Two-dimensional Morita theory and Galois cohomology

Daniel Schäppi

University of Chicago

June 6, 2013 CMS Summer Meeting Dalhousie University

Outline

This is work in progress, joint with Evan Jenkins

- Introduction
- 2 Two-dimensional Morita theory
- 3 From Galois cocycles to Azumaya 2-algebras
- 4 Some open questions

Groups associated to a commutative ring

Throughout, R will denote a commutative ring

Groups constructed from rings

- ullet R^{\times} , the group of units
- ullet $\operatorname{Pic}(R)$, the Picard group: invertible R-modules up to isomorphism

$$M\otimes N\cong R$$
 and $R\cong N\otimes M$

 $\bullet \ {\rm Br}(R)$, the Brauer group: Azumaya algebras up to Morita equivalence

$$A\otimes B\simeq R$$
 and $R\simeq B\otimes A$

Example: $Br(\mathbb{R}) = \mathbb{Z}/2$, generated by \mathbb{H}

Classical Morita theory

The bicategory $Prof_1$ of profunctors

0-cells: R-algebras

Hom-categories: $Prof_1(A, B)$ is the category of A-B-bimodules

Composition: tensor product of bimodules

Equivalence in the bicategory of profunctors is called *Morita equivalence*.

Fact

A and B are Morita equivalent if and only if Mod_A and Mod_B are equivalent as R-linear categories.

Tensor product over R turns Prof_1 into a symmetric monoidal bicategory.

Relating R^{\times} , Pic(R), and Br(R)

Definition

The *core* of a monoidal bicategory ${\mathscr B}$ is the monoidal bicategory with:

0-cells: invertible objects in ${\mathscr B}$

1-cells: equivalences in \mathscr{B}

2-cells: invertible 2-cells in ${\mathscr B}$

The core of \mathscr{B} is denoted by $Core(\mathscr{B})$.

Observation (Street)

Let X denote the nerve of the 1-object tricategory $\mathrm{Core}(\mathrm{Prof}_1)$, with basepoint given by the unit object. Then there are equivalences

$$\operatorname{Br}(R) \cong \pi_0(X)$$
 $\operatorname{Pic}(R) \cong \pi_1(X)$ $R^{\times} \cong \pi_2(X)$

and all other homotopy groups of X are trivial.

Why stop with the Brauer group?

Fact

For R=K a field, these three groups coincide with the first three Galois cohomology groups:

$$K^{\times} = H^0(\operatorname{Gal}(\overline{K}/K), \overline{K}^{\times}) \qquad \operatorname{Pic}(K) = H^1 \qquad \operatorname{Br}(K) = H^2$$

Question

Can we find a higher category associated to ${\cal K}$ which allows us to extend Street's result to the third Galois cohomology group?

Idea: try to categorify!

R-algebra \longrightarrow R-linear monoidal category

Azumaya algebra \longrightarrow 2-Morita invertible R-linear monoidal category

Finding the right setting

From work of Garner and Shulman, we (almost) get a theory of 2-profunctors for pseudomonoids in a sufficiently cocomplete monoidal bicategory \mathcal{B} .

Goal

Starting with K, we want to construct a monoidal bicategory \mathscr{B} such that the nerve X of $\mathrm{Core}\big(\mathrm{Prof}_2(\mathscr{B})\big)$ satisfies:

$$\pi_0(X) \cong H^3(\operatorname{Gal}(\overline{K}/K), \overline{K}^{\times})$$

$$\pi_1(X) \cong H^2(\operatorname{Gal}(\overline{K}/K), \overline{K}^{\times}) \cong \operatorname{Br}(K)$$

$$\pi_2(X) \cong H^1(\operatorname{Gal}(\overline{K}/K), \overline{K}^{\times}) \cong \operatorname{Pic}(K) = 0$$

$$\pi_3(X) \cong H^0(\operatorname{Gal}(\overline{K}/K), \overline{K}^{\times}) \cong K^{\times}$$

and $\pi_n(X) = 0$ for n > 3.

Finding the right setting

First idea: Take $\ensuremath{\mathcal{B}}$ to be the monoidal bicategory of R-linear categories.

Problem

For a monoidal category $\mathscr V$, we have $\operatorname{Prof}_1(\mathscr V)(I,I)\simeq \mathscr V$. Therefore we expect that $\operatorname{Prof}_2(\mathscr B)(I,I)\simeq \mathscr B$. The nerve of the endomorphism category is equivalent to the loop space:

$$N\mathscr{C}(c,c) \simeq \Omega N\mathscr{C}$$

Therefore π_1 of our space X is the group of invertible objects in \mathscr{B} .

If we want $\pi_1(X) = \operatorname{Br}(K)$, we need a monoidal bicategory ${\mathscr B}$ such that:

- ullet equivalence in ${\mathscr B}$ is ordinary Morita equivalence
- $oldsymbol{\mathscr{B}}$ is nice enough to admit the construction of two-dimensional profunctors

Finding the right setting

Solution: Take \mathscr{B} to be the symmetric monoidal bicategory \mathbf{Cat}_R^{cc} of Cauchy complete R-linear categories.

Theorem (Jenkins, S)

The monoidal bicategories $Core(\mathbf{Cat}_K^{cc})$ and $Core(Prof_1)$ are equivalent.

Proof idea: The equivalence sends A to its Cauchy completion $\operatorname{Mod}_A^{fgp}$ Difficulty: showing that every invertible Cauchy complete K-linear category is of this form

Consequence

At least for R=K a field, the loop space ΩX of our space X is equivalent to the space $N\mathrm{Core}(\mathrm{Prof}_1)$ considered by Street.

Constructing a monoidal category from a cocycle

Fix a finite Galois extension E/K, with Galois group G, and a (normalized) 3-cocycle

$$\omega \colon G \times G \times G \to E^{\times}$$

Construction

Let

$$\mathscr{A} = \prod_{g \in G} \mathrm{Vec}_E$$

generated by simple objects S_g indexed by $g \in G$. Tensor product on objects: $S_g \otimes S_h = S_{gh}$.

All morphisms are matrices with entries in $\mathscr{A}(S_g,S_g)=E$. Tensor product of morphisms: if $\lambda\colon S_g\to S_g$, $\mu\colon S_h\to S_h$, then $\lambda\otimes\mu=\lambda g(\mu)$. Associator given by $\omega(g,h,k)\colon S_{ghk}\to S_{ghk}$

Definition

An Azumaya 2-algebra is an invertible object in $\operatorname{Prof}_2(\mathbf{Cat}_R^{cc})$.

Fact

If A is a projective generator of $\mathrm{Mod}_{A\otimes A^{\mathrm{op}}}$ and Z(A)=R, then $A\otimes A^{\mathrm{op}}\simeq R$ and A is an Azumaya algebra

The proof of this is very robust, so it categorifies. Therefore we need to show that:

- The center of \mathscr{A} is equivalent to Vec_K
- $\mathscr A$ is a projective generator of the 2-category of $\mathscr A$ - $\mathscr A$ -bimodules

The center of \mathscr{A}

Claim

The center of \mathscr{A} is equivalent to Vec_K

Proof: An application of Hilbert's Theorem 90.

Projectivity of A

For any algebra A, the multiplication $A\otimes A^{\mathrm{op}}$ is surjective and it is a morphism of $A\otimes A^{\mathrm{op}}$ -modules. Therefore A is projective if and only if the multiplication is split. Such algebras are called *separable*.

Problem

The multiplication $\mathscr{A}\otimes\mathscr{A}^{\mathrm{rev}}\to\mathscr{A}$ of \mathscr{A} is not split.

Reason

Note: $\mathscr P$ finitely generated projective must mean that

$$\operatorname{Hom}_{\mathscr{A}\otimes\mathscr{A}^{\operatorname{rev}}}(\mathscr{P},-)$$

preserves colimits. This does *not* imply that it preserves essentially surjective functors.

Projectivity of A

Solution

Show that $\mathscr{A}\otimes\mathscr{A}^{\mathrm{rev}}\to\mathscr{A}$ exhibits \mathscr{A} as (absolute) Kleisli object.

Proposition (Jenkins, S)

The assignment which sends a Galois cocycle ω to

$$\mathscr{A} = \prod_{g \in G} \mathrm{Vec}_E$$

gives a well-defined map

$$H^3(\operatorname{Gal}(\overline{K}/K), \overline{K}^{\times}) \to \pi_0 X$$

Why stop at n = 3?

Let \mathscr{V}_1 be symmetric monoidal. Using a hypothetic version of higher profunctors, we could form

Why stop at n = 3?

Question

Do we get an equivalence $\Omega N \operatorname{Core}_{n+1} \simeq N \operatorname{Core}_n$?

Question

If $\mathscr{V} = \operatorname{Vect}_K$, do we get isomorphisms

$$\pi_0 \operatorname{Core}_n \cong H^{n+1}(\operatorname{Gal}(\overline{K}/K), \overline{K}^{\times})?$$

Question

If $\mathscr{V} = \operatorname{Mod}_R$, do we get isomorphisms

$$\pi_0 \operatorname{Core}_n \cong H^{n+1}_{\operatorname{et}}(\operatorname{Spec}(R), \mathbb{G}_m)?$$

Thanks!