$$

Topologists write

$$\begin{bmatrix} E \\ \rho \\ A \end{bmatrix} t$$

Push-forward and sum

To every fibration $f:A\to B$ in tribe $\mathcal C$ we can associate a *push-forward* functor

$$f_!:\mathcal{C}(A)\to\mathcal{C}(B)$$

by putting $f_!(E, p) = (E, fp)$,

Formally,

$$f_{!}(E)(b) = \sum_{f(a)=b} E(a)$$

for every fibration $E \rightarrow A$ and every b : B.

Push-forward and sum(2)

The functor $f_!: \mathcal{C}(A) \to \mathcal{C}(B)$ is left adjoint to the functor f^* .

For very $X \in \mathcal{C}(A)$ and $Y \in \mathcal{C}(B)$, there is a natural bijection between

$$\frac{\text{the maps}}{\text{and the maps}} \quad f_!(X) \to Y \qquad \text{in } \mathcal{C}(B)$$

Sum formation

$$\frac{\Gamma, \ x : A \vdash E(x) : type}{\Gamma \vdash \sum_{x : A} E(x) : type}$$

$$\begin{array}{c|c}
E & \longrightarrow & E \\
\downarrow p \\
\Gamma \times A & \stackrel{p_1}{\longrightarrow} & \Gamma
\end{array}$$

Π-tribes

Definition

We shall sat that a tribe C is Π -**closed**, or that it is a Π -**tribe**, if every fibration $E \to A$ has a product along every fibration $f: A \to B$,

$$\begin{bmatrix}
E & \Pi_f(E) \\
\downarrow & \downarrow \\
A & \xrightarrow{f} B
\end{bmatrix}$$

and the structure map $\Pi_f(E) \to B$ is a fibration.

The object $\Pi_f(E)$ is a **product** of E = (E, p) along f. Formally,

$$\Pi_f(E)(b) = \prod_{f(a)=b} E(a)$$

for every $b \in B$.

Π-tribes (2)

It follows that the base change functor $f^*: \mathcal{C}(B) \to \mathcal{C}(A)$ has a right adjoint

$$f_{\star} = \Pi_f : \mathcal{C}(A) \to \mathcal{C}(B)$$

for every fibration $f: A \rightarrow B$.

For very $X \in \mathcal{C}(A)$ and $Y \in \mathcal{C}(B)$, there is a natural bijection between

the maps	$Y o \Pi_f(X)$	in $C(B)$
and the maps	$f^{\star}(Y) \rightarrow X$	in $C(A)$

Product formation

$$\frac{\Gamma, \ x : A \vdash E(x) : type}{\Gamma \vdash \prod_{x : A} E(x) : type}$$

$$\begin{array}{ccc}
E & & \Pi_{p_2}E \\
\downarrow & & \downarrow \\
\Gamma \times A & \xrightarrow{p_2} & & \Gamma
\end{array}$$

Π-tribes (3)

If C is a Π -tribe, then so is the tribe C(A) for every $A \in C$.

A Π-tribe is cartesian closed:

$$B^A = \Pi_A B = \prod_{a:A} B$$

The category C(A) is cartesian closed for every $A \in C$.

Examples of Π-tribes

- Every locally cartesian closed category is a Π-tribe.
- The category of small groupoids Grpd is a Π-tribe, where a fibration is a Grothendieck fibration.
- The category of Kan complexes is a Π-tribe, where a fibration is a Kan fibration.

Morphisms of Π -tribes

Definition

A morphism of Π -tribes $F: \mathcal{C} \to \mathcal{D}$ is a functor which preserves

- terminal objects, fibrations and base changes of fibrations;
- the internal product $\Pi_f(X)$.

The base change functor $u^* : \mathcal{C}(B) \to \mathcal{C}(A)$ is a morphism of Π -tribes for any map $u : A \to B$ in a Π -tribe \mathcal{C} .

The Yoneda functor $y: \mathcal{C} \to \hat{\mathcal{C}} = [\mathcal{C}^{op}, \mathbf{Set}]$ is a morphism of Π -tribes for any Π -tribe \mathcal{C} .

Homotopical logic

- Weak factorization systems
- Quillen model categories
- Pre-typoi
- ▶ Typoi
- Univalent typoi

Weak factorisation systems(1)

The relation $u \pitchfork f$ for two maps $u : A \to B$ and $f : X \to Y$ in a category $\mathcal C$ means that every commutative square

$$\begin{array}{ccc}
A & \xrightarrow{a} & X \\
\downarrow u & & \downarrow f \\
B & \xrightarrow{b} & Y
\end{array}$$

has a diagonal filler $d: B \rightarrow X$, du = a and fd = b.

The map u is said to have the **left lifting property** with f, and the map f to have the **right lifting property with respect to** u.

Weak factorisation systems(2)

For a class of maps $\mathcal{S} \subseteq \mathcal{C}$, let us put

$$S^{\pitchfork} = \{ f \in \mathcal{C} : \forall u \in \mathcal{S} \ u \pitchfork f \}$$
$$^{\pitchfork} S = \{ u \in \mathcal{C} : \forall f \in \mathcal{S} \ u \pitchfork f \}$$

Definition

A pair $(\mathcal{L}, \mathcal{R})$ of classes of maps in a category \mathcal{C} is said to be a **weak factorization system** if the following two conditions are satisfied

- $ightharpoonup \mathcal{R} = \mathcal{L}^{\pitchfork}$ and $\mathcal{L} = {}^{\pitchfork}\mathcal{R}$
- every map $f: A \to B$ in $\mathcal C$ admits a factorization $f = pu: A \to E \to B$ with $u \in \mathcal L$ and $p \in \mathcal R$.

Homotopical algebra(1)

Recall that a class $\mathcal W$ of maps in a category $\mathcal E$ is said to have the **3-for-2 property** (3 apples for the price of two!) if two sides a commutative triangle

belongs to W, then so is the third.

Homotopical algebra(2)

Quillen (1967)

Definition

A **model structure** on a category $\mathcal E$ consists on three class of maps $(\mathcal C, \mathcal W, \mathcal F)$ respectively called the *cofibrations*, the *weak* equivalences and the *fibrations*, such that :

- W has the 3-for-2 property;
- ▶ the pair $(C \cap W, F)$ is a weak factorisation system;
- ▶ the pair $(C, F \cap W)$ is a weak factorisation system.

A model category is a category equipped with a model structure.

A map in W is said to be **acyclic**.

Path object

A **path object** for a fibrant object X in a model category \mathcal{E} is a factorisation of the diagonal $\Delta: X \to X \times X$ as a weak equivalence $\sigma: X \to PX$ followed by a fibration $(\partial_0, \partial_1): PX \to X \times X$,

The path object is **perfect** if σ is an acyclic cofibration.

Identity type

For every type A there is another type

$$x:A,y:A \vdash Id_A(x,y): type$$

called the **identity type** of A and a term

$$x:A \vdash r(x): Id_A(x,x)$$

called the **reflexivity term**.

A term $p : Id_A(a, b)$ is a **proof** that a = b.

The term r(x): $Id_A(x,x)$ is the proof that x=x.

Identity type(2)

Equivalently, for every $A \in \mathcal{C}$ there is a diagram

with $(s,t) \in \mathcal{F}$.

The *J*-rule of type theory

If $p: X \to Id_A$ is a fibration, then every commutative square

$$\begin{array}{ccc}
A & \xrightarrow{u} & X \\
\downarrow r & & \downarrow p \\
Id_A & & & Id_A
\end{array}$$

has a diagonal filler d = J(u),

Homotopical algebra and type theory (1)

Theorem (Awodey-Warren):

Martin-Löf type theory can be interpreted in a model category:

- types are interpreted as fibrant objects;
- display maps are interpreted as fibrations;
- ▶ the identity type $Id_A \rightarrow A \times A$ is a path object for A;
- ▶ the reflexivity term $r: A \rightarrow Id_A$ is an acyclic cofibration.

Homotopical algebra and type theory(2)

Let $\mathcal{C}(\mathbb{T})$ be the syntactic category of Martin-Löf type theory.

Let \mathcal{F} be the class of display maps in $\mathcal{C}(\mathbb{T})$.

Theorem (Gambino-Garner):

Every map $f:A\to B$ in $\mathcal{C}(\mathbb{T})$ admits a factorization

 $f = pu : A \to E \to B$ with $u \in {}^{\pitchfork}\mathcal{F}$ and $p \in \mathcal{F}$.

Pre-typoi

We say that a map in a tribe C = (C, F) is **anodyne** if it belongs to the class ${}^{\pitchfork}\mathcal{F}$.

Definition

We say that a tribe C is a **pre-typos*** if the following two conditions are satisfied

- the base change of an anodyne map along a fibration is anodyne;
- every map $f:A\to B$ admits a factorization $f=pu:A\to E\to B$ with u an anodyne map and p a fibration.
- (\star) Named after a joke by Steve Awodey. Do you have a better name?

Pre-typoi(2)

Examples

- ► The category **Grpd**;
- ► The category of Kan complexes;
- ▶ The syntactic category of type theory.

Path objects in a pre-typos

If X is an object of a typos C, then a **perfect* path object** for X is a factorisation

$$\langle \partial_0, \partial_1 \rangle \sigma : X \to PX \to X \times X$$

of the diagonal $X \to X \times X$ as an anodyne map $\sigma: X \to PX$ followed by a fibration $\langle \partial_0, \partial_1 \rangle: PX \to X \times X$.

(*) The general notion of path objects will be introduced later.

Paths and equality

The map $\langle \partial_0, \partial_1 \rangle : PX \to X \times X$ of a path object for X is a fibration. Its fiber PX(x,y) at $(x,y) \in X \times X$ is the object of paths $p: x \leadsto y$. We may write

$$\Gamma \vdash h : f \leadsto g$$

to indicate that $h: \Gamma \to PX$ is a homotopy between two maps $f,g:\Gamma \to X$.

Type theorists write instead

$$\Gamma \vdash h : Id_X(f,g)$$

and regard h as a proof that f = g. Weird?

Homotopy relation

A **homotopy** between two maps $f,g:X\to Y$ in a typos $\mathcal C$ is a map $h:X\to PY$ such that $\partial_0 h=f$ and $\partial_1 h=g$,

We write $H: f \rightsquigarrow g$ or $f \sim g$.

Homotopy equivalences

Theorem

The homotopy relation $f \sim g$ is a congruence on the arrows of the category C.

The **homotopy category** Ho(C) is the quotient category C/\sim .

A map $f: X \to Y$ in \mathcal{C} is a **homotopy equivalence** if it is invertible in $Ho(\mathcal{C})$.

For example, every anodyne map is a homotopy equivalence.

An object $X \in \mathcal{C}$ is **contractible** if the map $X \to \top$ is a homotopy equivalence.

General path objects

If X is an object of a typos C, then a (general) **path object** for X is a factorisation

$$\langle \partial_0, \partial_1 \rangle \sigma : X \to PX \to X \times X$$

of the diagonal $X \to X \times X$ as a homotopy equivalence σ followed by a fibration $\langle \partial_0, \partial_1 \rangle$.

The path object is **perfect** if $\sigma: X \to PX$ is anodyne.

Mapping path object

A mapping path object of a map $f: A \rightarrow B$ is a factorisation

$$\langle q_0, q_1 \rangle u : A \to M(f) \to A \times B$$

of the map $\langle 1_A, f \rangle : A \to A \times B$ as a homotopy equivalence u followed by a fibration $\langle q_0, q_1 \rangle$,

The mapping path object is **perfect** if u is anodyne.

Homotopy fiber

A mapping path object of a map $f: A \rightarrow B$ can be constructed by the following diagram with a pull-back square

Thus, $M(f) = \{(p, x, y) | x : A, y : B, p : f(x) \rightsquigarrow y\}$. The fiber of the projection $M(f) \rightarrow B$ at $b \in B$ is the **homotopy fiber** of f.

$$M(f)(b) = \{(p, x) | x : A, p : f(x) \rightsquigarrow y\}$$

n-types

Let $\mathcal C$ be a pre-typos. If $X \in \mathcal C$, then the fibration $\langle \partial_0, \partial_1 \rangle : PX \to X \times X$ is an object P(X) of $\mathcal C(X \times X)$.

Definition

We say that an object $X \in \mathcal{C}$ is a (-1)-type if P(X) is contractible in the pre-typos $\mathcal{C}(X \times X)$.

An object $X \in \mathcal{C}$ is a (-1)-type if and only if the map $X \to X \times X$ is a homotopy equivalence.

A (-1)-type is like a truth value.

n-types

Definition

If $n \ge 0$, then an object $X \in \mathcal{C}$ is said to be a n-**type** if P(X) is a (n-1)-type in $\mathcal{C}(X \times X)$.

A 0-type is like a set.

A 1-type is like a groupoid.

A 1-type is like a 2-groupoid.

Morphisms of pre-typoi

Definition

A morphism of pre-typoi $F: \mathcal{C} \to \mathcal{D}$ is a functor which preserves

- terminal objects, fibrations and base changes of fibrations;
- the homotopy relation.

For example, the base change functor $u^* : \mathcal{C}(B) \to \mathcal{C}(A)$ is a morphism of pre-typoi for any map $u : A \to B$ of a pre-typos \mathcal{C} .

Typoi*

Definition

A pre-typos $\mathcal C$ is called a **typos*** if it is a Π -tribe and the product functor $\Pi_f:\mathcal C(A)\to\mathcal C(B)$ preserves the homotopy relation for every fibration $f:A\to B$.

If C is a typos, then so is the tribe C(A) for any object $A \in C$.

 (\star) Do you have a better name?

Examples

Theorem

(Hoffman and Streicher) The category of groupoids **Grpd** has the structure of a typos in which the fibrations are the Grothendieck fibrations.

Theorem

(Awodey-Warren-Voevodsky) The category of Kan complexes has the structure of a typos in which the fibrations are the Kan fibrations.

Theorem

(Gambino-Garner) The syntactic category of type theory has the structure of a typos in which the fibrations are constructed from the display maps.

From typoi to hyperdoctrines

If $u: A \to B$ is a map in a typos C, then the functor

$$Ho(u^{\star}): Ho(\mathcal{C}(B)) \rightarrow Ho(\mathcal{C}(A))$$

has a both a left adjoint and a right adjoint.

The functor

$$A \mapsto Ho(\mathcal{C}(A))$$

is a hyper-doctrine in the sense of Lawvere!

Morphisms of typoi

Definition

A morphism of typoi $F: \mathcal{C} \to \mathcal{D}$ is a functor which preserves

- terminal objects, fibrations and base changes of fibrations;
- the internal products $\Pi_f(X)$;
- the homotopy relation.

For example, the base change functor $u^* : \mathcal{C}(B) \to \mathcal{C}(A)$ is a morphism of typoi for any map $u : A \to B$ in a typos \mathcal{C} .

Internal statements

Let A be an object of a typos C.

If $PA \rightarrow A \times A$ is a path object for A, then the object

$$T_{-1}(A) = \prod_{x:A} \prod_{y:A} PA(x,y)$$

is the internal statement that A is a (-1)-type.

A term $p: T_{-1}(A)$ is a proof that A is a (-1)-type.

Internal statements(2)

The object

$$Cont(A) = A \times T_{-1}(A)$$

is the internal statement that A is contractible.

A term $p: A \times T_{-1}(A)$ is a proof that A is contractible.

If $n \ge 0$, then the object

$$T_n(A) = \prod_{x:A} \prod_{y:A} T_{n-1}(PA(x,y))$$

is the internal statement that A is a n-type.

A term $p: T_n(A)$ is a proof that A is a n-type.

Internal equivalences

A fibration $p: X \to B$ is a homotopy equivalence if and only $\Pi_B(X,p)$ is contractible.

Thus, $Cont(\Pi_B(X, p))$ is the internal statement that $p: X \to A$ is a homotopy equivalence.

A general map $f: A \to B$ is a homotopy equivalence if and only if the fibration $q_1: M(f) \to B$ is a homotopy equivalence.

Thus, $Cont(\Pi_B(M(f), q_1))$ is the internal statement that $f: A \to B$ is a homotopy equivalence.

Classifying equivalences

For any pair of objects X and Y of a typos, there is an object Eq(X, Y) classifying the homotopy equivalences $X \to Y$.

For every fibration $X \to A$, there is a category object

$$(s,t): Eq_A(X) \rightarrow A \times A$$

where

$$Eq_A(X)(a,b) = Eq(X(a),X(b))$$

for a : A and b : A.

Univalent fibrations

Definition

We say that a fibration $X \to A$ is **univalent** if the unit map $u: A \to Eq_A(X)$ is an equivalence.

A fibration $X \rightarrow A$ is univalent if and only if the factorization

is a path object for A.

Small fibrations and universes

A typos $\mathcal C$ may contain a sub-typos of **small fibrations**.

A small fibration $q:U'\to U$ is **universal** if for every small fibration $p:X\to A$ there exists a cartesian square:

$$\begin{array}{ccc}
X & \xrightarrow{\chi'} & U' \\
\downarrow q & & \downarrow q \\
A & \xrightarrow{\chi} & U.
\end{array}$$

The map χ is **classifying** (X, p).

A **universe** is the codomain of a universal small fibration $U' \to U$.

Martin-Löf axiom: There is a universe U.

Univalent typoi

We would like to say that the pair (χ, χ') classifying a fibration $p: X \to A$ is homotopy unique.

Voevodsky axiom: The universal fibration $U' \rightarrow U$ is univalent.

Theorem (Voevodsky)

The category of Kan complexes **Kan** has the structure of a univalent typos in which the fibrations are the Kan fibrations.

Conclusions

Homotopy type theory is soluble in category theory

Bibliography

THE BOOK OF INFORMAL TYPE THEORY