Additive ∞-categories and canonical monoidal structures II

Thomas Nikolaus
Faculty of Mathematics
University of Regensburg

2013 CMS Summer Meeting joint work with David Gepner and Moritz Groth

Recall from Moritz's talk

Recall: \mathcal{C} presentable ∞-category $(=(\infty, 1)$-category)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}): \infty$-category of commutative monoids in \mathcal{C}
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}): \infty$-category of commutative groups in \mathcal{C}
- $\operatorname{Sp}(\mathcal{C}): \infty$-category of spectrum objects in \mathcal{C}

Recall from Moritz's talk

Recall: \mathcal{C} presentable ∞-category $(=(\infty, 1)$-category)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}): \infty$-category of commutative monoids in \mathcal{C}
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}): \infty$-category of commutative groups in \mathcal{C}
- $\operatorname{Sp}(\mathcal{C}): \infty$-category of spectrum objects in \mathcal{C}

Examples

\mathcal{C}	$\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathbb{C})$	$\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathbb{C})$	$\operatorname{Sp}(\mathbb{C})$
Set	abelian monoids	abelian groups	trivial
Cat	SymMonCat	Picard groupoids	trivial
Cat	SymMonCat $_{\infty}$	Picard ∞-groupoids	Spectra
$\mathcal{S}=$ Spaces	\mathbb{E}_{∞}-spaces	grouplike \mathbb{E}_{∞}-spaces	Spectra

Recall from Moritz's talk

Recall: \mathcal{C} presentable ∞-category $(=(\infty, 1)$-category)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}): \infty$-category of commutative monoids in \mathcal{C}
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}): \infty$-category of commutative groups in \mathcal{C}
- $\operatorname{Sp}(\mathcal{C}): \infty$-category of spectrum objects in \mathcal{C}

Examples

\mathcal{C}	$\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$	$\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$	$\operatorname{Sp}(\mathcal{C})$
Set	abelian monoids	abelian groups	trivial
Cat	SymMonCat	Picard groupoids	trivial
Cat	SymMonCat $_{\infty}$	Picard ∞-groupoids	Spectra
$\mathcal{S}=$ Spaces	\mathbb{E}_{∞}-spaces	grouplike \mathbb{E}_{∞}-spaces	Spectra

\mathcal{C} presentable $\Rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\operatorname{Sp}(\mathcal{C})$ are presentable

Universal Property

Theorem (Gepner, Groth, N.)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is universal preadditive ∞-category on \mathfrak{C}.
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is universal additive ∞-category on \mathcal{C}.
- $\operatorname{Sp}(\mathcal{C})$ is universal stable ∞-category on \mathfrak{C}.

Universal Property

Theorem (Gepner, Groth, N.)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is universal preadditive ∞-category on \mathfrak{C}.
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is universal additive ∞-category on \mathcal{C}.
- $\mathrm{Sp}(\mathcal{C})$ is universal stable ∞-category on \mathfrak{C}.

$$
\mathcal{P r}^{\mathrm{L}}:=\left\{\begin{array}{l}
\infty \text {-category of presentable } \infty \text {-categories and } \\
\text { left adjoint functors. }
\end{array}\right\}
$$

(Bousfield-)localizations

$$
\operatorname{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \quad \operatorname{Pr}^{\mathrm{L}} \rightarrow \operatorname{Pr}^{\mathrm{L}}
$$

Local objects: (pre)additive / stable ∞-categories.

Universal Property

Theorem (Gepner, Groth, N.)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is universal preadditive ∞-category on \mathcal{C}.
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is universal additive ∞-category on \mathcal{C}.
- $\mathrm{Sp}(\mathcal{C})$ is universal stable ∞-category on \mathfrak{C}.

$$
\mathcal{P r}^{\mathrm{L}}:=\left\{\begin{array}{l}
\infty \text {-category of presentable } \infty \text {-categories and } \\
\text { left adjoint functors. }
\end{array}\right\}
$$

(Bousfield-)localizations

$$
\operatorname{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \quad \operatorname{Pr}^{\mathrm{L}} \rightarrow \operatorname{Pr}^{\mathrm{L}}
$$

Local objects: (pre)additive / stable ∞-categories.

Corollary

There are canonical left adjoint functors

$$
\mathcal{C} \rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \operatorname{Sp}(\mathcal{C})
$$

Main theorem

Theorem (Gepner, Groth, N.)

\mathcal{C} closed symmetric monoidal, presentable ∞-category
(1) $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathrm{C}), \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathrm{C})$ and $\mathrm{Sp}(\mathrm{C})$ admit symmetric monoidal structures:

- Tensor products preseves colimits in both variables.
- Free functors $\mathcal{C} \rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \mathcal{C} \rightarrow \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathcal{C} \rightarrow \mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures.

Main theorem

Theorem (Gepner, Groth, N.)

\mathcal{C} closed symmetric monoidal, presentable ∞-category
(1) $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathrm{C})$ and $\mathrm{Sp}(\mathrm{C})$ admit symmetric monoidal structures:

- Tensor products preseves colimits in both variables.
- Free functors $\mathcal{C} \rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \mathcal{C} \rightarrow \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathcal{C} \rightarrow \mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures.
(2) These symmetric monoidal structures are (essentially) unique.
(3) The functors $\mathcal{C} \rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \operatorname{Sp}(\mathcal{C})$ admit unique structures of symmetric monoidal functors.

Main theorem

Theorem (Gepner, Groth, N.)

\mathcal{C} closed symmetric monoidal, presentable ∞-category
(1) $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathrm{C})$ and $\mathrm{Sp}(\mathrm{C})$ admit symmetric monoidal structures:

- Tensor products preseves colimits in both variables.
- Free functors $\mathfrak{C} \rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \mathcal{C} \rightarrow \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathcal{C} \rightarrow \mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures.
(2) These symmetric monoidal structures are (essentially) unique.
(3) The functors $\mathcal{C} \rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \mathrm{Sp}(\mathcal{C})$ admit unique structures of symmetric monoidal functors.

Assume \mathfrak{C} cartesian closed

$$
\begin{array}{rr}
\mathcal{R i g}_{\mathbb{E}_{k}}(\mathcal{C}):=\operatorname{Alg}_{\mathbb{E}_{k}}\left(\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})^{\otimes}\right) & \text { 'semirings in } \mathcal{C}^{\prime} \\
\operatorname{Ring}_{\mathbb{E}_{k}}(\mathcal{C}):=\operatorname{Alg}_{\mathbb{E}_{k}}\left(\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})^{\otimes}\right) & \text { 'rings in } \mathcal{C}^{\prime}
\end{array}
$$

Examples of tensor product I

Case $\mathcal{C}=$ Set: Ordinary tensor product on abelian monoids/groups. \rightsquigarrow ordinary semirings and rings

Examples of tensor product I

Case $\mathcal{C}=$ Set: Ordinary tensor product on abelian monoids/groups. \rightsquigarrow ordinary semirings and rings
$\underline{\text { Case } \mathcal{C}=\mathcal{C} a t / \mathcal{C a t}_{\infty}}$: tensor product on $\mathcal{S}^{\text {ymMonCat }}(\infty)$
(first constructed by Hermida, Power, subject to confusion in literature).
\rightsquigarrow semiring-categories and ring-categories

Examples of tensor product I

Case $\mathcal{C}=$ Set: Ordinary tensor product on abelian monoids/groups. \rightsquigarrow ordinary semirings and rings
$\underline{\text { Case } \mathcal{C}=\mathcal{C a t ~} / \mathcal{C}^{2} t_{\infty}}$: tensor product on $\mathcal{S y m M a n C a t}_{(\infty)}$
(first constructed by Hermida, Power, subject to confusion in literature). \rightsquigarrow semiring-categories and ring-categories

Proposition (Recognition principle)

Let (C, \otimes) be a \mathbb{E}_{k}-monoidal (∞)-category such that
(1) C has coproducts (denoted \oplus).
(2) $\otimes C \times C \rightarrow C$ preserves coproducts in both variables.

Then (C, \oplus, \otimes) is canonically a \mathbb{E}_{k}-semiring (∞)-category.

Examples of tensor product I

Case $\mathcal{C}=$ Set: Ordinary tensor product on abelian monoids/groups. \rightsquigarrow ordinary semirings and rings
$\underline{\text { Case } \mathcal{C}=\mathcal{C} a t / \mathcal{C a t}_{\infty}}$: tensor product on $\mathcal{S y m M a n C a t}_{(\infty)}$
(first constructed by Hermida, Power, subject to confusion in literature). \rightsquigarrow semiring-categories and ring-categories

Proposition (Recognition principle)

Let (C, \otimes) be a \mathbb{E}_{k}-monoidal (∞)-category such that
(1) C has coproducts (denoted \oplus).
(2) $\otimes C \times C \rightarrow C$ preserves coproducts in both variables.

Then (C, \oplus, \otimes) is canonically a \mathbb{E}_{k}-semiring (∞)-category.

- commutative ring R
$\rightarrow\left(\operatorname{Mod}_{R}, \oplus, \otimes\right)$ is a commutative semiring category
- \mathbb{E}_{k}-ring spectrum R
$\rightarrow\left(\operatorname{Mod}_{R}, \oplus, \otimes\right)$ is a \mathbb{E}_{k-1}-semiring ∞-category

Examples of tensor product II

Case $\mathcal{C}=$ Spaces: tensor product on (grouplike) \mathbb{E}_{∞}-spaces and spectra. Functor

$$
\mathbb{E}_{\infty} \text {-spaces } \rightarrow \mathrm{Sp}
$$

is symmetric monoidal (in a unique way) 'Canonical multiplicative delooping machine'.

Examples of tensor product II

 spectra. Functor

$$
\mathbb{E}_{\infty} \text {-spaces } \rightarrow \mathrm{Sp}
$$

is symmetric monoidal (in a unique way)
'Canonical multiplicative delooping machine'.

Corollary

Direct sum K-theory functor

$$
\text { K : SymMonCat } \xrightarrow{(-)^{\sim}} \text { SymMoneat } \xrightarrow{|-|} \mathbb{E}_{\infty} \text {-spaces } \rightarrow \text { Sp }
$$

is lax symmetric monoidal (but not symmetric monoidal).

Examples of tensor product II

$\underline{\text { Case } \mathcal{C}=\text { Spaces: } \text { tensor product on (grouplike) } \mathbb{E}_{\infty} \text {-spaces and }}$ spectra. Functor

$$
\mathbb{E}_{\infty} \text {-spaces } \rightarrow \mathrm{Sp}
$$

is symmetric monoidal (in a unique way)
'Canonical multiplicative delooping machine'.

Corollary

Direct sum K-theory functor

$$
\text { K : SymMonCat } \xrightarrow{(-)^{\sim}} \text { SymMoneat } \xrightarrow{|-|} \mathbb{E}_{\infty} \text {-spaces } \rightarrow \text { Sp }
$$

is lax symmetric monoidal (but not symmetric monoidal).

- commutative ring R
$\rightarrow \mathcal{K}(R)=\mathcal{K}\left(\operatorname{Mod}_{R}^{\text {fg,proj }}, \oplus\right)$ is \mathbb{E}_{∞}-ring spectrum
- connective \mathbb{E}_{k}-ringspectrum R
$\rightarrow \mathcal{K}(R)=\mathcal{K}\left(\operatorname{Mod}_{R}^{\text {fg,proj }}, \oplus\right)$ is a \mathbb{E}_{k-1}-ring spectrum

Ingredients for proof of main Theorem:
(1) Localization property:
$\mathrm{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ are localizations
(2) Basechange property:

Proof I

Ingredients for proof of main Theorem:
(1) Localization property:
$\mathrm{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ are localizations
(2) Basechange property:
$\mathcal{P r}^{\mathrm{L}}=\{$ presentable ∞-categories and left adjoint functors $\}$
Lurie: tensor product $\otimes: \mathcal{P r}^{\mathrm{L}} \times \operatorname{Pr}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$.

- universal property: $\operatorname{Fun}^{L}(A \otimes B, C) \subset \operatorname{Fun}(A \times B, C)$
(functors that preserve colimits in both variables).
- explicit formula $A \otimes B=\operatorname{Fun}^{R}\left(A^{o p}, B\right)$.
- tensor unit: ∞-category of spaces \mathcal{S}.

Proof I

Ingredients for proof of main Theorem:
(1) Localization property:
$\mathrm{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ are localizations
(2) Basechange property:
$\mathcal{P r}^{\mathrm{L}}=\{$ presentable ∞-categories and left adjoint functors $\}$
Lurie: tensor product $\otimes: \mathcal{P r}^{\mathrm{L}} \times \operatorname{Pr}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$.

- universal property: $\operatorname{Fun}^{L}(A \otimes B, C) \subset \operatorname{Fun}(A \times B, C)$
(functors that preserve colimits in both variables).
- explicit formula $A \otimes B=\operatorname{Fun}^{R}\left(A^{o p}, B\right)$.
- tensor unit: ∞-category of spaces \mathcal{S}.

Proposition (Basechange property)

$$
\begin{aligned}
& \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C} \otimes \mathcal{D}) \simeq \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \otimes \mathcal{D} \\
& \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C} \otimes \mathcal{D}) \simeq \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \otimes \mathcal{D}
\end{aligned}
$$

Proof II

Corollary

$$
\begin{aligned}
& \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \simeq \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{S}) \otimes \mathcal{C} \\
& \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \simeq \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{S}) \otimes \mathcal{C}
\end{aligned}
$$

Holds more generally (algebraic theories, operads...):
\mathbb{T} Lawvere algebraic theory $\Rightarrow \operatorname{Mod}_{\mathbb{T}}(\mathcal{C} \otimes \mathcal{D}) \simeq \operatorname{Mod}_{\mathbb{T}}(\mathcal{C}) \otimes \mathcal{D}$

Proof II

Corollary

$$
\begin{aligned}
& \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \simeq \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{S}) \otimes \mathcal{C} \\
& \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \simeq \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{S}) \otimes \mathcal{C}
\end{aligned}
$$

Holds more generally (algebraic theories, operads...):
\mathbb{T} Lawvere algebraic theory $\Rightarrow \operatorname{Mod}_{\mathbb{T}}(\mathcal{C} \otimes \mathcal{D}) \simeq \operatorname{Mod}_{\mathbb{T}}(\mathcal{C}) \otimes \mathcal{D}$

Definition

A localization $L: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ is called smashing if $L(\mathcal{C}) \simeq \mathcal{C} \otimes \mathcal{M}$ for $\mathcal{M} \in \mathcal{P r}^{\mathrm{L}}$.

Proof II

Corollary

$$
\begin{aligned}
& \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \simeq \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{S}) \otimes \mathcal{C} \\
& \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \simeq \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{S}) \otimes \mathcal{C}
\end{aligned}
$$

Holds more generally (algebraic theories, operads...):
\mathbb{T} Lawvere algebraic theory $\Rightarrow \operatorname{Mod}_{\mathbb{T}}(\mathcal{C} \otimes \mathcal{D}) \simeq \operatorname{Mod}_{\mathbb{T}}(\mathcal{C}) \otimes \mathcal{D}$

Definition

A localization $L: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ is called smashing if $L(\mathcal{C}) \simeq \mathcal{C} \otimes \mathcal{M}$ for $\mathcal{M} \in \mathcal{P r}^{\mathrm{L}}$.

- Necessarily $\mathcal{M} \cong L(\mathcal{S})$.
- \mathcal{M} is idempotent monoid
- \{smashing localizations\} $\stackrel{1-1}{\longleftrightarrow}$ \{idempotent monoids $\}$

Proof III

Proposition
$L: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ smashing localization, $\mathcal{C} \in \mathcal{P r}^{\mathrm{L}}$ closed symmetric monoidal.
(1) Functor L is symmetric monoidal

Proof III

Proposition

$L: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ smashing localization, $\mathrm{C} \in \mathcal{P r}^{\mathrm{L}}$ closed symmetric monoidal.
(1) Functor L is symmetric monoidal
(2) LC admits closed symmetric monoidal structure. Unique s.t. $\mathcal{C} \rightarrow$ LC admits symmetric monoidal structure.
(3) For \mathcal{D} local object Fun ${ }^{L, \otimes}(\mathcal{C}, \mathcal{D}) \simeq \operatorname{Fun}^{L, \otimes}(L \mathcal{C}, \mathcal{D})$.

Proof III

Proposition

$L: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ smashing localization, $\mathrm{C} \in \mathcal{P r}^{\mathrm{L}}$ closed symmetric monoidal.
(1) Functor L is symmetric monoidal
(2) LC admits closed symmetric monoidal structure. Unique s.t. $\mathcal{C} \rightarrow$ LC admits symmetric monoidal structure.
(3) For \mathcal{D} local object Fun ${ }^{L, \otimes}(\mathcal{C}, \mathcal{D}) \simeq \operatorname{Fun}^{L, \otimes}(L \mathcal{C}, \mathcal{D})$.
L^{\prime} second smashing localization with $L^{\prime}<L$:
$L \mathcal{L} \rightarrow L^{\prime} \mathrm{C}$ admits unique symmetric monoidal structure.

Proof III

Proposition

$L: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}$ smashing localization, $\mathrm{C} \in \mathcal{P r}^{\mathrm{L}}$ closed symmetric monoidal.
(1) Functor L is symmetric monoidal
(2) LC admits closed symmetric monoidal structure.

Unique s.t. $\mathcal{C} \rightarrow$ LC admits symmetric monoidal structure.
(3) For \mathcal{D} local object Fun $^{L, \otimes}(\mathcal{C}, \mathcal{D}) \simeq \operatorname{Fun}^{L, \otimes}(L \mathcal{C}, \mathcal{D})$.
L^{\prime} second smashing localization with $L^{\prime}<L$:
$L \mathcal{L C} \rightarrow L^{\prime} \mathrm{C}$ admits unique symmetric monoidal structure.

Proof of theorem.

Apply proposition to smashing localizations

$$
\operatorname{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \mathcal{P r}^{\mathrm{L}} \rightarrow \mathcal{P r}^{\mathrm{L}}
$$

Summary and Outlook

(1) \mathcal{C} presentable $\Rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}), \operatorname{Sp}(\mathcal{C})$ presentable
(2) Smashing localizations $\mathrm{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \mathcal{P r}^{\mathrm{L}} \rightarrow \operatorname{Pr}^{\mathrm{L}}$ local objecs (pre)addtive/stable ∞-categories. \Rightarrow universal properties
(3) unique tensor product on $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\operatorname{Sp}(\mathcal{C})$. \Rightarrow tensor product on SymMonCat, \mathbb{E}_{∞}-spaces...
(4) Unique monoidal functors $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \mathrm{Sp}(\mathcal{C})$
\Rightarrow multiplicative infinite loopspace machine
(5) K-theory functor $K: \mathrm{Cat}_{\infty} \rightarrow \mathrm{Sp}$ lax symmetric monoidal
(0) $F: \mathcal{C} \rightarrow \mathcal{D}$ product preserving

$$
\Rightarrow \underline{F}: \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \rightarrow \operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{D}) \text { lax monoidal }
$$

F left adjoint $\Rightarrow \underline{F}$ symmetric monoidal
(1) \exists Algebraic theories $\mathbb{T}_{k}, \mathbb{T}_{k}^{\prime}$ s.t.

$$
\operatorname{Rig}_{\mathbb{E}_{k}}(\mathcal{C}) \simeq \operatorname{Mod}_{\mathbb{T}_{k}}(\mathcal{C}) \quad \text { and } \quad \operatorname{Ring}_{\mathbb{E}_{k}}(\mathcal{C}) \simeq \operatorname{Mod}_{\mathbb{T}_{k}^{\prime}}(\mathcal{C})
$$

