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I) Brief Introduction and Overview
(continue reading)

II) Survey of some more details
(keep reading after the introduction)



Hilbert’s 6th problem

David Hilbert, ICM, Paris 1900:

Mathematical Problem 6:

To treat [...] by means of axioms, those physical
sciences in which mathematics plays an important part

[...] try first by a small number of axioms to include
as large a class as possible of physical phenomena, and
then by adjoining new axioms to arrive gradually at the
more special theories.

[...] take account not only of those theories coming
near to reality, but also, [...] of all logically possible
theories.

http://ncatlab.org/nlab/show/Hilbert's+sixth+problem


Partial Solutions to Hilbert’s 6th problem – I) traditional

physics maths

prequantum physics differential geometry

18xx-19xx mechanics symplectic geometry

1910s gravity Riemannian geometry

1950s gauge theory Chern-Weil theory

2000s higher gauge theory differential cohomology

quantum physics noncommutative algebra

1920s quantum mechanics operator algebra

1960s local observables co-sheaf theory

1990s-2000s local field theory (∞, n)-category theory

(table necessarily incomplete)

http://ncatlab.org/nlab/show/physics
http://ncatlab.org/nlab/show/prequantum+field+theory
http://ncatlab.org/nlab/show/differential+geometry
http://ncatlab.org/nlab/show/mechanical+system
http://ncatlab.org/nlab/show/symplectic+geometry
http://ncatlab.org/nlab/show/gravity
http://ncatlab.org/nlab/show/Riemannian+geometry
http://ncatlab.org/nlab/show/gauge+theory
http://ncatlab.org/nlab/show/Chern-Weil+theory
http://ncatlab.org/nlab/show/higher+gauge+field
http://ncatlab.org/nlab/show/differential+cohomology
http://ncatlab.org/nlab/show/quantum+mechanics
http://ncatlab.org/nlab/show/noncommutative+geometry
http://ncatlab.org/nlab/show/quantum+mechanics
http://ncatlab.org/nlab/show/operator+algebra
http://ncatlab.org/nlab/show/quantum+observable
http://ncatlab.org/nlab/show/local+net
http://ncatlab.org/nlab/show/local+quantum+field+theory
http://ncatlab.org/nlab/show/(infinity,n)-category


Partial Solutions to Hilbert’s 6th problem – II) synthetic

Lawvere aimed for a conceptually deeper answer:

1. Foundation of mathematics in topos theory
(“ETCS” [Lawvere 65]).

2. Foundation of classical physics in topos theory...
by “synthetic” formulation:{

Impose properties on
Add axioms to

}
a

{
topos

intuitionistic type theory

}
which ensure that the

{
objects
types

}
have

structure of differential geometric spaces.

Then formalize physics by

{
universal constructions

natural deduction

}
.

I Categorical dynamics [Lawvere 67]
I Toposes of laws of motion [Lawvere 97]
I Outline of synthetic differential geometry [Lawvere 98]

http://ncatlab.org/nlab/show/sheaf+and+topos+theory
http://ncatlab.org/nlab/show/ETCS
http://ncatlab.org/nlab/show/topos
http://ncatlab.org/nlab/show/intuitionistic type theory
http://ncatlab.org/nlab/show/universal+construction
http://ncatlab.org/nlab/show/natural+deduction
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But

modern fundamental physics

and

modern foundational maths

are both deeper

than what has been considered in these results...

→



Modern natural foundations.

Reconsider Hilbert’s 6th in view of modern foundations.

Modern foundations of fundamental physics is:

local Lagrangian boundary-/defect- quantum gauge field theory

(a recent survey is in [Sati-Schreiber 11])

Modern foundations of mathematics is:{
homotopy type theory,

∞-topos theory

}
+ internal (∞, n)-category theory

(a recent survey is in [HoTT book 13])

Claim

In

{
homotopy type theory
∞-topos theory

}
-foundations

fundamental physics is synthetically axiomatized

1. naturally – the axioms are simple, elegant and meaningful;

2. faithfully – the axioms capture deep nontrivial phenomena →

http://ncatlab.org/nlab/show/local+quantum+field+theory
http://ncatlab.org/nlab/show/prequantum+field+theory
http://ncatlab.org/nlab/show/QFT+with+defects
http://ncatlab.org/nlab/show/quantum+field+theory
http://ncatlab.org/nlab/show/gauge+theory
http://ncatlab.org/nlab/show/theory+(physics)
http://ncatlab.org/nlab/show/homotopy+type+theory
http://ncatlab.org/nlab/show/(infinity,1)-topos+theory
http://ncatlab.org/nlab/show/n-category+object+in+an+(infinity,n)-category
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Project

This is an ongoing project involving joint work with

I Domenico Fiorenza

I Hisham Sati

I Michael Shulman

I Joost Nuiten

and others:

Differential cohomology in a cohesive ∞-topos [Schreiber 11].

You can find publications, further details and further exposition at:

http://ncatlab.org/schreiber/show/

differential+cohomology+in+a+cohesive+topos

skip to list of contents

http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos


Contents

physics maths

1)

(higher) gauge-

{
∞-topos theory,
homotopy type theory

2)

Lagrangian-

{
differential cohomology,
cohesion modality

3)

local
(bndry-/defect)-

{
higher category theory,
relations/correspondences

4)

quantum-

{
motivic cohomology,
abelianization of relations

field
theory

Remark. No approximation: non-perturbative QFT.

Selected examples and applications:

Ex1 Holographic quantization of Poisson manifolds and D-branes.

Ex2 topol. ∞-YM
bdr→ ∞-CS

dfct→ ∞-WZW
dfct→ ∞-Wilson surf.

Ex3 Super p-branes, e.g. M5 (
event.// Khovanov, Langlands, ...)
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Synthetic QFT Axioms

(QFT 1) Gauge principle. Spaces of physical fields are higher
moduli stacks:{

objects
types

}
of an

{
∞-topos

homotopy type theory

}
H.

Fields ∈ H

We discuss this in more detail below in 1).
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Synthetic QFT Axioms

(QFT 2) Differential geometry.

The

{
∞-topos

homotopy type theory

}
carries two adjoint triples of{

idempotent ∞-(co-)monads

higher modalities

}
that equip

{
objects
types

}
with

“differential cohesive” geometric structure.

Π a [ a ]

Red a Πinf a [inf

This is a joint refinement to homotopy theory of Lawvere’s
“synthetic differential geometry” and “axiomatic cohesion”
[Lawvere 07] .

We discuss this in more detail in 2) below.

http://ncatlab.org/nlab/show/idempotent+monad
http://ncatlab.org/nlab/show/(infinity,1)-monad
http://ncatlab.org/nlab/show/higher+modality
http://ncatlab.org/nlab/show/differential+cohesion
http://ncatlab.org/nlab/show/cohesive
http://ncatlab.org/nlab/show/homotopy+theory
http://ncatlab.org/nlab/show/synthetic+differential+geometry
http://ncatlab.org/nlab/show/cohesive+topos


Synthetic QFT Axioms

Theorem
Differential cohesion in homotopy theory implies the existence of

differential coefficient

{
objects
types

}
modulating cocycles in

differential cohomology.

[BG include // BGconn
forget // BG

flat
∞-connections

principal
∞-connections

principal
∞-bundles

Remark
This is absolutely not the case for differential cohesion interpreted
non-homotopically.

Whence the title “Differential cohomology in a cohesive ∞-topos”
[Schreiber 11].

http://ncatlab.org/nlab/show/differential+cohomology


Synthetic QFT Axioms

(QFT 3) Local Lagrangian action functionals.

The

{
slice objects

dependent types

} over
differential
coefficients

Fields

exp(iS)
��

BnGconn

are the local action functionals.

The

{
correspondence spaces

relations

} Fields
vv ((

Fields1

exp(iS1)
((

Fields2

exp(iS2)
vv

BGconn

qy

are the field trajectories,
the quantum observables,
and the defect- and boundary conditions.

We discuss this in more detail below in 3).

http://ncatlab.org/nlab/show/action+functional


Synthetic QFT Axioms

(QFT 4) Quantization.
Quantization is the passage to the “motivic” abelianization of

these

{
corespondence spaces

relations

}
of

{
slice objects

dependent types

}
over

the differential coefficients.

Bordbdr
n exp(iS)

//

∫
Dφ exp(iS(φ))

**
Corrn(H,BnU(1)) ∫

Dφ(−)
//Motn(H)

We discuss this in more detail below in 4).

This is established for 2-dimensional theories and their holographic
1-d boundary theories (quantum mechanics) by Ex1 below. For
higher dimensions this is a proposal for a systematic perspective.



End
of overview.

→ back to project page → on to further details



1)
Higher gauge field theory
∞-Topos theory

Homotopy type theory

back to list of contents



From the gauge principle to higher stacks.

Central principle of modern fundamental physics –
the gauge principle:

I Field configurations may be different and yet gauge equivalent.

I Gauge equivalences may be different and yet higher gauge
equivalent.

I Collection of fields forms BRST complex, where (higher)
gauge equivalences appear as (higher) ghost fields.

This means that moduli spaces of fields are

geometric homotopy types ' higher moduli stacks
' objects of an ∞-topos H

→



Higher moduli stacks of gauge fields
I a moduli stack of fields is Fields ∈ H

I a field configuration on a
spacetime

worldvolume
Σ is a map

φ : Σ→ Fields;

I a gauge transformation is a homotopy
κ : φ1

'→ φ2 : Σ→ Fields

I a higher gauge transformation is a higher homotopy;

I the BRST complex of gauge fields on Σ is the infinitesimal
approximation to the mapping stack [Σ,Fields].

Examples:

I for sigma-model field theory: Fields = X is target space;

I for gauge field theory: Fields = BGconn is moduli stack of
G -principal connections.

I in general both: σ-model fields and gauge fields are unified,
for instance in “tensor multiplet” on super p-brane, Example 3
below



2)
Lagrangian field theory
Differential cohomology

Cohesion modality

back to list of contents



The action principle

For
I Σin

// Σ oo Σout a cobordism (a Feynman diagram)

I Fields(Σin) oo
(−)|Σin

Fields(Σ)
(−)|Σout// Fields(Σout) the space of

trajectories of fields,

the action functional assigns a phase to each trajectory

exp(iSΣ) : Fields(Σ)→ U(1)

and this is Lagrangian if there is differential form data
L : Fields→ [BnU(1) such that

Fields(Σ)

ww ''
Fields(Σin)

''

Fields(Σout)

ww
[BU(1)

exp(i
∫

Σ L)

exp(iSΣ)=

rz



The need for differential cohesion

In order to formalize the action principle on gauge fields we hence
need to

1. Characterize those

{
∞-toposes

homotopy type theories

}
H whose{

objects
types

}
may be interpreted as differential geometric

spaces.

2. Axiomatize differential geometry and differential cohomology
in such contexts.

→ differential cohesion



The adjunction system defining differential cohesion

H
oo LConst

Γ //∞Grpd

Every ∞-stack ∞-topos has an essentially unique global section
geometric morphism to the base ∞-topos.



The adjunction system defining differential cohesion

H
oo Disc ? _

Γ //∞Grpd

Requiring the formation of locally constant ∞-stacks to be a full
embedding means that we have a notion of geometrically discrete
objects in H.



The adjunction system defining differential cohesion

H
oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

Requiring the existence of an extra right adjoint means that we also
have the inclusion of geometrically co-discrete (indiscrete) objects.



The adjunction system defining differential cohesion

H
oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

Now Γ has the interpretation of sending a geometric homotopy
type to its underlying ∞-groupoid of points, forgetting the
geometric structure.



The adjunction system defining differential cohesion

H
Π //

oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

The crucial thing now is that for the ∞-topos H an extra left
adjoint Π sends a geometric homotopy type to its path
∞-groupoid or geometric realization.



The adjunction system defining differential cohesion

H
Π× //

oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

If we further require that to preserve finite products then this
means that the terminal object in H is geometrically indeed the
point.



The adjunction system defining differential cohesion

H
Π× //

oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

If an adjoint quadruple of this form exists on H we say that H is
cohesive or that its objects have the structure of cohesively
geometric homotopy types.



The adjunction system defining differential cohesion

Hred

oo i∗
� �

i∗ //H
Π× //

oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

Consider moreover the inclusion of a cohesive sub-∞-topos Hred.



The adjunction system defining differential cohesion

Hred

� �
i! //

oo i∗
� �

i∗ //H
Π× //

oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

If this has an extra left adjoint then this means that i∗ is a
projection map that contracts away from each object a geometric
thickening with no points.



The adjunction system defining differential cohesion

Hred

� �
i! //

oo i∗
� �

i∗ //H
Π× //

oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

This means that objects of H may have infinitesimal thickening
(“formal neighbourhoods”) and that Hred is the full sub-∞-topos
of the “reduced” objects: that have no infinitesimal thickening.



The adjunction system defining differential cohesion

Hred

× ,,
� �

i! //
oo i∗
� �

i∗ //
oo i !

H
Π× //

oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

Finally that Hred is itself cohesive means that Π|Hred
= Π ◦ i! also

preserves finite products.



From adjunctions to monads and modalities.

Such a system of two quadruple reflections on H is equivalently a

system of two triple

{
idempotent ∞-(co-)monads on

higher modalities in

}
H.

I (Π a [ a ]) : H
Π //

oo Disc ?
_

Γ //
∞Grpd

� �
Disc //
oo Γ
� �

coDisc //
H

I

(Red a Πinf a [inf) : H
i∗ //

oo i∗ ? _

i ! //
Hred

� �
i! //

oo i∗
� �

i∗ //
H



The modality system defining differential cohesion.

Π shape modality (idemp. ∞-monad)

⊥

[ flat modality (idemp. ∞-co-monad)
⊥

] sharp modality (idemp. ∞-monad)

Red reduction modality (idemp. ∞-co-monad)
⊥

Πinf infinitesimal shape modality (idemp. ∞-monad)
⊥

[inf infinitesimal flat modality (idemp. ∞-co-monad)



The modality system defining differential cohesion.

Π shape modality
⊥

[ flat modality
⊥

] sharp modality

Red reduction modality
⊥

Πinf infinitesimal shape modality
⊥

[inf infinitesimal flat modality



Models for differential cohesion

The following example accommodates most of contemporaty
fundamental physics.

Theorem
Let CartSp synth

super
:=

{
Rp|q;k = Rp × R0|q × Dk

}
p,q,k∈N be the site

of Cartesian formal supergeometric smooth manifolds with its
standard open cover topology. The ∞-stack ∞-topos over it

SynthDiffSuperSmooth∞Grpd := Sh∞(CartSp synth
super

)

is differentially cohesive.

Objects are
synthetic differential super-geometric smooth ∞-groupoids.

Remark
This is the homotopy-theoretic and super-geometric refinement of
the traditional model for synthetic differential geometry known as
the “Cahiers topos”. [Dubuc 79].

http://ncatlab.org/nlab/show/site
http://ncatlab.org/nlab/show/(infinity,1)-category+of+(infinity,1)-sheaves
http://ncatlab.org/nlab/show/smooth+infinity-groupoid


References: Related work on differential cohesion

I The notion of differential cohesive ∞-toposes is a joint
refinement to homotopy theory of W. Lawvere’s

I synthetic differential geometry [Lawvere 67, Dubuc 79]
I cohesion [Lawvere 07]

With hindsight one can see that the article Some thoughts on
the future of category theory [Lawvere 91] is all about
cohesion. What is called a “category of Being” there is a
cohesive topos.

I Aspects of the infinitesimal modality triple (Red a Πinf a [inf)
appear

I in [Simpson-Teleman 97] for the formulation of de Rham
spacks;

I in [Kontsevich-Rosenberg 04] for the axiomatization of
formally étale maps.



3)
Local field theory

Higher category theory
Higher relations
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(...) [Fiorenza-Schreiber et al.] (...)

Observation

Bordbry
n

// Corrn(H, [BnU(1))

( | ∗ ) 7→

Fields∂

{{ %%
∗

0 ##

Fields

exp(iS)yy
[BnU(1)

u}

.

By theorem 4.3.11 in [L09a].



References: Related work on local QFT by correspondences

I An early unfinished note is [Schreiber 08]

I For the special case of discrete higher gauge theory
(∞-Dijkgraaf-Witten theory) a sketch of a theory is in section
3 and 8 of [FHLT].



4)
Quantum field theory
Motivic cohomology
Abelianized relations
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Theorem (Nuiten-S.)

1. On nice enough correspondences, forming twisted groupoid
convolution algebras constitutes a functor

Corrnice2 (SmoothGrpd,B2U(1))

∫
Dφ(−):=C∗(−)

// KK

to KK-theory...

2. ...such that postcomposition with a prequantum boundary
field theory

Bordbdr
2 exp(iS)

//

∫
Dφ exp(iS(φ))

**
Corr2(SmoothGrpd,B2U(1)) ∫

Dφ(−)
// KK

subsumes the K-theoretic geometric quantization of Poisson
manifolds – Example 1 below.



Outlook: Motivic quantization.

We may think of KK as a topological/differential geometric analog
of pure motives [Connes-Consani-Marcolli 05]:

Mot2(SmoothGrpd) := KK .

Motives are abelianized correspondences.
We expect a general construction

Corrn(H,BnU(1))

∫
Dφ(−)

“stabilize”
//Motn(H) .

Then “motivic quantization” of local prequantum field theory:

Bordbdr
n exp(iS)

//

∫
Dφ exp(iS(φ))

**
Corrn(H,BnU(1)) ∫

Dφ(−)
//Motn(H) .



References: Related work on motivic quantization

I Landsman: the natural target of quantization is KK-theory;

I Connes-Marcolli: KK-theory is the ncg-analog of motivic
cohomology

I Baez-Dolan: from correspondences of finite groupoids to
linear maps of finite vector spaces

I Lurie and FHLT: from correspondences of finite ∞-groupoids
to maps of n-vector spaces.



Examples

Ex1 Holographic quantization of Poisson manifolds and D-branes.

Ex2 topol. ∞-YM
bdr→ ∞-CS

dfct→ ∞-WZW
dfct→ ∞-Wilson surf.

Ex3 Super p-branes, e.g. M5 (
event.// Khovanov, Langlands, ...)

back to list of contents



Example 1
Holographic quantization

of
Poisson manifolds and D-branes

(with J. Nuiten)

back to list of contents



Poisson manifolds

physics mathematics

mechanical system symplectic manifold (X , ω)

foliation by
mechanical systems

Poisson manifold (X , π)

quantization of
mechanical systems

quantization of
Poisson manifolds

Observation: each Poisson manifold induces a 2-dimensional local
Poisson-Chern-Simons theory whose mdouli stack of fields is the
“symplectic groupoid” SymGrp(X , π) with local action functional

SympGrpd(X , π)

exp(iSPCS )
��

B2U(1)conn1



The original Poisson manifold includes into the symplectic
groupoid and naturally trivializes exp(iSPCS). So by Observation B
it constitutes a canonical boundary condition for the 2-d
Poisson-CS theory, exhibited by the correspondence

X

i

%%��
∗

��

SymGrp(X , π)

χzz
B2U(1)

ξ

{�

'
X

i

%%��
i∗χ

��

∗

��

SymGrp(X , π)

exp(iSPCS)zz
B2U(1)

ξ
��



Applying Theorem N, the groupoid convolution functor sends this
to the co-correspondence of Hilbert bimodules

C
Γ(ξ) // C ∗(X , i∗χ) oo

i∗
C ∗(SymGrpd, χ) .

So if i is KK-orientable, then this boundary condition of the 2d
PCS theory quantizes to the KK-morphism

C
Γ(ξ) // C ∗(X , i∗χ)

i! // C ∗(SymGrpd, χ)

hence to the class in twisted equivariant K-theory

i![ξ] ∈ K (SympGrp(X , π), χ) .

The groupoid SymGrp(X , π) is a smooth model for the possibly
degenerate space of symplectic leafs of (X , π) and this class may
be thought of as the leaf-wise quantization of (X , π).



In particular when (X , π) is symplectic we have
SymGrpd(X , π) ' ∗ and ξ = L is an ordinary prequantum bundle
and i is KK-oriented precisely if X is Spinc . In this case

i![ξ] = i![L] ∈ K (∗) = Z

is the traditional K-theoretic geometric quantization of (X , ω).



Similarly, for

χB : X → B2U(1)

a B-field, a D-brane i : Q → X is a boundary condition given by

Q
i

##{{∗

""

X

χ{{
B2U(1)

ξ

w�

'
Q

i

##{{
i∗χ

��

∗

""

X

χ{{
B2U(1)

ξ
{�

where now ξ is the Chan-Paton bundle on the D-brane.

http://ncatlab.org/nlab/show/Chan-Paton+bundle


Proceeding as above shows that the quantization of this boundary
condition in the 2d QFT which is the topological part of the 2d
string σ-model gives the D-brane charge

i![ξ] ∈ K (X , χ) .

[Brodzki-Mathai-Rosenberg-Szabo 09]



In conclusion:

I The quantization of a Poisson manifold is equivalently its
brane charge when regarded as a boundary condition of its 2d
Poisson-Chern-Simons theory.

Conversely:

I The charge of a D-brane is equivalently the quantization of a
particle on the brane charged under the Chan-Paton bundle.



References: Related work on quantization of Poisson
manifolds

I Kontsevich + Cattaneo-Felder realize perturbative
quantization of Poisson manifold holographically to
perturbative quantization of 2d σ-model;

I [EH 06] completes Weinstein-Landsman program of geometric
quantization of symplectic groupoids and obtains strict
deformation quantization

I [Brodzki-Mathai-Rosenberg-Szabo 09] formalize D-brane
charge in KK-theory

(...)



Example 2
∞-Chern-Simons

local prequantum field theory
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(...) [Fiorenza-Schreiber et al.] (...)



Example 3
Super p-branes
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(...)
http://ncatlab.org/schreiber/show/

infinity-Wess-Zumino-Witten+theory

http://ncatlab.org/schreiber/show/The+brane+bouquet

(...)

http://ncatlab.org/schreiber/show/infinity-Wess-Zumino-Witten+theory
http://ncatlab.org/schreiber/show/infinity-Wess-Zumino-Witten+theory
http://ncatlab.org/schreiber/show/The+brane+bouquet


ns5braneIIA

D0brane

))

D2brane

##

D4brane

��

D6brane

{{

D8brane

tt
contr.

EE

sdstring

d=6
N=(2,0)

))

stringIIA

d=10
N=(1,1)

��

stringhetlittlestringhet

d=10
N=1

tt

d=6
N=1

tt

OO

T

��

m5brane // m2brane d=11
N=1

// Rd ;N ns5branehet
d=10
N=1

oo

stringIIB

d=10
N=(2,0)

;;

(p, q)stringIIB

d=10
N=(2,0)

OO

Dstring

d=10
N=(2,0)

cc

(p, q)1brane

55

(p, q)3brane

;;

(p, q)5brane
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(p, q)9brane

jj

oo
S

//
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