Additive ∞-categories and canonical monoidal structures II

Thomas Nikolaus Faculty of Mathematics University of Regensburg

2013 CMS Summer Meeting joint work with David Gepner and Moritz Groth

Recall from Moritz's talk

Recall: ${\mathfrak C}$ presentable ∞ -category $(=(\infty,1)$ -category)

- $\mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$: ∞ -category of commutative monoids in \mathcal{C}
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$: ∞ -category of commutative groups in \mathcal{C}
- $\operatorname{Sp}(\mathfrak{C})$: ∞ -category of spectrum objects in \mathfrak{C}

Recall from Moritz's talk

Recall: $\mathbb C$ presentable ∞ -category $(=(\infty,1)$ -category)

- $\mathrm{Mon}_{\mathbb{E}_{\infty}}\!(\mathcal{C})$: ∞ -category of commutative monoids in \mathcal{C}
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$: ∞ -category of commutative groups in \mathcal{C}
- $\mathrm{Sp}(\mathfrak{C})$: ∞ -category of spectrum objects in \mathfrak{C}

Examples			
e	$\mathrm{Mon}_{\mathbb{E}_{\infty}}\!(\mathfrak{C})$	$\mathrm{Grp}_{\mathbb{E}_{\infty}}\!(\mathfrak{C})$	$\mathrm{Sp}(\mathfrak{C})$
Set Cat Cat_{∞} $S = Spaces$	abelian monoids $Sym\mathcal{M}on\mathcal{C}at$ $Sym\mathcal{M}on\mathcal{C}at_{\infty}$ \mathbb{E}_{∞} -spaces	abelian groups Picard groupoids Picard ∞ -groupoids grouplike \mathbb{E}_{∞} -spaces	trivial trivial Spectra Spectra

Recall from Moritz's talk

Recall: ${\mathfrak C}$ presentable ∞ -category $(=(\infty,1)$ -category)

- $\mathrm{Mon}_{\mathbb{E}_{\infty}}\!(\mathfrak{C})$: ∞ -category of commutative monoids in \mathfrak{C}
- $\mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{C})$: ∞ -category of commutative groups in \mathfrak{C}
- $\mathrm{Sp}(\mathfrak{C})$: ∞ -category of spectrum objects in \mathfrak{C}

Examples			
С	$\mathrm{Mon}_{\mathbb{E}_{\infty}}\!(\mathfrak{C})$	$\mathrm{Grp}_{\mathbb{E}_{\infty}}\!(\mathfrak{C})$	$\mathrm{Sp}(\mathfrak{C})$
Set $\mathbb{C}at$ $\mathbb{C}at_{\infty}$ $\mathbb{S}=Spaces$	abelian monoids $SymMonCat$ $SymMonCat_{\infty}$ \mathbb{E}_{∞} -spaces	abelian groups Picard groupoids Picard ∞ -groupoids grouplike \mathbb{E}_{∞} -spaces	trivial trivial Spectra Spectra

 \mathcal{C} presentable $\Rightarrow \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$, $\mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathrm{Sp}(\mathcal{C})$ are presentable

Universal Property

Theorem (Gepner, Groth, N.)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$ is universal preadditive ∞ -category on \mathcal{C} .
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{C})$ is universal additive ∞ -category on \mathfrak{C} .
- $\operatorname{Sp}(\mathcal{C})$ is universal stable ∞ -category on \mathcal{C} .

Universal Property

Theorem (Gepner, Groth, N.)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathfrak{C})$ is universal preadditive ∞ -category on \mathfrak{C} .
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{C})$ is universal additive ∞ -category on \mathfrak{C} .
- $\operatorname{Sp}(\mathfrak{C})$ is universal stable ∞ -category on \mathfrak{C} .

$$\mathfrak{P}r^L := \left\{ \begin{matrix} \infty\text{-category of presentable } \infty\text{-categories and} \\ \text{left adjoint functors.} \end{matrix} \right\}$$

(Bousfield-)localizations

$$\mathrm{Mon}_{\mathbb{E}_{\infty}}, \mathrm{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \qquad \mathfrak{P}r^{\mathrm{L}} \to \mathfrak{P}r^{\mathrm{L}}$$

Local objects: (pre)additive / stable ∞ -categories.

Universal Property

Theorem (Gepner, Groth, N.)

- $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathfrak{C})$ is universal preadditive ∞ -category on \mathfrak{C} .
- $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{C})$ is universal additive ∞ -category on \mathfrak{C} .
- $\operatorname{Sp}(\mathcal{C})$ is universal stable ∞ -category on \mathcal{C} .

$$\mathfrak{P}r^L := \left\{ \begin{matrix} \infty\text{-category of presentable } \infty\text{-categories and} \\ \text{left adjoint functors.} \end{matrix} \right\}$$

(Bousfield-)localizations

$$\mathrm{Mon}_{\mathbb{E}_{\infty}}, \mathrm{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp}: \qquad \mathfrak{P}r^L \to \mathfrak{P}r^L$$

Local objects: (pre)additive / stable ∞ -categories.

Corollary

There are canonical left adjoint functors

$$\mathcal{C} \to \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Sp}(\mathcal{C}).$$

Main theorem

Theorem (Gepner, Groth, N.)

- ${\mathfrak C}$ closed symmetric monoidal, presentable ∞ -category
 - $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\operatorname{Sp}(\mathcal{C})$ admit symmetric monoidal structures:
 - Tensor products preseves colimits in both variables.
 - Free functors $\mathcal{C} \to \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$, $\mathcal{C} \to \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathcal{C} \to \mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures.

Main theorem

Theorem (Gepner, Groth, N.)

- ${\mathfrak C}$ closed symmetric monoidal, presentable ∞ -category
 - $\mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures:
 - Tensor products preseves colimits in both variables.
 - Free functors $\mathcal{C} \to \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$, $\mathcal{C} \to \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathcal{C} \to \mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures.
 - ② These symmetric monoidal structures are (essentially) unique.
 - **③** The functors $\mathcal{C} \to \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Sp}(\mathcal{C})$ admit unique structures of symmetric monoidal functors.

Main theorem

Theorem (Gepner, Groth, N.)

 ${\mathfrak C}$ closed symmetric monoidal, presentable ∞ -category

- $\mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures:
 - Tensor products preseves colimits in both variables.
 - Free functors $\mathcal{C} \to \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C})$, $\mathcal{C} \to \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathcal{C} \to \mathrm{Sp}(\mathcal{C})$ admit symmetric monoidal structures.
- ② These symmetric monoidal structures are (essentially) unique.
- **③** The functors $\mathcal{C} \to \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Sp}(\mathcal{C})$ admit unique structures of symmetric monoidal functors.

Assume C cartesian closed

$$\mathcal{R}\textit{ig}_{\mathbb{E}_k}(\mathcal{C}) := \mathrm{Alg}_{\mathbb{E}_k}(\mathrm{Mon}_{\mathbb{E}_\infty}(\mathcal{C})^{\otimes}) \qquad \text{`semirings in \mathcal{C}'}$$

$$\mathcal{R}\textit{ing}_{\mathbb{E}_k}(\mathcal{C}) := \mathrm{Alg}_{\mathbb{E}_k}(\mathrm{Grp}_{\mathbb{E}_\infty}(\mathcal{C})^{\otimes}) \qquad \text{`rings in \mathcal{C}'}$$

 $\underline{\mathsf{Case}\ \mathcal{C} = \mathsf{Set}} \text{: Ordinary tensor product on abelian monoids/groups.} \\ \rightsquigarrow \mathsf{ordinary\ semirings\ and\ rings}$

```
\begin{tabular}{ll} \underline{Case~\mathcal{C}=Set}$: Ordinary tensor product on abelian monoids/groups. \\ &\leadsto ordinary semirings and rings \\ \underline{Case~\mathcal{C}=\mathcal{C}at/\mathcal{C}at_{\infty}}$: tensor product on $Sym\mathcal{M}on\mathcal{C}at_{(\infty)}$ \\ & (first~constructed~by~Hermida,~Power,~subject~to~confusion~in~literature). \\ &\leadsto semiring-categories~and~ring-categories \\ \end{tabular}
```

Proposition (Recognition principle)

Let (C, \otimes) be a \mathbb{E}_k -monoidal (∞) -category such that

1 C has coproducts (denoted \oplus).

 $\mathbf{2} \otimes : C \times C \rightarrow C$ preserves coproducts in both variables.

Then (C, \oplus, \otimes) is canonically a \mathbb{E}_k -semiring (∞) -category.

→ semiring-categories and ring-categories

<u>Case C = Set</u>: Ordinary tensor product on abelian monoids/groups. \rightsquigarrow ordinary semirings and rings</u>

 $\frac{\mathsf{Case}\ \mathcal{C} = \mathcal{C}at/\mathcal{C}at_{\infty}}{\mathsf{Case}\ \mathcal{C} = \mathcal{C}at/\mathcal{C}at_{\infty}}\text{: tensor product on } \mathcal{S}ym\mathcal{M}on\mathcal{C}at_{(\infty)}}{\mathsf{(first constructed by Hermida, Power, subject to confusion in literature)}}.$

Proposition (Recognition principle)

Let (C, \otimes) be a \mathbb{E}_k -monoidal (∞) -category such that

- **1** C has coproducts (denoted \oplus).
- ② \otimes : $C \times C \rightarrow C$ preserves coproducts in both variables.

Then (C, \oplus, \otimes) is canonically a \mathbb{E}_k -semiring (∞) -category.

- \bullet commutative ring R
 - \to (Mod_R, \oplus , \otimes) is a commutative semiring category
- \mathbb{E}_k -ring spectrum R
 - o $(\mathrm{Mod}_R, \oplus, \otimes)$ is a \mathbb{E}_{k-1} -semiring ∞ -category

→ semiring-categories and ring-categories

<u>Case $\mathfrak{C}=$ Spaces</u>: tensor product on (grouplike) \mathbb{E}_{∞} -spaces and spectra. Functor

$$\mathbb{E}_{\infty}$$
-spaces o Sp

is symmetric monoidal (in a unique way)

'Canonical multiplicative delooping machine'.

<u>Case $\mathfrak{C}=$ Spaces</u>: tensor product on (grouplike) \mathbb{E}_{∞} -spaces and spectra. Functor

$$\mathbb{E}_{\infty} ext{-spaces} o \mathrm{Sp}$$

is symmetric monoidal (in a unique way)

'Canonical multiplicative delooping machine'.

Corollary

Direct sum K-theory functor

$$K: \operatorname{SymMonCat} \xrightarrow{(-)^{\sim}} \operatorname{SymMonCat} \xrightarrow{|-|} \mathbb{E}_{\infty} \operatorname{-spaces} \to \operatorname{Sp}$$

is lax symmetric monoidal (but not symmetric monoidal).

Case $\mathfrak{C}=$ Spaces: tensor product on (grouplike) \mathbb{E}_{∞} -spaces and spectra. Functor

$$\mathbb{E}_{\infty}$$
-spaces o Sp

is symmetric monoidal (in a unique way)

'Canonical multiplicative delooping machine'.

Corollary

Direct sum K-theory functor

$$K: \operatorname{\mathit{Sym}MonCat} \xrightarrow{(-)^{\sim}} \operatorname{\mathit{Sym}MonCat} \xrightarrow{|-|} \mathbb{E}_{\infty} \text{-spaces} \to \operatorname{Sp}$$

is lax symmetric monoidal (but not symmetric monoidal).

commutative ring R

$$o \mathfrak{K}(R) = \mathfrak{K}(\mathrm{Mod}_R^{fg,\mathit{proj}},\oplus)$$
 is \mathbb{E}_∞ -ring spectrum

• connective \mathbb{E}_k -ringspectrum R

$$\to \mathcal{K}(R) = \mathcal{K}(\mathrm{Mod}_R^{fg,proj}, \oplus)$$
 is a \mathbb{E}_{k-1} -ring spectrum

Proof I

Ingredients for proof of main Theorem:

- $\begin{array}{c} \bullet \quad \text{Localization property:} \\ \operatorname{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \operatorname{Sp}: \mathcal{P}r^L \to \mathcal{P}r^L \text{ are localizations} \end{array}$
- Basechange property:

Proof I

Ingredients for proof of main Theorem:

- $\begin{array}{c} \bullet \quad \text{Localization property:} \\ \operatorname{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \operatorname{Sp}: \mathcal{P}r^L \to \mathcal{P}r^L \text{ are localizations} \end{array}$
- Basechange property:

$$\mathfrak{P}r^L = \Big\{ \mathsf{presentable} \,\, \infty\text{-categories} \,\, \mathsf{and} \,\, \mathsf{left} \,\, \mathsf{adjoint} \,\, \mathsf{functors} \Big\}$$

Lurie: tensor product $\otimes: \mathfrak{P}r^L \times \mathfrak{P}r^L \to \mathfrak{P}r^L.$

- universal property: $\operatorname{Fun}^L(A \otimes B, C) \subset \operatorname{Fun}(A \times B, C)$ (functors that preserve colimits in both variables).
- explicit formula $A \otimes B = \operatorname{Fun}^R(A^{op}, B)$.
- tensor unit: ∞ -category of spaces S.

Proof I

Ingredients for proof of main Theorem:

- $\begin{array}{c} \bullet \quad \text{Localization property:} \\ \operatorname{Mon}_{\mathbb{E}_{\infty}}, \operatorname{Grp}_{\mathbb{E}_{\infty}}, \operatorname{Sp}: \mathcal{P}r^L \to \mathcal{P}r^L \text{ are localizations} \end{array}$
- Basechange property:

$$\mathfrak{P}r^L = \Big\{ \text{presentable } \text{∞-categories and left adjoint functors} \Big\}$$

Lurie: tensor product $\otimes: \mathfrak{P}r^L \times \mathfrak{P}r^L \to \mathfrak{P}r^L$.

- universal property: $\operatorname{Fun}^L(A \otimes B, C) \subset \operatorname{Fun}(A \times B, C)$ (functors that preserve colimits in both variables).
- explicit formula $A \otimes B = \operatorname{Fun}^R(A^{op}, B)$.
- tensor unit: ∞ -category of spaces S.

Proposition (Basechange property)

$$\mathrm{Mon}_{\mathbb{E}_{\infty}}\!(\mathfrak{C}\otimes \mathfrak{D})\simeq \mathrm{Mon}_{\mathbb{E}_{\infty}}\!(\mathfrak{C})\otimes \mathfrak{D}$$

$$\operatorname{Grp}_{\mathbb{E}_{-}}(\mathfrak{C}\otimes\mathfrak{D})\simeq\operatorname{Grp}_{\mathbb{E}_{-}}(\mathfrak{C})\otimes\mathfrak{D}$$

Corollary

$$\mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathfrak{C}) \simeq \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathfrak{S}) \otimes \mathfrak{C}$$

$$\mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{C}) \simeq \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{S}) \otimes \mathfrak{C}$$

Holds more generally (algebraic theories, operads...):

 \mathbb{T} Lawvere algebraic theory $\Rightarrow \operatorname{Mod}_{\mathbb{T}}(\mathfrak{C} \otimes \mathfrak{D}) \simeq \operatorname{Mod}_{\mathbb{T}}(\mathfrak{C}) \otimes \mathfrak{D}$

Corollary

$$\mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathfrak{C}) \simeq \mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathfrak{S}) \otimes \mathfrak{C}$$

$$\mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{C}) \simeq \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathfrak{S}) \otimes \mathfrak{C}$$

Holds more generally (algebraic theories, operads...):

 \mathbb{T} Lawvere algebraic theory $\Rightarrow \operatorname{Mod}_{\mathbb{T}}(\mathfrak{C} \otimes \mathfrak{D}) \simeq \operatorname{Mod}_{\mathbb{T}}(\mathfrak{C}) \otimes \mathfrak{D}$

Definition

A localization $L: \mathcal{P}r^L \to \mathcal{P}r^L$ is called *smashing* if $L(\mathcal{C}) \simeq \mathcal{C} \otimes \mathcal{M}$ for $\mathcal{M} \in \mathcal{P}r^L$.

Corollary

$$\begin{split} \operatorname{Mon}_{\mathbb{E}_{\infty}}\!(\mathfrak{C}) &\simeq \operatorname{Mon}_{\mathbb{E}_{\infty}}\!(\mathfrak{S}) \otimes \mathfrak{C} \\ \operatorname{Grp}_{\mathbb{E}_{\infty}}\!(\mathfrak{C}) &\simeq \operatorname{Grp}_{\mathbb{E}_{\infty}}\!(\mathfrak{S}) \otimes \mathfrak{C} \end{split}$$

Holds more generally (algebraic theories, operads...):

 \mathbb{T} Lawvere algebraic theory $\Rightarrow \operatorname{Mod}_{\mathbb{T}}(\mathfrak{C} \otimes \mathfrak{D}) \simeq \operatorname{Mod}_{\mathbb{T}}(\mathfrak{C}) \otimes \mathfrak{D}$

Definition

A localization $L: \mathbb{P}r^L \to \mathbb{P}r^L$ is called *smashing* if $L(\mathfrak{C}) \simeq \mathfrak{C} \otimes \mathfrak{M}$ for $\mathfrak{M} \in \mathbb{P}r^L$.

- Necessarily $\mathfrak{M} \cong L(S)$.
- ullet $\mathcal M$ is idempotent monoid
- {smashing localizations} $\stackrel{1-1}{\longleftrightarrow}$ {idempotent monoids}

Proposition

 $L: \mathfrak{P}r^L \to \mathfrak{P}r^L$ smashing localization, $\mathfrak{C} \in \mathfrak{P}r^L$ closed symmetric monoidal.

• Functor L is symmetric monoidal

Proposition

 $L: \mathcal{P}r^L \to \mathcal{P}r^L$ smashing localization, $\mathfrak{C} \in \mathcal{P}r^L$ closed symmetric monoidal.

- Functor L is symmetric monoidal
- ② LC admits closed symmetric monoidal structure. Unique s.t. $C \to LC$ admits symmetric monoidal structure.
- **3** For \mathbb{D} local object $\operatorname{Fun}^{L,\otimes}(\mathbb{C},\mathbb{D}) \simeq \operatorname{Fun}^{L,\otimes}(L\mathbb{C},\mathbb{D})$.

Proposition

 $L: \mathfrak{P}r^L \to \mathfrak{P}r^L$ smashing localization, $\mathfrak{C} \in \mathfrak{P}r^L$ closed symmetric monoidal.

- Functor L is symmetric monoidal
- ② LC admits closed symmetric monoidal structure. Unique s.t. $C \to LC$ admits symmetric monoidal structure.
- **3** For \mathbb{D} local object $\operatorname{Fun}^{L,\otimes}(\mathbb{C},\mathbb{D}) \simeq \operatorname{Fun}^{L,\otimes}(L\mathbb{C},\mathbb{D})$.

L' second smashing localization with L' < L:

 $L{\mathfrak C} \to L'{\mathfrak C}$ admits unique symmetric monoidal structure.

Proposition

 $L: \mathfrak{P}^L \to \mathfrak{P}^L$ smashing localization, $\mathfrak{C} \in \mathfrak{P}^L$ closed symmetric monoidal.

- Functor L is symmetric monoidal
- ② LC admits closed symmetric monoidal structure. Unique s.t. $C \to LC$ admits symmetric monoidal structure.
- **3** For \mathbb{D} local object $\operatorname{Fun}^{L,\otimes}(\mathbb{C},\mathbb{D}) \simeq \operatorname{Fun}^{L,\otimes}(L\mathbb{C},\mathbb{D})$.

L' second smashing localization with L' < L:

 $L\mathcal{C} \to L'\mathcal{C}$ admits unique symmetric monoidal structure.

Proof of theorem.

Apply proposition to smashing localizations

$$\mathrm{Mon}_{\mathbb{E}_{\infty}}, \mathrm{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp} : \mathcal{P}\mathrm{r}^{\mathrm{L}} \to \mathcal{P}\mathrm{r}^{\mathrm{L}}$$

Summary and Outlook

- $\bullet \ \, {\mathfrak C} \ \, \mathsf{presentable} \Rightarrow \mathrm{Mon}_{\mathbb{E}_{\infty}}\!({\mathfrak C}), \mathrm{Grp}_{\mathbb{E}_{\infty}}\!({\mathfrak C}), \mathrm{Sp}({\mathfrak C}) \, \, \mathsf{presentable}$
- $\begin{array}{ccc} \textbf{@} & \mathsf{Smashing localizations } \mathrm{Mon}_{\mathbb{E}_{\infty}}, \mathrm{Grp}_{\mathbb{E}_{\infty}}, \mathrm{Sp} : \mathcal{P}r^L \to \mathcal{P}r^L \\ & \mathsf{local objecs (pre)addtive/stable } \otimes \mathsf{-categories}. \\ & \Rightarrow \mathsf{universal properties} \\ \end{array}$
- unique tensor product on $\mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}), \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C})$ and $\mathrm{Sp}(\mathcal{C})$. \Rightarrow tensor product on $\mathit{SymMonCat}$, \mathbb{E}_{∞} -spaces...
- Unique monoidal functors $\mathrm{Mon}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathcal{C}) \to \mathrm{Sp}(\mathcal{C})$ \Rightarrow multiplicative infinite loopspace machine
- **5** K-theory functor $K: \mathcal{C}at_{\infty} \to \operatorname{Sp}$ lax symmetric monoidal
- \bigcirc \exists Algebraic theories $\mathbb{T}_k, \mathbb{T}'_k$ s.t.

$$\mathcal{R}ig_{\mathbb{E}_k}(\mathcal{C}) \simeq \mathrm{Mod}_{\mathbb{T}_k}(\mathcal{C})$$
 and $\mathcal{R}ing_{\mathbb{E}_k}(\mathcal{C}) \simeq \mathrm{Mod}_{\mathbb{T}_k'}(\mathcal{C})$