
Homotopy theory in type theory

Michael Shulman

11 April 2012

Review of type theory

• Type theory consists of rules for deriving typing judgments:

(x1 : A1), (x2 : A2), . . . , (xn : An) ` (b : B)

• The rules come in “packages” called type constructors.

• Each type constructor has four groups of rules: formation,
introduction, elimination, and computation.

• Categorically: types are objects, terms are morphisms.

• Each type constructor corresponds to a categorical universal
property.

Outline

1 Dependent eliminators

2 The structure of homotopy types

3 Logic

4 Equivalences

5 Univalence

Dependent eliminators

When we introduce predicates and dependent types, the
eliminators of other types need to be generalized.

Example

• Suppose (z : A + B) ` (P(z) : Type) is a predicate on A + B.

• We should be able to prove P by cases.

1 Prove (x : A) ` (pA : P(inl(x))).

2 Prove (y : B) ` (pB : P(inr(y))).

3 Conclude (z : A + B) ` (case(z ; pA, pB) : P(z)).

• This looks like the “case split” eliminator for A + B, but the
output type P(z) depends on the element z that we are
case-analyzing.

Therefore: we strengthen the elimination rules.

Dependent eliminators

When we introduce predicates and dependent types, the
eliminators of other types need to be generalized.

Example

• Suppose (z : A + B) ` (P(z) : Type) is a predicate on A + B.

• We should be able to prove P by cases.

1 Prove (x : A) ` (pA : P(inl(x))).

2 Prove (y : B) ` (pB : P(inr(y))).

3 Conclude (z : A + B) ` (case(z ; pA, pB) : P(z)).

• This looks like the “case split” eliminator for A + B, but the
output type P(z) depends on the element z that we are
case-analyzing.

Therefore: we strengthen the elimination rules.

Dependent eliminators

When we introduce predicates and dependent types, the
eliminators of other types need to be generalized.

Example

• Suppose (z : A + B) ` (P(z) : Type) is a predicate on A + B.

• We should be able to prove P by cases.

1 Prove (x : A) ` (pA : P(inl(x))).

2 Prove (y : B) ` (pB : P(inr(y))).

3 Conclude (z : A + B) ` (case(z ; pA, pB) : P(z)).

• This looks like the “case split” eliminator for A + B, but the
output type P(z) depends on the element z that we are
case-analyzing.

Therefore: we strengthen the elimination rules.

Dependent eliminators

Before

Suppose A, B, and C are types.

If (x : A) ` (cA : C) and (y : B) ` (cB : C),
then for p : A + B we have case(p, cA, cB) : C .

After

Suppose A and B are types, and

(z : A + B) ` (C (z) : Type)

is a dependent type.

If (x : A) ` (cA : C (inl(x))) and (y : B) ` (cB : C (inr(y))),
then for p : A + B we have case(p, cA, cB) : C (p).

Dependent eliminators

Before

Suppose A, B, and C are types.

If (x : A) ` (cA : C) and (y : B) ` (cB : C),
then for p : A + B we have case(p, cA, cB) : C .

After

Suppose A and B are types, and

(z : A + B) ` (C (z) : Type)

is a dependent type.

If (x : A) ` (cA : C (inl(x))) and (y : B) ` (cB : C (inr(y))),
then for p : A + B we have case(p, cA, cB) : C (p).

Dependent eliminators in categories

A

B
A + B

C

Dependent eliminators in categories

A

B
A + B

C

Dependent eliminators in categories

A

B
A + B

C

Dependent eliminators imply uniqueness

Theorem

Suppose f , g : CA+B and that

• for all a : A, we have f (inl(a)) = g(inl(a)), and

• for all b : B, we have f (inr(b)) = g(inr(b)).

Then for all z : A + B, we have f (z) = g(z).

Proof.

Consider the dependent type

(z : A + B) ` (f (z) = g(z) : Type)

By the dependent eliminator for A + B, to construct a term of this
type, it suffices to construct terms

(a : A) ` (eA : f (inl(a)) = g(inl(a)))

(b : B) ` (eB : f (inr(b)) = g(inr(b)))

Dependent eliminators imply uniqueness

Theorem

Suppose f , g : CA+B and that

• for all a : A, we have f (inl(a)) = g(inl(a)), and

• for all b : B, we have f (inr(b)) = g(inr(b)).

Then for all z : A + B, we have f (z) = g(z).

Proof.

Consider the dependent type

(z : A + B) ` (f (z) = g(z) : Type)

By the dependent eliminator for A + B, to construct a term of this
type, it suffices to construct terms

(a : A) ` (eA : f (inl(a)) = g(inl(a)))

(b : B) ` (eB : f (inr(b)) = g(inr(b)))

Interlude

(Coq)

Function extensionality

It’s more difficult to give a dependent eliminator for function types.
Instead, we assert function extensionality directly as an axiom.(

f , g : BA
)
`
(

funext :
(∏

x : A(f (x) = g(x))
)
→ (f = g)

)

Remarks

• Today I’ll use both BA and A→ B for the function type.

• Later: more homotopical versions of both kinds of uniqueness.

Function extensionality

It’s more difficult to give a dependent eliminator for function types.
Instead, we assert function extensionality directly as an axiom.(

f , g : BA
)
`
(

funext :
(∏

x : A(f (x) = g(x))
)
→ (f = g)

)
Remarks

• Today I’ll use both BA and A→ B for the function type.

• Later: more homotopical versions of both kinds of uniqueness.

Outline

1 Dependent eliminators

2 The structure of homotopy types

3 Logic

4 Equivalences

5 Univalence

Equality types

Equality types (or identity types) are a “positive type”
(determined by the introduction rule):

1 For any type A and a : A and b : A, there is a type (a = b).

2 For any a : A, we have refla : (a = a).

3 Suppose C (x , y , p) is a type dependent on three variables
x , y : A and p : (x = y). Suppose moreover that for any x : A
we have an element d(x) : C (x , x , reflx). Then for any x , y , p
we have an element J(d ; x , y , p) : C (x , y , p).

4 J(d ; a, a, refla) computes to d(a).

Informally, 3 says

Elimination on equality

In order to do something with an arbitrary p : (x = y),
it suffices to consider the case of reflx : (x = x).

Equality types

Equality types (or identity types) are a “positive type”
(determined by the introduction rule):

1 For any type A and a : A and b : A, there is a type (a = b).

2 For any a : A, we have refla : (a = a).

3 Suppose C (x , y , p) is a type dependent on three variables
x , y : A and p : (x = y). Suppose moreover that for any x : A
we have an element d(x) : C (x , x , reflx). Then for any x , y , p
we have an element J(d ; x , y , p) : C (x , y , p).

4 J(d ; a, a, refla) computes to d(a).

Informally, 3 says

Elimination on equality

In order to do something with an arbitrary p : (x = y),
it suffices to consider the case of reflx : (x = x).

Equality types

Equality types (or identity types) are a “positive type”
(determined by the introduction rule):

1 For any type A and a : A and b : A, there is a type (a = b).

2 For any a : A, we have refla : (a = a).

3 Suppose C (x , y , p) is a type dependent on three variables
x , y : A and p : (x = y). Suppose moreover that for any x : A
we have an element d(x) : C (x , x , reflx). Then for any x , y , p
we have an element J(d ; x , y , p) : C (x , y , p).

4 J(d ; a, a, refla) computes to d(a).

Informally, 3 says

Elimination on equality

In order to do something with an arbitrary p : (x = y),
it suffices to consider the case of reflx : (x = x).

Equality types

Equality types (or identity types) are a “positive type”
(determined by the introduction rule):

1 For any type A and a : A and b : A, there is a type (a = b).

2 For any a : A, we have refla : (a = a).

3 Suppose C (x , y , p) is a type dependent on three variables
x , y : A and p : (x = y). Suppose moreover that for any x : A
we have an element d(x) : C (x , x , reflx). Then for any x , y , p
we have an element J(d ; x , y , p) : C (x , y , p).

4 J(d ; a, a, refla) computes to d(a).

Informally, 3 says

Elimination on equality

In order to do something with an arbitrary p : (x = y),
it suffices to consider the case of reflx : (x = x).

Equality types

Equality types (or identity types) are a “positive type”
(determined by the introduction rule):

1 For any type A and a : A and b : A, there is a type (a = b).

2 For any a : A, we have refla : (a = a).

3 Suppose C (x , y , p) is a type dependent on three variables
x , y : A and p : (x = y). Suppose moreover that for any x : A
we have an element d(x) : C (x , x , reflx). Then for any x , y , p
we have an element J(d ; x , y , p) : C (x , y , p).

4 J(d ; a, a, refla) computes to d(a).

Informally, 3 says

Elimination on equality

In order to do something with an arbitrary p : (x = y),
it suffices to consider the case of reflx : (x = x).

Equality is symmetric

Theorem

Suppose p : (x = y). Then p−1 : (y = x).

Proof.

By elimination, we may assume that p is reflx : (x = x). But in
this case, we can take p−1 to also be reflx : (x = x).

Just as in the cases of the dependent eliminator for coproducts, the
desired conclusion C (z) becomes C (inl(a)) and C (inr(b)), when
we eliminate p the desired conclusion (y = x) becomes (x = x).

Equality is symmetric

Theorem

Suppose p : (x = y). Then p−1 : (y = x).

Proof.

By elimination, we may assume that p is reflx : (x = x). But in
this case, we can take p−1 to also be reflx : (x = x).

Just as in the cases of the dependent eliminator for coproducts, the
desired conclusion C (z) becomes C (inl(a)) and C (inr(b)), when
we eliminate p the desired conclusion (y = x) becomes (x = x).

Equality is transitive

Theorem

Suppose p : (x = y) and q : (y = z). Then p ∗ q : (x = z).

Proof.

By elimination, we may assume that p is reflx : (x = x). But in this
case, we have q : (x = z), so we can take p ∗ q to be just q.

We could equally well have eliminated q, or both p and q.

Equality is transitive

Theorem

Suppose p : (x = y) and q : (y = z). Then p ∗ q : (x = z).

Proof.

By elimination, we may assume that p is reflx : (x = x). But in this
case, we have q : (x = z), so we can take p ∗ q to be just q.

We could equally well have eliminated q, or both p and q.

Interlude

(Coq)

Paths

We treat types as spaces/∞-groupoids/homotopy types, and we
think of terms p : (x = y) as paths x y .

• Reflexivity becomes the constant path reflx : x x .

• Transitivity becomes concatenation x
p∗q
 z of x

p
 y

q
 z .

• Symmetry becomes reversal y
p−1

 x of x
p
 y .

But now there is more to say.

• Concatenation is associative: αp,q,r : ((p ∗ q) ∗ r = p ∗ (q ∗ r)).

Paths

We treat types as spaces/∞-groupoids/homotopy types, and we
think of terms p : (x = y) as paths x y .

• Reflexivity becomes the constant path reflx : x x .

• Transitivity becomes concatenation x
p∗q
 z of x

p
 y

q
 z .

• Symmetry becomes reversal y
p−1

 x of x
p
 y .

But now there is more to say.

• Concatenation is associative: αp,q,r : ((p ∗ q) ∗ r = p ∗ (q ∗ r)).

Interlude

(Coq)

2-paths

The “associator” αp,q,r is coherent:

p ∗ (q ∗ (r ∗ s))

(p ∗ q) ∗ (r ∗ s)

((p ∗ q) ∗ r) ∗ s

(p ∗ (q ∗ r)) ∗ s

p ∗ ((q ∗ r) ∗ s)

. . . or more precisely, there is a path between those two
concatenations. . .
. . . which then has to be coherent. . .

2-paths

The “associator” αp,q,r is coherent:

p ∗ (q ∗ (r ∗ s))

(p ∗ q) ∗ (r ∗ s)

((p ∗ q) ∗ r) ∗ s

(p ∗ (q ∗ r)) ∗ s

p ∗ ((q ∗ r) ∗ s)

. . . or more precisely, there is a path between those two
concatenations. . .

. . . which then has to be coherent. . .

2-paths

The “associator” αp,q,r is coherent:

p ∗ (q ∗ (r ∗ s))

(p ∗ q) ∗ (r ∗ s)

((p ∗ q) ∗ r) ∗ s

(p ∗ (q ∗ r)) ∗ s

p ∗ ((q ∗ r) ∗ s)

. . . or more precisely, there is a path between those two
concatenations. . .
. . . which then has to be coherent. . .

∞-groupoids

Theorem (Lusmdaine,Garner–van den Berg)

The terms belonging to the iterated identity types of any type A
form an ∞-groupoid.

Homotopy
theory

Type
theory

homotopy (type theory)

Note: Uses Batanin-Leinster ∞-groupoids (can also be done with
simplicial versions).

∞-groupoids

Theorem (Lusmdaine,Garner–van den Berg)

The terms belonging to the iterated identity types of any type A
form an ∞-groupoid.

Homotopy
theory

Type
theory

homotopy (type theory)

Note: Uses Batanin-Leinster ∞-groupoids (can also be done with
simplicial versions).

∞-groupoids

Theorem (Lusmdaine,Garner–van den Berg)

The terms belonging to the iterated identity types of any type A
form an ∞-groupoid.

Homotopy
theory

Type
theory

homotopy (type theory)

Note: Uses Batanin-Leinster ∞-groupoids (can also be done with
simplicial versions).

Mapping on paths

Given f : A→ B, x , y : A, and a path p : (x = y), we have an
image path

map(f , p) : (f (x) = f (y))

defined by eliminating on p:

• If p is reflx , then map(f , p) := reflf (x).

Transporting along paths

Given x , y : A, p : (x = y), and B dependent on A, we have the
operation of transporting along p

trans(p,−) : B(x)→ B(y).

defined by eliminating on p:

• If p is reflx , then trans(p,−) is the identity map of B(x).

Interpretation

We should view the map B → A as a fibration.
(In an (∞, 1)-category, we can treat any map as a fibration.)

Transporting along paths

Given x , y : A, p : (x = y), and B dependent on A, we have the
operation of transporting along p

trans(p,−) : B(x)→ B(y).

defined by eliminating on p:

• If p is reflx , then trans(p,−) is the identity map of B(x).

Interpretation

We should view the map B → A as a fibration.
(In an (∞, 1)-category, we can treat any map as a fibration.)

Paths for type constructors

For any type built using a type constructor, we can characterize its
paths in terms of paths in its input types.

Example (Cartesian products)

• From p : (a1 = a2) and q : (b1 = b2), we can build

(p, q) : ((a1, b1) = (a2, b2))

• Given z1, z2 : A× B and r : (z1 = z2), we have

map(fst, r) : (fst(z1) = fst(z2))

map(snd, r) : (snd(z1) = snd(z2))

Paths for type constructors

For any type built using a type constructor, we can characterize its
paths in terms of paths in its input types.

Example (Cartesian products)

• From p : (a1 = a2) and q : (b1 = b2), we can build

(p, q) : ((a1, b1) = (a2, b2))

• Given z1, z2 : A× B and r : (z1 = z2), we have

map(fst, r) : (fst(z1) = fst(z2))

map(snd, r) : (snd(z1) = snd(z2))

Paths in dependent sums

Suppose a1, a2 : A and b1 : B(a1) and b2 : B(a2). A path

(a1, b1) = (a2, b2)

in
∑

x : A B(x) should consist of

• A path p : (a1 = a2) in A, and. . .

• what?

• The expression (b1 = b2) is ill-formed, since b1 and b2 have
different types.

• Instead we can use q : (trans(p, b1) = b2).

Paths in dependent sums

Suppose a1, a2 : A and b1 : B(a1) and b2 : B(a2). A path

(a1, b1) = (a2, b2)

in
∑

x : A B(x) should consist of

• A path p : (a1 = a2) in A, and. . .

• what?
• The expression (b1 = b2) is ill-formed, since b1 and b2 have

different types.
• Instead we can use q : (trans(p, b1) = b2).

Paths in dependent sums

a1 a2

p
A

B(a1) B(a2) ∑
x : A B(x)

b1

b2

q

trans(p, b1)

• In a fibration, we can lift the path p starting at b1.

• We choose one lift and call its endpoint trans(p, b1).

• Any other lift of p is determined by a path in the fiber B(a2).

Paths in dependent sums

a1 a2

p
A

B(a1) B(a2) ∑
x : A B(x)

b1

b2

q

trans(p, b1)

• In a fibration, we can lift the path p starting at b1.

• We choose one lift and call its endpoint trans(p, b1).

• Any other lift of p is determined by a path in the fiber B(a2).

Outline

1 Dependent eliminators

2 The structure of homotopy types

3 Logic

4 Equivalences

5 Univalence

Subsingletons in homotopy theory

Recall that logic is type theory restricted to subsingletons.

In homotopy type theory, we interpret “subsingleton”
homotopically:

Theorem

For an object P in an (∞, 1)-category with products, TFAE:

1 Each space Hom(X ,P) is empty or contractible.

2 Any two morphisms X ⇒ P are homotopic.

3 The diagonal P → P × P has a section.

4 The diagonal P → P × P is an equivalence.

h-Propositions

Definition

A type P is a proposition (or h-proposition or h-prop) if we have

(x : P), (y : P) ` (p : (x = y))

P

P × P

These are the “subsingletons” of homotopy type theory.

Building h-props

What ways do we have to obtain h-props?

• Most type constructors preserve h-props.

• For others (+ and
∑

), we intend to apply “support”.

• (x = y) is not generally an h-prop, but has a support:
• (x = y) is the type of paths from x to y .
• supp(x = y) is the assertion: there exists a path from x to y .

• For some types A, all equalities (x = y) are h-props.
• These are called sets or h-sets.
• Certain types are always sets (e.g. N, on Friday).

• But can we say anything homotopy-theoretic with this logic?

Building h-props

What ways do we have to obtain h-props?

• Most type constructors preserve h-props.

• For others (+ and
∑

), we intend to apply “support”.

• (x = y) is not generally an h-prop, but has a support:
• (x = y) is the type of paths from x to y .
• supp(x = y) is the assertion: there exists a path from x to y .

• For some types A, all equalities (x = y) are h-props.
• These are called sets or h-sets.
• Certain types are always sets (e.g. N, on Friday).

• But can we say anything homotopy-theoretic with this logic?

Building h-props

What ways do we have to obtain h-props?

• Most type constructors preserve h-props.

• For others (+ and
∑

), we intend to apply “support”.

• (x = y) is not generally an h-prop, but has a support:
• (x = y) is the type of paths from x to y .
• supp(x = y) is the assertion: there exists a path from x to y .

• For some types A, all equalities (x = y) are h-props.
• These are called sets or h-sets.
• Certain types are always sets (e.g. N, on Friday).

• But can we say anything homotopy-theoretic with this logic?

Building h-props

What ways do we have to obtain h-props?

• Most type constructors preserve h-props.

• For others (+ and
∑

), we intend to apply “support”.

• (x = y) is not generally an h-prop, but has a support:
• (x = y) is the type of paths from x to y .
• supp(x = y) is the assertion: there exists a path from x to y .

• For some types A, all equalities (x = y) are h-props.
• These are called sets or h-sets.
• Certain types are always sets (e.g. N, on Friday).

• But can we say anything homotopy-theoretic with this logic?

Internalizing h-props

How can we say in type theory “A is an h-prop”?

isProp(A) := supp

∏
x : A

∏
y : A

(x = y)

 ?

This is already an h-prop!

Theorem

For any A, we can construct a term in

isProp(isProp(A)).

Internalizing h-props

How can we say in type theory “A is an h-prop”?

isProp(A) :=

supp



∏
x : A

∏
y : A

(x = y)



!

This is already an h-prop!

Theorem

For any A, we can construct a term in

isProp(isProp(A)).

Some subtleties

• We can loosely read
∏

x : A

∏
y : A (x = y) as

“for all x , y : A, we have a path (x = y)”

• But “for all x , y : A, there exists a path (x = y)” should be
read to mean ∏

x : A

∏
y : A

supp(x = y)

This asserts that “if A is nonempty, then it is connected.”

• In
∏

x : A

∏
y : A (x = y), the assigned path (x = y) must

depend continuously on x and y . This can be confusing until
you get used to this meaning of “for all”.

Some subtleties

• We can loosely read
∏

x : A

∏
y : A (x = y) as

“for all x , y : A, we have a path (x = y)”

• But “for all x , y : A, there exists a path (x = y)” should be
read to mean ∏

x : A

∏
y : A

supp(x = y)

This asserts that “if A is nonempty, then it is connected.”

• In
∏

x : A

∏
y : A (x = y), the assigned path (x = y) must

depend continuously on x and y . This can be confusing until
you get used to this meaning of “for all”.

Some subtleties

• We can loosely read
∏

x : A

∏
y : A (x = y) as

“for all x , y : A, we have a path (x = y)”

• But “for all x , y : A, there exists a path (x = y)” should be
read to mean ∏

x : A

∏
y : A

supp(x = y)

This asserts that “if A is nonempty, then it is connected.”

• In
∏

x : A

∏
y : A (x = y), the assigned path (x = y) must

depend continuously on x and y . This can be confusing until
you get used to this meaning of “for all”.

Some subtleties

• Type theory is a formal system.

• We can and do (and must, in practice) use informal language
to speak and think about it.

• This depends on certain conventions about the formal
interpretation given to informal words, which are sometimes
subtly different to those used for some other formal system
(like set theory).

• Fortunately, we have a computer proof assistant to type-check
our proofs and guarantee that we didn’t screw up!

Some subtleties

• Type theory is a formal system.

• We can and do (and must, in practice) use informal language
to speak and think about it.

• This depends on certain conventions about the formal
interpretation given to informal words, which are sometimes
subtly different to those used for some other formal system
(like set theory).

• Fortunately, we have a computer proof assistant to type-check
our proofs and guarantee that we didn’t screw up!

Outline

1 Dependent eliminators

2 The structure of homotopy types

3 Logic

4 Equivalences

5 Univalence

Homotopy equivalences

Definition

A function f : A→ B is a homotopy equivalence if there exists
g : B → A and homotopies g ◦ f ∼ idA and f ◦ g ∼ idB .

isHtpyEquiv(f) := supp

 ∑
g : B→A

(
(g ◦ f = idA)× (f ◦ g = idB)

)

This would not be an h-prop without supp. Can we avoid it?

Homotopy equivalences

Definition

A function f : A→ B is a homotopy equivalence if there exists
g : B → A and homotopies g ◦ f ∼ idA and f ◦ g ∼ idB .

isHtpyEquiv(f) := supp

 ∑
g : B→A

(
(g ◦ f = idA)× (f ◦ g = idB)

)
This would not be an h-prop without supp. Can we avoid it?

Back to bijections

A function f : A→ B between sets is a bijection if

1 There exists g : B → A such that g ◦ f = idA and f ◦ g = idB .

2 OR: For each b ∈ B, the set f −1(b) is a singleton.

3 OR: There exists g : B → A such that g ◦ f = idA and also
h : B → A such that f ◦ h = idB .

Back to bijections

A function f : A→ B between sets is a bijection if

1 There exists g : B → A such that g ◦ f = idA and f ◦ g = idB .

2 OR: For each b ∈ B, the set f −1(b) is a singleton.

3 OR: There exists g : B → A such that g ◦ f = idA and also
h : B → A such that f ◦ h = idB .

Back to bijections

A function f : A→ B between sets is a bijection if

1 There exists g : B → A such that g ◦ f = idA and f ◦ g = idB .

2 OR: For each b ∈ B, the set f −1(b) is a singleton.

3 OR: There exists g : B → A such that g ◦ f = idA and also
h : B → A such that f ◦ h = idB .

Voevodsky equivalences

Definitions

The homotopy fiber of f : A→ B at b : B is

hfiber(f , b) :=
∑
x : A

(f (x) = b).

A type X is contractible if it is an inhabited h-prop:

isContr(X) := isProp(X)× X

Definition (Voevodsky)

f is an equivalence if each hfiber(f , b) is contractible:

isEquiv(f) :=
∏
b : B

isContr(hfiber(f , b))

This is an h-prop.

H-isomorphisms

Definition (Joyal)

f : A→ B is an h-isomorphism if we have g : B → A and a
homotopy g ◦ f ∼ idA, and also h : B → A and a homotopy
f ◦ h ∼ idB .

isHIso(f) :=

 ∑
g : B→A

(g ◦ f = idA)

×(∑
h : B→A

(f ◦ h = idB)

)

This is also an h-prop.

Adjoint equivalences

Given a homotopy equivalence, we can also ask for more coherence
from r : (g ◦ f = idA) and s : (f ◦ g = idB).

(1a) For all b : B, we have u(b) : (r(g(b)) = map(g , s(b))).

(1b) For all a : A, we have v(a) : (map(f , r(a)) = s(f (a))).

(2a) For all b : B, we have . . . v(g(b) . . . map(g , u(b)) . . .

(2b) For all a : A, we have . . . u(f (a) . . . map(f , v(a)) . . .
...

This gives an h-prop if we stop between any (n a) and (n b)
(and then the rest can be constructed).

Definition

f is an adjoint equivalence if we have g , r , s, and u.

isAdjEquiv(f) :=
∑

g : B→A

∑
r : ...

∑
s : ...

(
r(g(b)) = map(g , s(b))

)

Adjoint equivalences

Given a homotopy equivalence, we can also ask for more coherence
from r : (g ◦ f = idA) and s : (f ◦ g = idB).

(1a) For all b : B, we have u(b) : (r(g(b)) = map(g , s(b))).

(1b) For all a : A, we have v(a) : (map(f , r(a)) = s(f (a))).

(2a) For all b : B, we have . . . v(g(b) . . . map(g , u(b)) . . .

(2b) For all a : A, we have . . . u(f (a) . . . map(f , v(a)) . . .
...

This gives an h-prop if we stop between any (n a) and (n b)
(and then the rest can be constructed).

Definition

f is an adjoint equivalence if we have g , r , s, and u.

isAdjEquiv(f) :=
∑

g : B→A

∑
r : ...

∑
s : ...

(
r(g(b)) = map(g , s(b))

)

Adjoint equivalences

Given a homotopy equivalence, we can also ask for more coherence
from r : (g ◦ f = idA) and s : (f ◦ g = idB).

(1a) For all b : B, we have u(b) : (r(g(b)) = map(g , s(b))).

(1b) For all a : A, we have v(a) : (map(f , r(a)) = s(f (a))).

(2a) For all b : B, we have . . . v(g(b) . . . map(g , u(b)) . . .

(2b) For all a : A, we have . . . u(f (a) . . . map(f , v(a)) . . .
...

This gives an h-prop if we stop between any (n a) and (n b)
(and then the rest can be constructed).

Definition

f is an adjoint equivalence if we have g , r , s, and u.

isAdjEquiv(f) :=
∑

g : B→A

∑
r : ...

∑
s : ...

(
r(g(b)) = map(g , s(b))

)

Adjoint equivalences

Given a homotopy equivalence, we can also ask for more coherence
from r : (g ◦ f = idA) and s : (f ◦ g = idB).

(1a) For all b : B, we have u(b) : (r(g(b)) = map(g , s(b))).

(1b) For all a : A, we have v(a) : (map(f , r(a)) = s(f (a))).

(2a) For all b : B, we have . . . v(g(b) . . . map(g , u(b)) . . .

(2b) For all a : A, we have . . . u(f (a) . . . map(f , v(a)) . . .
...

This gives an h-prop if we stop between any (n a) and (n b)
(and then the rest can be constructed).

Definition

f is an adjoint equivalence if we have g , r , s, and u.

isAdjEquiv(f) :=
∑

g : B→A

∑
r : ...

∑
s : ...

(
r(g(b)) = map(g , s(b))

)

All equivalences are the same

Theorem

The following are equivalent:

1 f is a homotopy equivalence.

2 f is a (Voevodsky) equivalence.

3 f is a (Joyal) h-isomorphism.

4 f is an adjoint equivalence.

The last three are supp-free h-props, so we have equivalences

isEquiv(f) ' isHIso(f) ' isAdjEquiv(f)

Definition

The type of equivalences between A,B : Type is

Equiv(A,B) :=
∑

f : A→B

isEquiv(f).

All equivalences are the same

Theorem

The following are equivalent:

1 f is a homotopy equivalence.

2 f is a (Voevodsky) equivalence.

3 f is a (Joyal) h-isomorphism.

4 f is an adjoint equivalence.

The last three are supp-free h-props, so we have equivalences

isEquiv(f) ' isHIso(f) ' isAdjEquiv(f)

Definition

The type of equivalences between A,B : Type is

Equiv(A,B) :=
∑

f : A→B

isEquiv(f).

The short five lemma

hfiber(f) //

r

��

A
f //

s

��

B

t

��

hfiber(g) // C g
// D

Theorem

• If s and t are equivalences, so is r .

• If r and t are equivalences, so is s.

This is a theorem in type theory: A, B, C , D are types and we
have a proof term(

p1 : isEquiv(s)
)
,
(
p2 : isEquiv(t)

)
`
(
q : isEquiv(r)

)

The short five lemma

hfiber(f) //

r

��

A
f //

s

��

B

t

��

hfiber(g) // C g
// D

Theorem

• If s and t are equivalences, so is r .

• If r and t are equivalences, so is s.

This is a theorem in type theory: A, B, C , D are types and we
have a proof term(

p1 : isEquiv(s)
)
,
(
p2 : isEquiv(t)

)
`
(
q : isEquiv(r)

)

The 3× 3 lemma

hfiber(h)
r //

��

hfiber(k)

��

hfiber(f) //

s

��

A
f //

h

��

B

k

��

hfiber(g) // C g
// D

Theorem

There is an equivalence hfiber(r) ' hfiber(s).

(Also a theorem in type theory.)

Homotopical uniqueness

Theorem

For any types A, B, C, the map

λf .
(
λa.f (inl(a)) , λb.f (inr(b))

)
: CA+B → CA × CB

is an equivalence (using the dependent eliminator).

The type CA+B → CA × CB should be more consistently
(but less legibly) written:

(CA × CB)C
A+B

or
(
(A + B)→ C

)
→
(
(A→ C)× (B → C)

)
Awodey–Gambino–Sojakova have proven a much more general
version of this, in the context we’ll discuss on Friday.

Homotopical uniqueness

Theorem

For any types A, B, C, the map

λf .
(
λa.f (inl(a)) , λb.f (inr(b))

)
: CA+B → CA × CB

is an equivalence (using the dependent eliminator).

The type CA+B → CA × CB should be more consistently
(but less legibly) written:

(CA × CB)C
A+B

or
(
(A + B)→ C

)
→
(
(A→ C)× (B → C)

)

Awodey–Gambino–Sojakova have proven a much more general
version of this, in the context we’ll discuss on Friday.

Homotopical uniqueness

Theorem

For any types A, B, C, the map

λf .
(
λa.f (inl(a)) , λb.f (inr(b))

)
: CA+B → CA × CB

is an equivalence (using the dependent eliminator).

The type CA+B → CA × CB should be more consistently
(but less legibly) written:

(CA × CB)C
A+B

or
(
(A + B)→ C

)
→
(
(A→ C)× (B → C)

)
Awodey–Gambino–Sojakova have proven a much more general
version of this, in the context we’ll discuss on Friday.

Homotopical function extensionality

For f , g : BA, there is a term

happly :

(
(f = g)→

∏
a : A

(f (a) = g(a))

)

defined by identity elimination:

happly(reflf) := λa.reflf (a)

Theorem (Voevodsky)

happly is an equivalence (using the naive funext).

Also works for dependent functions.

Homotopical function extensionality

For f , g : BA, there is a term

happly :

(
(f = g)→

∏
a : A

(f (a) = g(a))

)

defined by identity elimination:

happly(reflf) := λa.reflf (a)

Theorem (Voevodsky)

happly is an equivalence (using the naive funext).

Also works for dependent functions.

Outline

1 Dependent eliminators

2 The structure of homotopy types

3 Logic

4 Equivalences

5 Univalence

Paths in the universe

The only type whose path-types we have not determined (up to
equivalence, in terms of other path-spaces) is the universe “Type”.

B //

��

_� T̃ype

��

A // Type

If Type is the “classifying space” of types, then a path in Type
should be an equivalence of types.

Paths in the universe

The only type whose path-types we have not determined (up to
equivalence, in terms of other path-spaces) is the universe “Type”.

B //

��

_� T̃ype

��

A // Type

If Type is the “classifying space” of types, then a path in Type
should be an equivalence of types.

The univalence axiom

For A,B : Type, we have

pathToEquivA,B :
(

(A = B)→ Equiv(A,B)
)

defined by identity elimination.
Note: (A = B) is a path-type of “Type”.

The Univalence Axiom (Voevodsky)

For all A,B, the function pathToEquivA,B is an equivalence.∏
A : Type

∏
B : Type

isEquiv(pathToEquivA,B)

In particular, every equivalence yields a path between types.

The univalence axiom

For A,B : Type, we have

pathToEquivA,B :
(

(A = B)→ Equiv(A,B)
)

defined by identity elimination.
Note: (A = B) is a path-type of “Type”.

The Univalence Axiom (Voevodsky)

For all A,B, the function pathToEquivA,B is an equivalence.∏
A : Type

∏
B : Type

isEquiv(pathToEquivA,B)

In particular, every equivalence yields a path between types.

The meaning of univalence

The meaning of univalence

Given an equivalence f : A ∼−→ B, we can identify A with B along f .

In other words:

• When talking about A, B, and f , we “may as well assume”
that B is A, and f is 1A.

• Or: equivalent types can be treated as identical.

Proof.

Use the inverse of pathToEquiv, then the eliminator of equality.

This is something we do informally all the time in mathematics.
The univalence axiom gives it a precise formal expression.

The meaning of univalence

The meaning of univalence

Given an equivalence f : A ∼−→ B, we can identify A with B along f .

In other words:

• When talking about A, B, and f , we “may as well assume”
that B is A, and f is 1A.

• Or: equivalent types can be treated as identical.

Proof.

Use the inverse of pathToEquiv, then the eliminator of equality.

This is something we do informally all the time in mathematics.
The univalence axiom gives it a precise formal expression.

The meaning of univalence

The meaning of univalence

Given an equivalence f : A ∼−→ B, we can identify A with B along f .

In other words:

• When talking about A, B, and f , we “may as well assume”
that B is A, and f is 1A.

• Or: equivalent types can be treated as identical.

Proof.

Use the inverse of pathToEquiv, then the eliminator of equality.

This is something we do informally all the time in mathematics.
The univalence axiom gives it a precise formal expression.

The uses of univalence

1 The homotopy theory is nontrivial (Type is not an h-set).

2 (Voevodsky) Univalence implies funext.

3 For any type F , the type∑
A : Type

supp(A = F)

is the classifying space for bundles with fiber F .

4 Computing homotopy groups! (on Friday)

5 Many more . . .

The uses of univalence

1 The homotopy theory is nontrivial (Type is not an h-set).

2 (Voevodsky) Univalence implies funext.

3 For any type F , the type∑
A : Type

supp(A = F)

is the classifying space for bundles with fiber F .

4 Computing homotopy groups! (on Friday)

5 Many more . . .

The uses of univalence

1 The homotopy theory is nontrivial (Type is not an h-set).

2 (Voevodsky) Univalence implies funext.

3 For any type F , the type∑
A : Type

supp(A = F)

is the classifying space for bundles with fiber F .

4 Computing homotopy groups! (on Friday)

5 Many more . . .

The uses of univalence

1 The homotopy theory is nontrivial (Type is not an h-set).

2 (Voevodsky) Univalence implies funext.

3 For any type F , the type∑
A : Type

supp(A = F)

is the classifying space for bundles with fiber F .

4 Computing homotopy groups! (on Friday)

5 Many more . . .

The uses of univalence

1 The homotopy theory is nontrivial (Type is not an h-set).

2 (Voevodsky) Univalence implies funext.

3 For any type F , the type∑
A : Type

supp(A = F)

is the classifying space for bundles with fiber F .

4 Computing homotopy groups! (on Friday)

5 Many more . . .

Internalizing h-props

Theorem

For any A, isProp(isProp(A)).

Proof.

• Suppose H,K : isProp(A); we want (H = K).

• By funext, suffices to show H(x , y) = K (x , y) for all x , y : A.

• Now map(K (x ,−),H(x , y)) is a path in
∑

z(x = z) from
K (x , x) to K (x , y). In particular, it contains a path

trans(H(x , y),K (x , x)) = K (x , y)

• Hence H(x , y) ∗ K (x , x) = K (x , y) (a fact).

• It suffices to prove K (x , x) = reflx .

• The above argument with H being K , and y being x , yields
K (x , x) ∗ K (x , x) = K (x , x).

• Now cancel K (x , x) (i.e. concatenate with K (x , x)−1).

Internalizing h-props

Theorem

For any A, isProp(isProp(A)).

Proof.

• Suppose H,K : isProp(A); we want (H = K).

• By funext, suffices to show H(x , y) = K (x , y) for all x , y : A.

• Now map(K (x ,−),H(x , y)) is a path in
∑

z(x = z) from
K (x , x) to K (x , y). In particular, it contains a path

trans(H(x , y),K (x , x)) = K (x , y)

• Hence H(x , y) ∗ K (x , x) = K (x , y) (a fact).

• It suffices to prove K (x , x) = reflx .

• The above argument with H being K , and y being x , yields
K (x , x) ∗ K (x , x) = K (x , x).

• Now cancel K (x , x) (i.e. concatenate with K (x , x)−1).

Internalizing h-props

Theorem

For any A, isProp(isProp(A)).

Proof.

• Suppose H,K : isProp(A); we want (H = K).

• By funext, suffices to show H(x , y) = K (x , y) for all x , y : A.

• Now map(K (x ,−),H(x , y)) is a path in
∑

z(x = z) from
K (x , x) to K (x , y). In particular, it contains a path

trans(H(x , y),K (x , x)) = K (x , y)

• Hence H(x , y) ∗ K (x , x) = K (x , y) (a fact).

• It suffices to prove K (x , x) = reflx .

• The above argument with H being K , and y being x , yields
K (x , x) ∗ K (x , x) = K (x , x).

• Now cancel K (x , x) (i.e. concatenate with K (x , x)−1).

Internalizing h-props

Theorem

For any A, isProp(isProp(A)).

Proof.

• Suppose H,K : isProp(A); we want (H = K).

• By funext, suffices to show H(x , y) = K (x , y) for all x , y : A.

• Now map(K (x ,−),H(x , y)) is a path in
∑

z(x = z) from
K (x , x) to K (x , y). In particular, it contains a path

trans(H(x , y),K (x , x)) = K (x , y)

• Hence H(x , y) ∗ K (x , x) = K (x , y) (a fact).

• It suffices to prove K (x , x) = reflx .

• The above argument with H being K , and y being x , yields
K (x , x) ∗ K (x , x) = K (x , x).

• Now cancel K (x , x) (i.e. concatenate with K (x , x)−1).

Internalizing h-props

Theorem

For any A, isProp(isProp(A)).

Proof.

• Suppose H,K : isProp(A); we want (H = K).

• By funext, suffices to show H(x , y) = K (x , y) for all x , y : A.

• Now map(K (x ,−),H(x , y)) is a path in
∑

z(x = z) from
K (x , x) to K (x , y). In particular, it contains a path

trans(H(x , y),K (x , x)) = K (x , y)

• Hence H(x , y) ∗ K (x , x) = K (x , y) (a fact).

• It suffices to prove K (x , x) = reflx .

• The above argument with H being K , and y being x , yields
K (x , x) ∗ K (x , x) = K (x , x).

• Now cancel K (x , x) (i.e. concatenate with K (x , x)−1).

Internalizing h-props

Theorem

For any A, isProp(isProp(A)).

Proof.

• Suppose H,K : isProp(A); we want (H = K).

• By funext, suffices to show H(x , y) = K (x , y) for all x , y : A.

• Now map(K (x ,−),H(x , y)) is a path in
∑

z(x = z) from
K (x , x) to K (x , y). In particular, it contains a path

trans(H(x , y),K (x , x)) = K (x , y)

• Hence H(x , y) ∗ K (x , x) = K (x , y) (a fact).

• It suffices to prove K (x , x) = reflx .
• The above argument with H being K , and y being x , yields

K (x , x) ∗ K (x , x) = K (x , x).

• Now cancel K (x , x) (i.e. concatenate with K (x , x)−1).

Internalizing h-props

Theorem

For any A, isProp(isProp(A)).

Proof.

• Suppose H,K : isProp(A); we want (H = K).

• By funext, suffices to show H(x , y) = K (x , y) for all x , y : A.

• Now map(K (x ,−),H(x , y)) is a path in
∑

z(x = z) from
K (x , x) to K (x , y). In particular, it contains a path

trans(H(x , y),K (x , x)) = K (x , y)

• Hence H(x , y) ∗ K (x , x) = K (x , y) (a fact).

• It suffices to prove K (x , x) = reflx .
• The above argument with H being K , and y being x , yields

K (x , x) ∗ K (x , x) = K (x , x).
• Now cancel K (x , x) (i.e. concatenate with K (x , x)−1).

	Appendix

