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Introduction

Motivation: To understand Martin-Löf type theory.

Conceptual mathematics → category theory.

Two questions:

I Is type theory soluble in category theory?

I Is category theory soluble in type theory?

I will not discuss the second question here.



Overview

Aspects of categorical logic:

I Locally cartesian closed categories

I Tribes

Homotopical logic:

I Weak factorization systems

I Homotopical algebra

I Pre-typoi

I Typoi

I Univalent typoi



Aspects of categorical logic

The basic principles of categorical logic was expressed in Lawvere’s
paper Adjointness in Foundation (1969). I will use these
principles implicitly.

I Locally cartesian closed categories

I Tribes

I Π-tribes



Terminal objects and terms

Recall that an object > in a category C is said to be terminal if
for every object A ∈ C, there is a unique map A→ >.

If > is a terminal object, then a map u : > → A is called

I a global section of the object A, u ∈ Γ(A)

I an element of A, u ∈ A

I a constant of sort A, u ∈ A

I a term of type A, u : A.



Cartesian product
Recall that the cartesian product A×B of two objects A and B in
a category C is an object A× B equipped with a pair of projection

A A× B
p1oo p2 // B

having the following universal property: for any object C ∈ C and
any a pair of maps

A C
foo g // B,

there is a unique map h = 〈f , g〉 : C → A× B such that p1h = f
and p2h = g .

C
f

||
h
��

g

""
A A× Bp1

oo
p2

// B



Cartesian category

The map h 7→ (p1h, p2h) is a natural bijection between

the maps C → A× B

and the pairs of maps C → A, C → B.

A category C is cartesian if it has (binary) cartesian product and a
terminal object >.

Equivalently, a category C is cartesian if it has finite cartesian
products.



Exponential

Let A and B be two objects of a cartesian category C.

An object [A,B] equipped with a map ev : [A,B]× A→ B is
called the exponential of B by A if:

for every object C ∈ C and every map f : C × A→ B

there exists a unique map df e : C → [A,B] such that

C × A
df e×A //

f
))

[A,B]× A

ev
��

B

We write λAf := df e.



Cartesian closed categories

The map f 7→ λAf is a natural bijection between

the maps C × A→ B

and the maps C → [A,B].

A cartesian category C is said to be closed if the object [A,B]
exists for every pair of objects A,B ∈ C.

A cartesian category C is closed if and only if the functor

A× (−) : C → C

has a right adjoint [A,−] for every object A ∈ C.



Cartesian closed categories(2)

Examples of cartesian closed categories

I the category of sets Set

I the category of (small) catégories Cat (Lawvere)

I the category of groupoids Grpd

I Every category [C,Set]

I The category of simplicial sets [∆op,Set]



Cartesian closed categories and lambda calculus

Every cartesian category A generates freely a cartesian closed
category CC [A].

I the morphism in CC [A] are represented by lambda terms;

I lambda terms have a normal form;

I the category CC [A] is decidable if A is decidable.

Lambek and Scott: Higher categorical logic.



Slice categories

Recall that the slice category C/A has for objects the pairs (X , p),
where p is a map X → A in C. The map p : X → A is called the
structure map of (X , p).

A morphism (X , p)→ (Y , q) in C/A is a map u : X → Y in C
such that qu = p,

X

p   

u // Y

q~~
A.



Push-forward

To every map f : A→ B in a category C we can associate a
push-forward functor

f! : C/A→ C/B

by putting f!(X , p) = (X , fp) for every map p : X → A,

X

p
��

X

fp
��

A
f // B.



Pull-back

Recall that the fiber product of two maps X → A and Y → A in
a category C is their cartesian product X ×A Y as objects of the
category C/A.

X ×A Y

p1

��

p2 // Y

q

��
X

p // A.

The square is also called a pullback square.



Base changes

In a category with finite limits C the push-forward functor
f! : C/A→ C/B has a right adjoint

f ? : C/B → C/A

for any map f : A→ B. The functor f ? takes a map p : X → B to
the map p1 : A×B X → A in a pullback square

A×B X

p1

��

p2 // X

p

��
A

f // B.

The map p1 is said to be the base change of the map p : X → B
along the map f : A→ B.



Locally cartesian closed categories(1)

A category with finite limits C is said to be locally cartesian
closed (lcc) if the category C/A is cartesian closed for every object
A ∈ C.

A category with finite limits C is lcc if and only if the base change
functor f ∗ : C/B → C/A has a right adjoint

f? : C/A→ C/B

for every map f : A→ B in C.



Locally cartesian closed categories(2)

If X = (X , p) ∈ C/A, then f?(X ) ∈ C/B is called

the internal product of X along f : A→ B, and denoted

Πf (X ) := f?(X ).

If Y = (Y , q) ∈ C/B, there is a natural bijection between

the maps Y → Πf (X ) in C/B

and the maps f ?(Y )→ X in C/A



Locally cartesian closed categories(3)

Examples of lcc categories

I the category Set

I every category [C,Set]

I every Grothendieck topos

I every elementary topos

Non-examples

The category Cat

The category Grpd



Logical functors

Definition
A functor F : C → D between lcc categories is logical if it
preserves

I finite limits;

I internal products.

The last condition means that the comparison map

F Πf (X )→ ΠF (f )(FX )

is an isomorphism for any pair of maps X → A and f : A→ B in C.



Logical functors(2)

If C is a locally cartesian closed category, then

I the Yoneda functor y : C → Ĉ = [Cop,Set] is logical;

I the base change functor f ∗ : C/B → C/A is a logical for every
map f : A→ B in C.



Generic terms

Let i : C → C/A be the base change functor. By definition,
i(X ) = (A× X , p1) for every X ∈ C.

Theorem
The functor i : C → C/A is logical and C/A is obtained from C by
adding freely a term xA : i(A).

More precisely, i(>) = (A, 1A) and i(A) = (A× A, p1).

The diagonal A→ A× A is a map xA : i(>)→ i(A).



Generic terms(2)

For any logical functor F : C → E with values in a lcc category E
and any term a : F (A),

there exists a logical functor F ′ : C/A→ D and a natural
isomorphism α : F ' F ′ ◦ i

C i //

F

'α

&&

C/A

F ′

��
D

such that αA(a) = F ′(xA).

Moreover, the pair (F ′, α) is unique up to a unique iso of pairs.

Thus, C/A = C[xA] and the term xA : i(A) is generic.



Tribes(0)

A class of maps F in a category C is said to be

closed under base changes if

X → B in F =⇒ A×B X → A exists and belong to F

A×B X

∈F
��

// X

∈F
��

A
f // B

for any map f : A→ B in C



Tribes(1)

Definition
Let C be a category with terminal object >. We say that a class of
maps F ⊆ C is a tribe structure if the following conditions are
satisfied:

I every isomorphism belongs to F ;

I F is closed under composition and base changes;

I the map X → > belongs to F for every object X ∈ C.

We shall say that the pair (C,F) is a tribe.

A map in F is a family or a fibration of the tribe.



Tribes(2)

The fiber of a fibration p : X → A at a point a : > → A is the
object X (a) defined by the pullback square

X (a)

��

// X

p

��
> a // A.

A fibration p : X → A is an internal family (X (a) : a ∈ A) of
objects parametrized by the codomain of p.



Tribes(3)

The full subcategory of C/A whose objects are the fibrations
X → A is denoted C(A).

The category C(A) has the structure of a tribe where
a morphism f : (X , p)→ (Y , q) in C(A) is a fibration
if f : X → Y is a fibration in C.

And object of C(A) is a type which depends on the type A.

If u : A→ B, then the base change functor u? : C(B)→ C(A) is an
operation of change of parameters: we have

u?(Y )(a) = Y (u(a))

for every every fibration Y → B and every term a : A.



Tribes (4)

Definition
A morphism of tribes F : C → D is a functor which

I takes fibrations to fibrations;

I preserves base changes of fibrations;

I preserves terminal objects.

For example, the base change functor

u? : C(B)→ C(A)

is a morphism of tribes for any map u : A→ B in a tribe C.



Variables=generic terms

The base change functor i : C → C(A) is a morphism of tribes.

Theorem
The tribe C(A) is obtained from C by adding freely a term
xA : i(A).

The term xA : i(A) is generic.



Types and contexts

An object p : E → A of C(A) is a type E (x) in context x : A.

Type theorists write

x : A ` E (x) : type

where E (x) is the general fiber of the map p : E → A,

E (x)

��

// E

p

��
> x // A

The object E is the total space of the fibration p : E → A,

E =
∑
x :A

E (x).



Terms and types

A term t(x) of type E (x) is a section t of the map p : E → A.

Type theorists write

x : A ` t(x) : E (x)

Topologists write

E

p
��

A

t

]]



Push-forward and sum

To every fibration f : A→ B in tribe C we can associate a
push-forward functor

f! : C(A)→ C(B)

by putting f!(E , p) = (E , fp),

E

p
��

E

fp
��

A
f // B.

Formally,

f!(E )(b) =
∑

f (a)=b

E (a)

for every fibration E → A and every b : B.



Push-forward and sum(2)

The functor f! : C(A)→ C(B) is left adjoint to the functor f ?.

For very X ∈ C(A) and Y ∈ C(B), there is a natural bijection
between

the maps f!(X )→ Y in C(B)

and the maps X → f ?(Y ) in C(A)



Sum formation

Γ, x : A ` E (x) : type

Γ `
∑
x :A

E (x) : type

E

(p,q)
��

E

p

��
Γ× A

p1 // Γ



Π-tribes

Definition
We shall sat that a tribe C is Π-closed, or that it is a Π-tribe, if
every fibration E → A has a product along every fibration
f : A→ B,

E

��

Πf (E )

��
A

f // // B

and the structure map Πf (E )→ B is a fibration.

The object Πf (E ) is a product of E = (E , p) along f . Formally,

Πf (E )(b) =
∏

f (a)=b

E (a)

for every b ∈ B.



Π-tribes (2)

It follows that the base change functor f ? : C(B)→ C(A) has a
right adjoint

f? = Πf : C(A)→ C(B)

for every fibration f : A→ B.

For very X ∈ C(A) and Y ∈ C(B), there is a natural bijection
between

the maps Y → Πf (X ) in C(B)

and the maps f ?(Y )→ X in C(A)



Product formation

Γ, x : A ` E (x) : type

Γ `
∏
x :A

E (x) : type

E

��

Πp2E

��
Γ× A

p2 // Γ



Π-tribes (3)

If C is a Π-tribe, then so is the tribe C(A) for every A ∈ C.

A Π-tribe is cartesian closed:

BA = ΠAB =
∏
a:A

B

The category C(A) is cartesian closed for every A ∈ C.



Examples of Π-tribes

I Every locally cartesian closed category is a Π-tribe.

I The category of small groupoids Grpd is a Π-tribe, where a
fibration is a Grothendieck fibration.

I The category of Kan complexes is a Π-tribe, where a fibration
is a Kan fibration.



Morphisms of Π-tribes

Definition
A morphism of Π-tribes F : C → D is a functor which preserves

I terminal objects, fibrations and base changes of fibrations;

I the internal product Πf (X ).

The base change functor u? : C(B)→ C(A) is a morphism of
Π-tribes for any map u : A→ B in a Π-tribe C.

The Yoneda functor y : C → Ĉ = [Cop,Set] is a morphism of
Π-tribes for any Π-tribe C.



Homotopical logic

I Weak factorization systems

I Quillen model categories

I Pre-typoi

I Typoi

I Univalent typoi



Weak factorisation systems(1)

The relation u t f for two maps u : A→ B and f : X → Y in a
category C means that every commutative square

A

u
��

a // X

f
��

B
b // Y

has a diagonal filler d : B → X , du = a and fd = b.

A

u
��

a // X

f
��

B

d
??

b // Y

The map u is said to have the left lifting property with f , and
the map f to have the right lifting property with respect to u.



Weak factorisation systems(2)

For a class of maps S ⊆ C, let us put

St = {f ∈ C : ∀u ∈ S u t f }

tS = {u ∈ C : ∀f ∈ S u t f }

Definition
A pair (L,R) of classes of maps in a category C is said to be a
weak factorization system if the following two conditions are
satisfied

I R = Lt and L = tR
I every map f : A→ B in C admits a factorization

f = pu : A→ E → B with u ∈ L and p ∈ R.



Homotopical algebra(1)

Recall that a class W of maps in a category E is said to have the
3-for-2 property (3 apples for the price of two!) if two sides a
commutative triangle

A
u //

uv ��

B

v
��

C

belongs to W, then so is the third.



Homotopical algebra(2)

Quillen (1967)

Definition
A model structure on a category E consists on three class of
maps (C,W,F) respectively called the cofibrations, the weak
equivalences and the fibrations, such that :

I W has the 3-for-2 property;

I the pair (C ∩W,F) is a weak factorisation system;

I the pair (C,F ∩W) is a weak factorisation system.

A model category is a category equipped with a model structure.

A map in W is said to be acyclic.



Path object

A path object for a fibrant object X in a model category E is a
factorisation of the diagonal ∆ : X → X ×X as a weak equivalence
σ : X → PX followed by a fibration (∂0, ∂1) : PX → X × X ,

PX

(∂0,∂1)

��
X

σ

<<

∆ // X × X .

The path object is perfect if σ is an acyclic cofibration.



Identity type

For every type A there is another type

x :A, y :A ` IdA(x , y) : type

called the identity type of A and a term

x :A ` r(x) : IdA(x , x)

called the reflexivity term.

A term p : IdA(a, b) is a proof that a = b.

The term r(x) : IdA(x , x) is the proof that x = x .



Identity type(2)

Equivalently, for every A ∈ C there is a diagram

IdA

(s,t)

��
A

r

==

∆ // A× A

with (s, t) ∈ F .



The J-rule of type theory

If p : X → IdA is a fibration, then every commutative square

A

r
��

u // X

p

��
IdA IdA

has a diagonal filler d = J(u),

A

r
��

u // X

p

��
IdA

d

==

IdA



Homotopical algebra and type theory(1)

Theorem (Awodey-Warren):

Martin-Löf type theory can be interpreted in a model category:

I types are interpreted as fibrant objects;

I display maps are interpreted as fibrations;

I the identity type IdA → A× A is a path object for A;

I the reflexivity term r : A→ IdA is an acyclic cofibration.

IdA

��
A

r

==

(1A,1A) // A× A



Homotopical algebra and type theory(2)

Let C(T) be the syntactic category of Martin-Löf type theory.

Let F be the class of display maps in C(T).

Theorem (Gambino-Garner):

Every map f : A→ B in C(T) admits a factorization
f = pu : A→ E → B with u ∈ tF and p ∈ F .



Pre-typoi

We say that a map in a tribe C = (C,F) is anodyne if it belongs
to the class tF .

Definition
We say that a tribe C is a pre-typos* if the following two
conditions are satisfied

I the base change of an anodyne map along a fibration is
anodyne;

I every map f : A→ B admits a factorization
f = pu : A→ E → B with u an anodyne map and p a
fibration.

(?) Named after a joke by Steve Awodey. Do you have a better
name?



Pre-typoi(2)

Examples

I The category Grpd;

I The category of Kan complexes;

I The syntactic category of type theory.



Path objects in a pre-typos

If X is an object of a typos C, then a perfect* path object for X
is a factorisation

〈∂0, ∂1〉σ : X → PX → X × X

of the diagonal X → X × X as an anodyne map σ : X → PX
followed by a fibration 〈∂0, ∂1〉 : PX → X × X .

X

X

1X //

1X
//

σ // PX
∂0

==

∂1

!!
X

(*) The general notion of path objects will be introduced later.



Paths and equality

The map 〈∂0, ∂1〉 : PX → X × X of a path object for X is a
fibration. Its fiber PX (x , y) at (x , y) ∈ X × X is the object of
paths p : x  y . We may write

Γ ` h : f  g

to indicate that h : Γ→ PX is a homotopy between two maps
f , g : Γ→ X .

Type theorists write instead

Γ ` h : IdX (f , g)

and regard h as a proof that f = g . Weird?



Homotopy relation

A homotopy between two maps f , g : X → Y in a typos C is a
map h : X → PY such that ∂0h = f and ∂1h = g ,

Y

X

g //

f
//

h // PY
∂0

==

∂1

!!
Y

We write H : f  g or f ∼ g .



Homotopy equivalences

Theorem
The homotopy relation f ∼ g is a congruence on the arrows of the
category C.

The homotopy category Ho(C) is the quotient category C/ ∼.

A map f : X → Y in C is a homotopy equivalence if it is
invertible in Ho(C).

For example, every anodyne map is a homotopy equivalence.

An object X ∈ C is contractible if the map X → > is a homotopy
equivalence.



General path objects

If X is an object of a typos C, then a (general) path object for X
is a factorisation

〈∂0, ∂1〉σ : X → PX → X × X

of the diagonal X → X × X as a homotopy equivalence σ followed
by a fibration 〈∂0, ∂1〉.

The path object is perfect if σ : X → PX is anodyne.



Mapping path object

A mapping path object of a map f : A→ B is a factorisation

〈q0, q1〉u : A→ M(f )→ A× B

of the map 〈1A, f 〉 : A→ A× B as a homotopy equivalence u
followed by a fibration 〈q0, q1〉,

A

A

f //

1A
//

u // M(f )

q0

==

q1

!!
B

The mapping path object is perfect if u is anodyne.



Homotopy fiber

A mapping path object of a map f : A→ B can be constructed by
the following diagram with a pull-back square

A

1A

**

u

!!

σf

  
M(f )

q0

��

// PB

∂0

��
A

f // B

Thus, M(f ) = {(p, x , y)| x : A, y : B, p : f (x) y}. The fiber of
the projection M(f )→ B at b ∈ B is the homotopy fiber of f .

M(f )(b) = {(p, x)| x : A, p : f (x) y}



n-types

Let C be a pre-typos. If X ∈ C, then the fibration
〈∂0, ∂1〉 : PX → X × X is an object P(X ) of C(X × X ).

Definition
We say that an object X ∈ C is a (-1)-type if P(X ) is contractible
in the pre-typos C(X × X ).

An object X ∈ C is a (-1)-type if and only if the map X → X × X
is a homotopy equivalence.

A (-1)-type is like a truth value.



n-types

Definition
If n ≥ 0, then an object X ∈ C is said to be a n-type if P(X ) is a
(n − 1)-type in C(X × X ).

A 0-type is like a set.

A 1-type is like a groupoid.

A 1-type is like a 2-groupoid.



Morphisms of pre-typoi

Definition
A morphism of pre-typoi F : C → D is a functor which preserves

I terminal objects, fibrations and base changes of fibrations;

I the homotopy relation.

For example, the base change functor u? : C(B)→ C(A) is a
morphism of pre-typoi for any map u : A→ B of a pre-typos C.



Typoi*

Definition
A pre-typos C is called a typos* if it is a Π-tribe and the product
functor Πf : C(A)→ C(B) preserves the homotopy relation for
every fibration f : A→ B.

If C is a typos, then so is the tribe C(A) for any object A ∈ C.

(?) Do you have a better name?



Examples

Theorem
(Hoffman and Streicher) The category of groupoids Grpd has the
structure of a typos in which the fibrations are the Grothendieck
fibrations.

Theorem
(Awodey-Warren-Voevodsky) The category of Kan complexes has
the structure of a typos in which the fibrations are the Kan
fibrations.

Theorem
(Gambino-Garner) The syntactic category of type theory has the
structure of a typos in which the fibrations are constructed from
the display maps.



From typoi to hyperdoctrines

If u : A→ B is a map in a typos C, then the functor

Ho(u?) : Ho(C(B))→ Ho(C(A))

has a both a left adjoint and a right adjoint.

The functor
A 7→ Ho(C(A))

is a hyper-doctrine in the sense of Lawvere!



Morphisms of typoi

Definition
A morphism of typoi F : C → D is a functor which preserves

I terminal objects, fibrations and base changes of fibrations;

I the internal products Πf (X );

I the homotopy relation.

For example, the base change functor u? : C(B)→ C(A) is a
morphism of typoi for any map u : A→ B in a typos C.



Internal statements

Let A be an object of a typos C.

If PA→ A× A is a path object for A, then the object

T−1(A) =
∏
x :A

∏
y :A

PA(x , y)

is the internal statement that A is a (−1)-type.

A term p : T−1(A) is a proof that A is a (−1)-type.



Internal statements(2)

The object
Cont(A) = A× T−1(A)

is the internal statement that A is contractible.

A term p : A× T−1(A) is a proof that A is contractible.

If n ≥ 0, then the object

Tn(A) =
∏
x :A

∏
y :A

Tn−1(PA(x , y))

is the internal statement that A is a n-type.

A term p : Tn(A) is a proof that A is a n-type.



Internal equivalences

A fibration p : X → B is a homotopy equivalence if and only
ΠB(X , p) is contractible.

Thus, Cont(ΠB(X , p)) is the internal statement that p : X → A is
a homotopy equivalence.

A general map f : A→ B is a homotopy equivalence if and only if
the fibration q1 : M(f )→ B is a homotopy equivalence.

Thus, Cont(ΠB(M(f ), q1)) is the internal statement that
f : A→ B is a homotopy equivalence.



Classifying equivalences

For any pair of objects X and Y of a typos, there is an object
Eq(X ,Y ) classifying the homotopy equivalences X → Y .

For every fibration X → A, there is a category object

(s, t) : EqA(X )→ A× A

where
EqA(X )(a, b) = Eq(X (a),X (b))

for a : A and b : A.



Univalent fibrations

Definition
We say that a fibration X → A is univalent if the unit map
u : A→ EqA(X ) is an equivalence.

A fibration X → A is univalent if and only if the factorization

EqA(X )

(s,t)

��
A

u

==

(1A,1A) // A× A

is a path object for A.



Small fibrations and universes

A typos C may contain a sub-typos of small fibrations.

A small fibration q : U ′ → U is universal if for every small
fibration p : X → A there exists a cartesian square:

X
χ′
//

p

��

U ′

q

��
A

χ // U.

The map χ is classifying (X , p).

A universe is the codomain of a universal small fibration U ′ → U.

Martin-Löf axiom: There is a universe U.



Univalent typoi

We would like to say that the pair (χ, χ′) classifying a fibration
p : X → A is homotopy unique.

Voevodsky axiom: The universal fibration U ′ → U is univalent.

Theorem (Voevodsky)

The category of Kan complexes Kan has the structure of a
univalent typos in which the fibrations are the Kan fibrations.



Conclusions

Homotopy type theory is soluble in category theory
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