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University of Chicago

June 6, 2013
CMS Summer Meeting

Dalhousie University

Daniel Schäppi (University of Chicago) Morita Theory and Galois Cohomology CMS Summer Meeting 2013 1 / 16



Outline

This is work in progress, joint with Evan Jenkins

1 Introduction

2 Two-dimensional Morita theory

3 From Galois cocycles to Azumaya 2-algebras

4 Some open questions
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Groups associated to a commutative ring

Throughout, R will denote a commutative ring

Groups constructed from rings

R×, the group of units

Pic(R), the Picard group: invertible R-modules up to isomorphism

M ⊗N ∼= R and R ∼= N ⊗M

Br(R), the Brauer group: Azumaya algebras up to Morita equivalence

A⊗B ' R and R ' B ⊗A

Example: Br(R) = Z/2, generated by H
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Classical Morita theory

The bicategory Prof1 of profunctors

0-cells: R-algebras
Hom-categories: Prof1(A,B) is the category of A-B-bimodules
Composition: tensor product of bimodules

Equivalence in the bicategory of profunctors is called Morita equivalence.

Fact

A and B are Morita equivalent if and only if ModA and ModB are
equivalent as R-linear categories.

Tensor product over R turns Prof1 into a symmetric monoidal bicategory.
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Relating R×, Pic(R), and Br(R)

Definition

The core of a monoidal bicategory B is the monoidal bicategory with:
0-cells: invertible objects in B
1-cells: equivalences in B
2-cells: invertible 2-cells in B
The core of B is denoted by Core(B).

Observation (Street)

Let X denote the nerve of the 1-object tricategory Core(Prof1), with
basepoint given by the unit object. Then there are equivalences

Br(R) ∼= π0(X) Pic(R) ∼= π1(X) R× ∼= π2(X)

and all other homotopy groups of X are trivial.
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Why stop with the Brauer group?

Fact

For R = K a field, these three groups coincide with the first three Galois
cohomology groups:

K× = H0(Gal
(
K/K),K

×)
Pic(K) = H1 Br(K) = H2

Question

Can we find a higher category associated to K which allows us to extend
Street’s result to the third Galois cohomology group?

Idea: try to categorify!
R-algebra  R-linear monoidal category
Azumaya algebra  2-Morita invertible R-linear monoidal category
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Finding the right setting

From work of Garner and Shulman, we (almost) get a theory of
2-profunctors for pseudomonoids in a sufficiently cocomplete monoidal
bicategory B.

Goal

Starting with K, we want to construct a monoidal bicategory B such that
the nerve X of Core

(
Prof2(B)

)
satisfies:

π0(X) ∼= H3
(
Gal(K/K),K

×)
π1(X) ∼= H2

(
Gal(K/K),K

×) ∼= Br(K)

π2(X) ∼= H1
(
Gal(K/K),K

×) ∼= Pic(K) = 0

π3(X) ∼= H0
(
Gal(K/K),K

×) ∼= K×

and πn(X) = 0 for n > 3.
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Finding the right setting

First idea: Take B to be the monoidal bicategory of R-linear categories.

Problem

For a monoidal category V , we have Prof1(V )(I, I) ' V . Therefore we
expect that Prof2(B)(I, I) ' B. The nerve of the endomorphism
category is equivalent to the loop space:

NC (c, c) ' ΩNC

Therefore π1 of our space X is the group of invertible objects in B.

If we want π1(X) = Br(K), we need a monoidal bicategory B such that:

equivalence in B is ordinary Morita equivalence

B is nice enough to admit the construction of two-dimensional
profunctors
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Finding the right setting

Solution: Take B to be the symmetric monoidal bicategory CatccR of
Cauchy complete R-linear categories.

Theorem (Jenkins, S)

The monoidal bicategories Core(CatccK) and Core(Prof1) are equivalent.

Proof idea: The equivalence sends A to its Cauchy completion Modfgp
A

Difficulty: showing that every invertible Cauchy complete K-linear
category is of this form

Consequence

At least for R = K a field, the loop space ΩX of our space X is
equivalent to the space NCore(Prof1) considered by Street.
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Constructing a monoidal category from a cocycle

Fix a finite Galois extension E/K, with Galois group G, and a
(normalized) 3-cocycle

ω : G×G×G→ E×

Construction

Let
A =

∏
g∈G

VecE

generated by simple objects Sg indexed by g ∈ G. Tensor product on
objects: Sg ⊗ Sh = Sgh.
All morphisms are matrices with entries in A (Sg, Sg) = E. Tensor
product of morphisms: if λ : Sg → Sg, µ : Sh → Sh, then λ⊗ µ = λg(µ).
Associator given by ω(g, h, k) : Sghk → Sghk
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A is an Azumaya 2-algebra

Definition

An Azumaya 2-algebra is an invertible object in Prof2
(
CatccR

)
.

Fact

If A is a projective generator of ModA⊗Aop and Z(A) = R, then
A⊗Aop ' R and A is an Azumaya algebra

The proof of this is very robust, so it categorifies. Therefore we need to
show that:

The center of A is equivalent to VecK

A is a projective generator of the 2-category of A -A -bimodules
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The center of A

Claim

The center of A is equivalent to VecK

Proof: An application of Hilbert’s Theorem 90.
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Projectivity of A

For any algebra A, the multiplication A⊗Aop is surjective and it is a
morphism of A⊗Aop-modules. Therefore A is projective if and only if the
multiplication is split. Such algebras are called separable.

Problem

The multiplication A ⊗A rev → A of A is not split.

Reason

Note: P finitely generated projective must mean that

HomA⊗A rev(P,−)

preserves colimits. This does not imply that it preserves essentially
surjective functors.
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Projectivity of A

Solution

Show that A ⊗A rev → A exhibits A as (absolute) Kleisli object.

Proposition (Jenkins, S)

The assignment which sends a Galois cocycle ω to

A =
∏
g∈G

VecE

gives a well-defined map

H3
(
Gal(K/K),K

×)→ π0X
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Why stop at n = 3?

Let V1 be symmetric monoidal. Using a hypothetic version of higher
profunctors, we could form

V1

((vv
V1 −Cat // V1 −Catcc =: V2

((vv

Prof1 // Core1

V2 −Cat // V2 −Catcc =: V3

((vv

Prof2 // Core2

. . . // . . .

((

Prof3 // Core3

. . . // . . .
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Why stop at n = 3?

Question

Do we get an equivalence ΩNCoren+1 ' NCoren?

Question

If V = VectK , do we get isomorphisms

π0Coren ∼= Hn+1
(
Gal(K/K),K

×)
?

Question

If V = ModR, do we get isomorphisms

π0Coren ∼= Hn+1
et

(
Spec(R),Gm

)
?

Thanks!
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