Categorical models of homotopy type theory

Michael Shulman

12 April 2012

Homotopy type theory in higher categories

Recall:

homotopy type theory	\longleftrightarrow	$(\infty,1)$ -categories
\times , + types	\longleftrightarrow	products, coproducts
equality types $(x = y)$	\longleftrightarrow	diagonals
∏ types	\longleftrightarrow	local cartesian closure
univalent universe Type	\longleftrightarrow	object classifier

Two kinds of equality

Problem

Type theory is stricter than $(\infty, 1)$ -categories.

In type theory, we have two kinds of "equality":

- 1 Equality witnessed by inhabitants of equality types (= paths).
- **2** Computational equality: $(\lambda x.b)(a)$ evaluates to b[a/x].

These play different roles: type checking depends on computational equality.

- if a evaluates to b, and c: C(a), then also c: C(b).
 - In particular, if a evaluates to b, then $refl_b$: (a = b).
- if p:(a=b) and c:C(a), then only transport(p,c):C(b).

Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

$$g \circ f := \lambda x.g(f(x))$$

$$h \circ (g \circ f) = \lambda x.h((\lambda x.g(f(x)))(x)) \leadsto \lambda x.h(g(f(x)))$$

$$(h \circ g) \circ f = \lambda x.(\lambda y.h(g(y)))(f(x)) \leadsto \lambda x.h(g(f(x)))$$

- This is the sort of issue that homotopy theorists are intimately familiar with!
- We need a model for $(\infty, 1)$ -categories with (at least) a strictly associative composition law.

Display map categories

Forget everything you know about homotopy theory; let's see how the type theorists come at it.

Definition

A display map category is a category with

- A terminal object.
- A subclass of its morphisms called the display maps, denoted $P \rightarrow A$ or $P \rightarrow A$.
- Any pullback of a display map exists and is a display map.
- A display map P → A is a type dependent on A.
- A display map $A \rightarrow 1$ is a plain type (dependent on nothing).
- Pullback is substitution.

Dependent sums of display maps

$$(x: A) \vdash (B(x): \mathsf{Type})$$

If the types B(x) are the fibers of B woheadrightarrow A, their dependent sum $\sum_{x \in A} B(x)$ should be the object B.

$$(x: A) \vdash (B(x): \mathsf{Type})$$

$$\begin{matrix} B \\ \downarrow \\ A \\ \downarrow \\ \downarrow \\ 1 \end{matrix}$$

$$\vdash \left(\sum_{x: A} B(x): \mathsf{Type}\right)$$

$$\begin{matrix} B \\ \downarrow \\ \downarrow \\ 1 \end{matrix}$$

Dependent sums in context

More generally:

$$(x: A), (y: B(x)) \vdash (C(x, y) : \mathsf{Type})$$

$$\begin{cases} B \\ \downarrow \\ A \end{cases}$$

$$(x: A) \vdash \left(\sum_{y: B(x)} C(x, y) : \mathsf{Type} \right)$$

Dependent sums

display maps compose

Aside: adjoints to pullback

• In a category \mathscr{C} , if pullbacks along $f:A\to B$ exist, then the functor

$$f^*: \mathscr{C}/B \longrightarrow \mathscr{C}/A$$

has a left adjoint Σ_f given by composition with f.

• If f is a display map and display maps compose, then Σ_f restricts to a functor

$$(\mathscr{C}/A)_{\mathsf{disp}} \longrightarrow (\mathscr{C}/B)_{\mathsf{disp}}$$

implementing dependent sums.

• A right adjoint to f^* , if one exists, is an "object of sections". $\mathscr E$ is locally cartesian closed iff all such right adjoints Π_f exist.

Dependent products of display maps

$$(x: A), (y: B(x)) \vdash (C(x, y): \mathsf{Type})$$

$$\downarrow \\ B \longrightarrow A$$

$$(x: A) \vdash \left(\prod_{y: B(x)} C(x, y): \mathsf{Type}\right)$$

$$\downarrow \\ B \longrightarrow A$$

Dependent products

"display maps exponentiate"

The dependent identity type

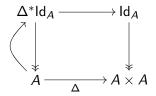
$$(x: A), (y: A) \vdash ((x = y): \mathsf{Type})$$

must be a display map

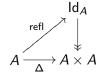
The reflexivity constructor

$$(x: A) \vdash (refl(x): (x = x))$$

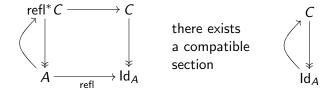
must be a section



or equivalently a lifting

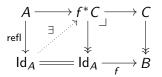


The eliminator says given a dependent type with a section



In other words, we have the lifting property

In fact, refl has the left lifting property w.r.t. all display maps.



Conclusion

Identity types factor $\Delta \colon A \to A \times A$ as

$$A \xrightarrow{\mathsf{refl}} \mathsf{Id}_A \xrightarrow{q} A \times A$$

where q is a display map and refl lifts against all display maps.

Weak factorization systems

Definition

We say $j \square f$ if any commutative square

$$\begin{array}{ccc}
X \longrightarrow B \\
\downarrow & \exists & \downarrow f \\
Y \longrightarrow A
\end{array}$$

admits a (non-unique) diagonal filler.

- $\mathcal{J}^{\square} = \{ f \mid j \square f \quad \forall j \in \mathcal{J} \}$
- ${}^{\square}\mathcal{F} = \{ j \mid j \bowtie f \quad \forall f \in \mathcal{F} \}$

Definition

A weak factorization system in a category is $(\mathcal{J}, \mathcal{F})$ such that

- **2** Every morphism factors as $f \circ j$ for some $f \in \mathcal{F}$ and $j \in \mathcal{J}$.

General factorizations

Theorem (Gambino-Garner)

In a display map category that models identity types, any morphism $g: A \rightarrow B$ factors as

$$A \xrightarrow{j} Ng \xrightarrow{f} B$$

where f is a display map, and j lifts against all display maps.

$$(y: B) \vdash Ng(y) := hfiber(g, y) := \sum_{x: A} (g(x) = y)$$

is the type-theoretic mapping path space.

The identity type wfs

Corollary (Gambino-Garner)

In a type theory with identity types,

$$(\Box(display\ maps),(\Box(display\ maps))\Box)$$

is a weak factorization system.

This behaves very much like (acyclic cofibrations, fibrations):

- Dependent types are like fibrations (recall "transport").
- Every map in

 [□] (display maps) is an equivalence; in fact, the inclusion of a deformation retract.

Modeling identity types

Conversely:

Theorem (Awodey-Warren, Garner-van den Berg)

In a display map category, if

$$(\Box(\textit{display maps}), (\Box(\textit{display maps}))\Box)$$

is a "pullback-stable" weak factorization system, then the category (almost*) models identity types.

identity types $\begin{tabular}{ll} \longleftrightarrow & \end{tabular} \begin{tabular}{ll} weak factorization systems \\ \end{tabular}$

Model categories

Definition (Quillen)

A model category is a category **C** with limits and colimits and three classes of maps:

- C =cofibrations
- $\mathcal{F} = \text{fibrations}$
- W = weak equivalences

such that

- $oldsymbol{1}{\mathcal{W}}$ has the 2-out-of-3 property.
- **2** $(C \cap W, \mathcal{F})$ and $(C, \mathcal{F} \cap W)$ are weak factorization systems.

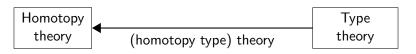
Type-theoretic model categories

Corollary

Let ${\mathcal M}$ be a model category such that

- $oldsymbol{0}$ \mathcal{M} (as a category) is locally cartesian closed.
- $2 \mathcal{M}$ is right proper.
- 3 The cofibrations are the monomorphisms.

Then \mathcal{M} (almost*) models type theory with dependent sums, dependent products, and identity types.



Examples

- Simplicial sets with the Quillen model structure.
- Any injective model structure on simplicial presheaves.

Homotopy type theory in categories

$$(x: A) \vdash p: isProp(B(x))$$
 $\iff (x: A), (u: B(x)), (v: B(x)) \vdash (p_{u,v}: (u = v))$
 $\iff The path object P_AB has a section in \mathcal{M}/A
 $\iff Any two maps into B are homotopic over A$$

$$(x:A) \vdash p: \mathsf{isContr}(B(x))$$
 $\iff (x:A) \vdash p: \mathsf{isProp}(B(x)) \times B(x)$
 $\iff \mathsf{Any} \mathsf{two} \mathsf{maps} \mathsf{into} B \mathsf{ are homotopic} \mathsf{ over } A$
 $\iff \mathsf{and} B \twoheadrightarrow A \mathsf{ has} \mathsf{ a section}$
 $\iff B \twoheadrightarrow A \mathsf{ is} \mathsf{ an acyclic} \mathsf{ fibration}$

Homotopy type theory in categories

For
$$f: A \to B$$
,
 $\vdash p: \mathsf{isEquiv}(f) \iff \vdash \prod_{y: B} \mathsf{isContr}(\mathsf{hfiber}(f, y))$
 $\iff (y: B) \vdash \mathsf{isContr}(\mathsf{hfiber}(f, y))$
 $\iff \mathsf{hfiber}(f) \twoheadrightarrow A \mathsf{ is an acyclic fibration}$
 $\iff f \mathsf{ is a (weak) equivalence}$

(Recall hfiber is the factorization $A \rightarrow Nf \twoheadrightarrow B$ of f.)

Conclusion

Any theorem about "equivalences" that we can prove in type theory yields a conclusion about weak equivalences in appropriate model categories.

Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

$$\begin{cases}
f^*g^*A & \longrightarrow g^*P & \longrightarrow P \\
\downarrow & \downarrow & \downarrow \\
A & \longrightarrow B & \longrightarrow C
\end{cases}$$

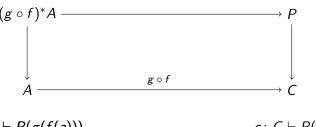
$$a: A \vdash P(g(f(a)))$$
 $b: B \vdash P(g(b))$ $c: C \vdash P(c)$

Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.



$$a: A \vdash P(g(f(a))) \qquad c: C \vdash P(c)$$

But, of course, f^*g^*P is only isomorphic to $(g \circ f)^*P$.

Coherence with a universe

There are several resolutions; perhaps the cleanest is:

Solution (Voevodsky)

Represent dependent types by their classifying maps into a universe object.

Now substitution is composition, which is strictly associative (in our model category):

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{P} U$$

$$A \xrightarrow{g \circ f} C \xrightarrow{P} U$$

We needed a universe object anyway, to model the type Type and prove univalence.

New problem

Need very strict models for universe objects.

Representing fibrations

(Following Kapulkin–Lumsdaine–Voevodsky)

Goal

A universe object in simplicial sets giving coherence and univalence.

Simplicial sets are a presheaf category, so there is a standard trick to build representing objects.

$$U_n \cong \operatorname{\mathsf{Hom}}(\Delta^n,U) \simeq \{ \text{fibrations over } \Delta^n \}$$

But $n \mapsto \{\text{fibrations over } \Delta^n\}$ is only a pseudofunctor; we need to rigidify it.

Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration $p: E \to B$ together with, for every $x \in B_n$, a well-ordering on $p^{-1}(x) \subseteq E_n$.

Two well-ordered Kan fibrations are isomorphic in at most one way which preserves the orders.

Definition

$$U_n \coloneqq \left\{X \twoheadrightarrow \Delta^n \text{ a well-ordered fibration}\right\} \Big/_{\text{ordered}} \cong$$

$$\widetilde{U}_n := \left\{ (X,x) \ \middle| \ X woheadrightarrow \Delta^n \ ext{well-ordered fibration, } x \in X_n
ight\} \middle/_{ ext{ordered}} \cong$$

(with some size restriction, to make them sets).

The universal Kan fibration

Theorem

The forgetful map $\widetilde{U} \to U$ is a Kan fibration.

Proof.

A map $E \to B$ is a Kan fibration if and only if every pullback

$$b^*E \xrightarrow{J} E$$

$$\downarrow \qquad \downarrow$$

$$\Delta^n \xrightarrow{b} B$$

is such, since the horns $\Lambda^n_k \hookrightarrow \Delta^n$ have codomain Δ^n .

Thus, of course, every pullback of $\widetilde{U} \to U$ is a Kan fibration.

The universal Kan fibration

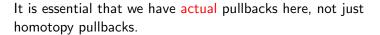
Theorem

Every (small) Kan fibration E o B is some pullback of $\widetilde{U} o U$:

$$\begin{array}{ccc}
E \longrightarrow \widetilde{U} \\
\downarrow & \downarrow \\
B \longrightarrow U
\end{array}$$

Proof.

Choose a well-ordering on each fiber, and map $x \in B_n$ to the isomorphism class of the well-ordered fibration $b^*(E) \rightarrow \Delta^n$.



Type theory in the universe

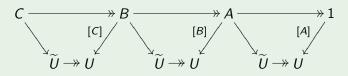
Let the size-bound for U be inaccessible (a Grothendieck universe). Then small fibrations are closed under all categorical constructions.

Now we can interpret type theory with coherence, using morphisms into \boldsymbol{U} for dependent types.

Example

A context

becomes a sequence of fibrations together with classifying maps:



in which each trapezoid is a pullback.

Strict cartesian products

Every type-theoretic operation can be done once over U, then implemented by composition.

Example (Cartesian product)

- Pull \widetilde{U} back to $U \times U$ along the two projections π_1 , π_2 .
- Their fiber product over $U \times U$ admits a classifying map:

$$(\pi_1^*\widetilde{U}) \times_{U \times U} (\pi_2^*\widetilde{U}) \longrightarrow \widetilde{U}$$

$$\downarrow \qquad \qquad \downarrow$$

$$U \times U \longrightarrow V$$

• Define the product of [A]: $X \to U$ and [B]: $X \to U$ to be

$$X \xrightarrow{([A],[B])} U \times U \xrightarrow{[\times]} U$$

This has strict substitution.

Nested universes

Problem

So far the object U lives outside the type theory.

We want it inside, giving a universe type "Type" and univalence.

Solution

Let U' be a bigger universe. If U is U'-small and fibrant, then it has a classifying map:

$$\begin{array}{c} U \longrightarrow \widetilde{U}' \\ \downarrow & \downarrow \\ 1 \longrightarrow U' \end{array}$$

and the type theory defined using U' has a universe type u.

U is fibrant

Theorem

U is fibrant.

Outline of proof.

With hard work, we can extend $f^*\widetilde{U}$ to a fibration over Δ^n :

$$\begin{array}{ccc}
f^*\widetilde{U} & \longrightarrow P \\
\downarrow & & \downarrow \\
\Lambda_k^n & \longrightarrow \Delta^n
\end{array}$$

and extend the well-ordering of $f^*\widetilde{U}$ to P, yielding $g:\Delta^n\to U$ with gj=f (and $g^*\widetilde{U}\cong P$).

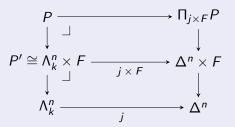
Extending fibrations

Lemma

Any fibration $P \to \Lambda_k^n$ is the pullback of some fibration over Δ^n .

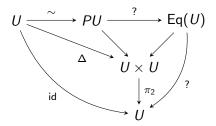
Proof.

- Let $P' \subseteq P$ be a minimal subfibration.
- There is a retraction $P \rightarrow P'$ that is an acyclic fibration.
- Since Λⁿ_k is contractible, the minimal fibration P' → Λⁿ_k is isomorphic to a trivial bundle Λⁿ_k × F → Λⁿ_k.



Univalence

We want to show that $PU \to Eq(U)$ is an equivalence:



It suffices to show:

- **1** The composite $U \to \text{Eq}(U)$ is an equivalence.
- **2** The projection $Eq(U) \rightarrow U$ is an equivalence.
- **3** The projection $Eq(U) \rightarrow U$ is an acyclic fibration.

Univalence

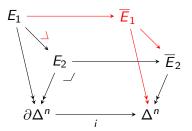
By representability, a commutative square with a lift

$$\partial \Delta^n \longrightarrow \operatorname{Eq}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

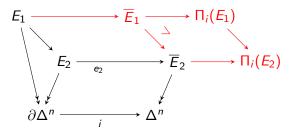
$$\Delta^n \longrightarrow U$$

corresponds to a diagram



with $E_1 \to E_2$ an equivalence.and $\overline{E}_1 \to \overline{E}_2$ equivalences.

Univalence



- By factorization, consider separately the cases when $E_1 \to E_2$ is (1) an acyclic fibration or (2) an acyclic cofibration.
- (1) $\overline{E}_1 \to \overline{E}_2$ is an acyclic fibration (Π_i preserves such).
- (2) \overline{E}_1 is a deformation retract of \overline{E}_2 .

$(\infty,1)$ -toposes

Definition

An $(\infty, 1)$ -topos is an $(\infty, 1)$ -category that is a left-exact localization of an $(\infty, 1)$ -presheaf category.

Examples

- ∞-groupoids (plays the role of the 1-topos Set)
- Parametrized homotopy theory over any space X
- G-equivariant homotopy theory for any group G
- ∞-sheaves/stacks on any space
- "Smooth ∞ -groupoids" (or "algebraic" etc.)

Univalence in categories

Definition (Rezk)

An object classifier in an $(\infty,1)$ -category $\mathcal C$ is a morphism $U \to U$ such that pullback

$$\begin{array}{ccc}
B & \longrightarrow \widetilde{U} \\
\downarrow & & \downarrow \\
A & \longrightarrow U
\end{array}$$

induces an equivalence of ∞ -groupoids

$$\mathsf{Hom}(A,U) \xrightarrow{\sim} \mathsf{Core}(\mathcal{C}/A)_{\mathsf{small}}$$

("Core" is the maximal sub-∞-groupoid.)

$(\infty,1)$ -toposes

Theorem (Rezk)

An $(\infty, 1)$ -category \mathcal{C} is an $(\infty, 1)$ -topos if and only if

- $oldsymbol{0}$ C is locally presentable.
- ${f 2}$ C is locally cartesian closed.
- **3** κ -compact objects have object classifiers for $\kappa \gg 0$.

Corollary

If a combinatorial model category $\mathcal M$ interprets dependent type theory as before (i.e. it is locally cartesian closed, right proper, and the cofibrations are the monomorphisms), and contains universes for κ -compact objects that satisfy the univalence axiom, then the $(\infty,1)$ -category that it presents is an $(\infty,1)$ -topos.

$(\infty,1)$ -toposes

Conjecture

Every $(\infty, 1)$ -topos can be presented by a model category which interprets dependent type theory with the univalence axiom.

Homotopy type theory is the internal logic of $(\infty, 1)$ -toposes.

If this is true, then anything we prove in homotopy type theory (which we can also verify with a computer) will automatically be true internally to any $(\infty,1)$ -topos. The "constructive core" of homotopy theory should be provable in this way, in a uniform way for "all homotopy theories".

Status of the conjecture

