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Introduction

Motivation: To understand Martin-Lof type theory.
Conceptual mathematics — category theory.

Two questions:

> Is type theory soluble in category theory?
» Is category theory soluble in type theory?

I will not discuss the second question here.



Overview

Aspects of categorical logic:

» Locally cartesian closed categories
> Tribes

Homotopical logic:
» Weak factorization systems
» Homotopical algebra
» Pre-typoi
» Typoi
» Univalent typoi



Aspects of categorical logic

The basic principles of categorical logic was expressed in Lawvere's
paper Adjointness in Foundation (1969). | will use these
principles implicitly.

> Locally cartesian closed categories

> Tribes

> [l-tribes



Terminal objects and terms

Recall that an object T in a category C is said to be terminal if
for every object A € C, there is a unique map A — T.

If T is a terminal object, then a map v: T — A is called

» a global section of the object A, u € T(A)
» an element of A, ueA

» a constant of sort A, ueA

> a term of type A, u: A



Cartesian product

Recall that the cartesian product A x B of two objects A and B in
a category C is an object A x B equipped with a pair of projection

A< AaxB-P.B

having the following universal property: for any object C € C and
any a pair of maps

A<l c_£.B,

there is a unique map h=(f,g) : C — A x B such that pth=f
and pph=g.

S

A<—AxB——B
p1 p2



Cartesian category

The map h+— (p1h, p2h) is a natural bijection between

the maps C - Ax B

and the pairs of maps C - A, C — B.

A category C is cartesian if it has (binary) cartesian product and a
terminal object T.

Equivalently, a category C is cartesian if it has finite cartesian
products.



Exponential

Let A and B be two objects of a cartesian category C.

An object [A, B] equipped with a map ev : [A,B] x A— B is
called the exponential of B by A if:

for every object C € C and every map f: Cx A— B

there exists a unique map [f]: C — [A, B] such that

CxA—TA 14 B]xA

We write Mf := [f].



Cartesian closed categories

The map f — M\f is a natural bijection between

the maps C x A— B

and the maps C — [A, B].

A cartesian category C is said to be closed if the object [A, B]
exists for every pair of objects A, B € C.

A cartesian category C is closed if and only if the functor
Ax(=):C—=C

has a right adjoint [A, —] for every object A € C.



Cartesian closed categories(2)

Examples of cartesian closed categories

> the category of sets Set

v

the category of (small) catégories Cat (Lawvere)

v

the category of groupoids Grpd

v

Every category [C, Set]

v

The category of simplicial sets [A°P, Set]



Cartesian closed categories and lambda calculus

Every cartesian category A generates freely a cartesian closed
category CC[A].

» the morphism in CC[A] are represented by lambda terms;
» lambda terms have a normal form;
» the category CC[A] is decidable if A is decidable.

Lambek and Scott: Higher categorical logic.



Slice categories

Recall that the slice category C/A has for objects the pairs (X, p),
where pisamap X — AinC. The map p: X — Ais called the
structure map of (X, p).

A morphism (X,p) = (Y,q)inC/Aisamapu:X — Y inC

such that qu = p,
N A

A.




Push-forward

To every map f : A — B in a category C we can associate a
push-forward functor

fi:C/A—=C/B
by putting fi(X, p) = (X, fp) for every map p: X — A,

X=X

1 e

A— Tt B



Pull-back

Recall that the fiber product of two maps X — Aand Y — Ain
a category C is their cartesian product X x4 Y as objects of the
category C/A.

X x,Y P 14
Pll lq
X P A.

The square is also called a pullback square.



Base changes
In a category with finite limits C the push-forward functor
fi :C/A — C/B has a right adjoint
f*.C/B—C/A

for any map f : A — B. The functor f* takes a map p: X — B to
the map p1 : A xg X — Ain a pullback square

Axg X —P X
Pll lp
A f B.

The map p; is said to be the base change of the map p: X — B
along the map f : A — B.



Locally cartesian closed categories(1)

A category with finite limits C is said to be locally cartesian
closed (lcc) if the category C/A is cartesian closed for every object
AcC.

A category with finite limits C is Icc if and only if the base change
functor f* : C/B — C/A has a right adjoint

f.:C/A—C/B

for every map f : A— B in C.



Locally cartesian closed categories(2)

If X =(X,p) € C/A, then f,(X) € C/B is called
the internal product of X along f : A — B, and denoted

If Y =(Y,q) € C/B, there is a natural bijection between

the maps Y — M¢(X) in C/B
and the maps (Y)—= X in C/A




Locally cartesian closed categories(3)

Examples of Icc categories

> the category Set
» every category [C, Set]
» every Grothendieck topos

> every elementary topos

Non-examples
The category Cat
The category Grpd



Logical functors

Definition
A functor F : C — D between lcc categories is logical if it
preserves

» finite limits;

» internal products.

The last condition means that the comparison map
an(X) — ”F(f)(FX)

is an isomorphism for any pair of maps X — Aand f : A— B in C.



Logical functors(2)

If C is a locally cartesian closed category, then
> the Yoneda functor y : C — C = [CP, Set] is logical;

» the base change functor *: C/B — C/A is a logical for every
map f: A— Bin C.



Generic terms

Let i : C — C/A be the base change functor. By definition,
i(X)=(Ax X,p1) for every X € C.

Theorem
The functor i : C — C/A is logical and C/A is obtained from C by
adding freely a term xa : i(A).

More precisely, i(T) = (A,14) and i(A) = (A x A, p1).

The diagonal A — A x Aisamap xa:i(T)— i(A).



Generic terms(2)

For any logical functor F : C — & with values in a lcc category £
and any term a: F(A),

there exists a logical functor F’ : C/A — D and a natural
isomorphism o : F ~ F' o |

C—=C/A
~o F’
F
D
such that aa(a) = F'(xa).
Moreover, the pair (F', a) is unique up to a unique iso of pairs.

Thus, C/A = C[xa] and the term x4 : i(A) is generic.



Tribes(0)

A class of maps F in a category C is said to be

closed under base changes if

X —BinF == A xg X — A exists and belong to F
AxgX X
E.Fi le]:
A f B

foranymapf: A— BinC



Tribes(1)

Definition

Let C be a category with terminal object T. We say that a class of
maps F C C is a tribe structure if the following conditions are
satisfied:

> every isomorphism belongs to F;

» F is closed under composition and base changes;

» the map X — T belongs to F for every object X € C.
We shall say that the pair (C, F) is a tribe.

A map in F is a family or a fibration of the tribe.



Tribes(2)

The fiber of a fibration p: X — A at a point a: T — A is the
object X(a) defined by the pullback square

X(a) X
L)
T A.

A fibration p : X — A is an internal family (X(a) : a € A) of
objects parametrized by the codomain of p.



Tribes(3)

The full subcategory of C/A whose objects are the fibrations
X — Ais denoted C(A).

The category C(A) has the structure of a tribe where
a morphism f : (X, p) = (Y, q) in C(A) is a fibration
if f: X — Y is a fibration in C.

And object of C(A) is a type which depends on the type A.

If u: A — B, then the base change functor u* : C(B) — C(A) is an
operation of change of parameters: we have

u*(Y)(a) = Y(u(a))

for every every fibration Y — B and every term a: A.



Tribes (4)

Definition

A morphism of tribes F : C — D is a functor which
> takes fibrations to fibrations;
> preserves base changes of fibrations;

> preserves terminal objects.

For example, the base change functor
u*:C(B) = C(A)

is a morphism of tribes for any map v: A — B in a tribe C.



Variables=generic terms

The base change functor i : C — C(A) is a morphism of tribes.

Theorem
The tribe C(A) is obtained from C by adding freely a term
xa @ i(A).

The term x4 : i(A) is generic.



Types and contexts

An object p: E — A of C(A) is a type E(x) in context x : A.
Type theorists write
x:AF E(x): type

where E(x) is the general fiber of the map p: E — A,

E(x)—=E
L)
T A

The object E is the total space of the fibration p: E — A,

E=Y E(x).
x:A



Terms and types

A term t(x) of type E(x) is a section t of the map p: E — A.

Type theorists write

x:AE t(x): E(x)

Topologists write

D



Push-forward and sum

To every fibration f : A — B in tribe C we can associate a
push-forward functor

fi : C(A) = C(B)

by putting fi(E, p) = (E, fp),

Formally,

RE)D) = Y E(a)

f(a)=b

for every fibration E — A and every b : B.



Push-forward and sum(2)

The functor £ : C(A) — C(B) is left adjoint to the functor f*.

For very X € C(A) and Y € C(B), there is a natural bijection
between

the maps (X)) =Y in C(B)
and the maps X — *(Y) in C(A)




Sum formation

I, x: Ak E(x) : type
(N ZE(X) . type
x:A

E

= F
(p,q)i lp
r

rxA—2 o



[1-tribes

Definition
We shall sat that a tribe C is lN-closed, or that it is a [-tribe, if
every fibration E — A has a product along every fibration
f:A— B,

I:

A

and the structure map lM¢(E) — B is a fibration.

”f(E)

—>B

The object M¢(E) is a product of E = (E, p) along f. Formally,

=[] E(a

f(a)=b

for every b € B.



[-tribes (2)

It follows that the base change functor f* : C(B) — C(A) has a
right adjoint
f, =MN¢:C(A) = C(B)

for every fibration f : A — B.

For very X € C(A) and Y € C(B), there is a natural bijection
between

the maps Y — M¢(X) in C(B)
and the maps (Y)— X in C(A)




Product formation

I, x:AF E(x) : type

(= HE(X) : type
x:A

My, E

o [



[-tribes (3)

If C is a MM-tribe, then so is the tribe C(A) for every A € C.

A Tl-tribe is cartesian closed:

BA=nN.B=]]B
a:A

The category C(A) is cartesian closed for every A € C.



Examples of [l-tribes

» Every locally cartesian closed category is a [l-tribe.

» The category of small groupoids Grpd is a [-tribe, where a
fibration is a Grothendieck fibration.

» The category of Kan complexes is a [l-tribe, where a fibration
is a Kan fibration.



Morphisms of [l-tribes

Definition
A morphism of [1-tribes F : C — D is a functor which preserves
» terminal objects, fibrations and base changes of fibrations;

» the internal product M¢(X).

The base change functor u* : C(B) — C(A) is a morphism of
M-tribes for any map u: A — B in a [-tribe C.

The Yoneda functor y : C — € = [C%, Set] is a morphism of
MN-tribes for any l-tribe C.



Homotopical logic

v

Weak factorization systems

v

Quillen model categories

v

Pre-typoi
» Typoi

v

Univalent typoi



Weak factorisation systems(1)

The relation u M f for two maps u: A— Band f: X — Y ina
category C means that every commutative square

A== X

o

B—t.vy

has a diagonal filler d : B — X, du = a and fd = b.

A—2s X
ul/ f
B-bt.y

The map v is said to have the left lifting property with f, and
the map f to have the right lifting property with respect to u.



Weak factorisation systems(2)

For a class of maps S C C, let us put
S"={feC:VueS umf}

"S={ueC:VfeS uhf}

Definition
A pair (L, R) of classes of maps in a category C is said to be a
weak factorization system if the following two conditions are
satisfied
» R=L"and £L="R
> every map f : A— B in C admits a factorization
f=pu:A—E — Bwithue Land peR.



Homotopical algebra(1)

Recall that a class W of maps in a category £ is said to have the
3-for-2 property (3 apples for the price of two!) if two sides a

commutative triangle
_u.
N

belongs to W, then so is the third.

A

v

N<—0



Homotopical algebra(2)

Quillen (1967)
Definition
A model structure on a category £ consists on three class of
maps (C, W, F) respectively called the cofibrations, the weak
equivalences and the fibrations, such that :

> W has the 3-for-2 property;

» the pair (CNW, F) is a weak factorisation system;

> the pair (C, F N W) is a weak factorisation system.

A model category is a category equipped with a model structure.

A map in W is said to be acyclic.



Path object

A path object for a fibrant object X in a model category £ is a
factorisation of the diagonal A : X — X x X as a weak equivalence
o : X — PX followed by a fibration (9p,01) : PX — X x X,

PX
(00,01)

X A X xX.

The path object is perfect if o is an acyclic cofibration.



|dentity type

For every type A there is another type
x:Ay:A Flda(x,y) : type
called the identity type of A and a term
x:A For(x):lda(x, x)
called the reflexivity term.
A term p: Ida(a, b) is a proof that a = b.

The term r(x) : Ida(x, x) is the proof that x = x.



|dentity type(2)

Equivalently, for every A € C there is a diagram

lda

(s:1)

A

A—AXA

with (s, t) € F.



The J-rule of type theory

If p: X — Idya is a fibration, then every commutative square

A—YL s X
|
ldy =—— Id,

has a diagonal filler d = J(u),

A—L s X

|

lda Ida




Homotopical algebra and type theory(1)

Theorem (Awodey-Warren):
Martin-Lof type theory can be interpreted in a model category:

> types are interpreted as fibrant objects;
» display maps are interpreted as fibrations;
> the identity type Idg — A X A is a path object for A;

> the reflexivity term r : A — Ida is an acyclic cofibration.

Ida

(1a,14) Ax A



Homotopical algebra and type theory(2)

Let C(T) be the syntactic category of Martin-Lof type theory.
Let F be the class of display maps in C(T).

Theorem (Gambino-Garner):

Every map f : A — B in C(T) admits a factorization
f=pu:A— E— Bwithue™Fand peF.



Pre-typoi

We say that a map in a tribe C = (C, F) is anodyne if it belongs
to the class " F.

Definition
We say that a tribe C is a pre-typos* if the following two
conditions are satisfied

» the base change of an anodyne map along a fibration is
anodyne;

» every map f : A — B admits a factorization
f=pu:A— E— B with u an anodyne map and p a
fibration.

(%) Named after a joke by Steve Awodey. Do you have a better
name?



Pre-typoi(2)

Examples

» The category Grpd;
» The category of Kan complexes;

» The syntactic category of type theory.



Path objects in a pre-typos

If X is an object of a typos C, then a perfect* path object for X
is a factorisation

<80,81>U:X%PX%X><X

of the diagonal X — X x X as an anodyne map o : X — PX
followed by a fibration (9p, 01) : PX — X x X.

(*) The general notion of path objects will be introduced later.



Paths and equality

The map (0o, 01) : PX — X x X of a path object for X is a
fibration. Its fiber PX(x,y) at (x,y) € X x X is the object of
paths p : x ~» y. We may write

Fr-h:f~g

to indicate that h: T — PX is a homotopy between two maps
f,g: T = X.

Type theorists write instead
Mt h:ldx(f,g)

and regard h as a proof that f = g. Weird?



Homotopy relation

A homotopy between two maps f,g: X — Y in a typos C is a
map h: X — PY such that 9oph = f and 01h = g,

£ Y

A\

0
X "o py
o1

/s

We write H: f ~» gorf ~g.



Homotopy equivalences

Theorem
The homotopy relation f ~ g is a congruence on the arrows of the
category C.

The homotopy category Ho(C) is the quotient category C/ ~.

A map f: X = Y in C is a homotopy equivalence if it is
invertible in Ho(C).

For example, every anodyne map is a homotopy equivalence.

An object X € C is contractible if the map X — T is a homotopy
equivalence.



General path objects

If X is an object of a typos C, then a (general) path object for X
is a factorisation

<30,({91>0'2X—>PX—>X><X

of the diagonal X — X x X as a homotopy equivalence o followed
by a fibration (0, 01).

The path object is perfect if o : X — PX is anodyne.



Mapping path object

A mapping path object of a map f : A — B is a factorisation
(qo,q1)u:A— M(f) > Ax B

of the map (14,f) : A— A x B as a homotopy equivalence u
followed by a fibration (qo, q1),

L

Al M(f)\
q

f B

The mapping path object is perfect if u is anodyne.



Homotopy fiber

A mapping path object of a map f : A — B can be constructed by
the following diagram with a pull-back square

M(f) — PB

) £ "

_f B

Thus, M(f) ={(p,x,y)| x : A, y: B, p:f(x)~ y}. The fiber of
the projection M(f) — B at b € B is the homotopy fiber of f.

M(F)(b) = {(p,x)| x: A, p:f(x) ~ y}



n-types

Let C be a pre-typos. If X € C, then the fibration
(0o, 01) : PX — X x X is an object P(X) of C(X x X).

Definition

We say that an object X € C is a (-1)-type if P(X) is contractible
in the pre-typos C(X x X).

An object X € C is a (-1)-type if and only if the map X — X x X
is a homotopy equivalence.

A (-1)-type is like a truth value.



n-types

Definition

If n >0, then an object X € C is said to be a n-type if P(X) is a
(n—1)-type in C(X x X).

A O-type is like a set.

A 1-type is like a groupoid.

A 1-type is like a 2-groupoid.



Morphisms of pre-typoi

Definition
A morphism of pre-typoi F : C — D is a functor which preserves
> terminal objects, fibrations and base changes of fibrations;

» the homotopy relation.

For example, the base change functor u* : C(B) — C(A) is a
morphism of pre-typoi for any map u: A — B of a pre-typos C.



Typoi*

Definition

A pre-typos C is called a typos* if it is a IN-tribe and the product
functor IM¢ : C(A) — C(B) preserves the homotopy relation for
every fibration f : A — B.

If C is a typos, then so is the tribe C(A) for any object A € C.

(*) Do you have a better name?



Examples

Theorem

(Hoffman and Streicher) The category of groupoids Grpd has the
structure of a typos in which the fibrations are the Grothendieck
fibrations.

Theorem

(Awodey-Warren-Voevodsky) The category of Kan complexes has
the structure of a typos in which the fibrations are the Kan
fibrations.

Theorem

(Gambino-Garner) The syntactic category of type theory has the
structure of a typos in which the fibrations are constructed from
the display maps.



From typoi to hyperdoctrines

If u: A— Bis amapin a typos C, then the functor
Ho(u™) : Ho(C(B)) — Ho(C(A))
has a both a left adjoint and a right adjoint.

The functor
A Ho(C(A))

is a hyper-doctrine in the sense of Lawvere!



Morphisms of typoi

Definition

A morphism of typoi F : C — D is a functor which preserves
> terminal objects, fibrations and base changes of fibrations;
» the internal products M¢(X);

> the homotopy relation.

For example, the base change functor u* : C(B) — C(A) is a
morphism of typoi for any map v: A — B in a typos C.



Internal statements

Let A be an object of a typos C.
If PA— A X A is a path object for A, then the object

T2(A4) = [T T[] PAGx.y)

x:A y:A
is the internal statement that A is a (—1)-type.

A term p: T_1(A) is a proof that A is a (—1)-type.



Internal statements(2)

The object
Cont(A) = A x T_1(A)

is the internal statement that A is contractible.

A term p: A x T_1(A) is a proof that A is contractible.

If n >0, then the object

Tn(A) = HH Tn—l('DA(X7y))

x:A y:A
is the internal statement that A is a n-type.

A term p: T,(A) is a proof that A is a n-type.



Internal equivalences

A fibration p : X — B is a homotopy equivalence if and only
Mg(X, p) is contractible.

Thus, Cont(Mg(X,p)) is the internal statement that p: X — A is
a homotopy equivalence.

A general map f : A — B is a homotopy equivalence if and only if
the fibration g1 : M(f) — B is a homotopy equivalence.

Thus, Cont(Mg(M(f), q1)) is the internal statement that
f: A— B is a homotopy equivalence.



Classifying equivalences

For any pair of objects X and Y of a typos, there is an object
Eq(X,Y) classifying the homotopy equivalences X — Y.

For every fibration X — A, there is a category object
(s,t): Ega(X) > Ax A

where
Eqa(X)(a, b) = Eq(X(a), X(b))

fora:Aand b: A.



Univalent fibrations

Definition
We say that a fibration X — A is univalent if the unit map
u: A — Eqa(X) is an equivalence.

A fibration X — A is univalent if and only if the factorization

Eqa(X)
y (s:)
(1a,14) Ax A

is a path object for A.



Small fibrations and universes

A typos C may contain a sub-typos of small fibrations.
A small fibration g : U’ — U is universal if for every small

fibration p : X — A there exists a cartesian square:

XL’

p

C<—C
* Q

A—Xo

The map y is classifying (X, p).
A universe is the codomain of a universal small fibration U’ — U.

Martin-Lof axiom: There is a universe U.



Univalent typoi

We would like to say that the pair (x, x’) classifying a fibration
p: X — Ais homotopy unique.

Voevodsky axiom: The universal fibration U’ — U is univalent.

Theorem (Voevodsky)

The category of Kan complexes Kan has the structure of a
univalent typos in which the fibrations are the Kan fibrations.



Conclusions

Homotopy type theory is soluble in category theory
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