
Categorical models of homotopy type theory

Michael Shulman

12 April 2012



Outline

1 Homotopy type theory in model categories

2 The universal Kan fibration

3 Models in (∞, 1)-toposes



Homotopy type theory in higher categories

Recall:

homotopy type theory ←→ (∞, 1)-categories

×, + types ←→ products, coproducts
equality types (x = y) ←→ diagonals∏

types ←→ local cartesian closure
univalent universe Type ←→ object classifier



Homotopy type theory in higher categories

Recall:

homotopy type theory ←→ (∞, 1)-categories

×, + types ←→ products, coproducts
equality types (x = y) ←→ diagonals∏

types ←→ local cartesian closure
univalent universe Type ←→ object classifier



Two kinds of equality

Problem

Type theory is stricter than (∞, 1)-categories.

In type theory, we have two kinds of “equality”:

1 Equality witnessed by inhabitants of equality types (= paths).

2 Computational equality: (λx .b)(a) evaluates to b[a/x ].

These play different roles: type checking depends on
computational equality.

• if a evaluates to b, and c : C (a), then also c : C (b).
• In particular, if a evaluates to b, then reflb : (a = b).

• if p : (a = b) and c : C (a), then only transport(p, c) : C (b).



Two kinds of equality

Problem

Type theory is stricter than (∞, 1)-categories.

In type theory, we have two kinds of “equality”:

1 Equality witnessed by inhabitants of equality types (= paths).

2 Computational equality: (λx .b)(a) evaluates to b[a/x ].

These play different roles: type checking depends on
computational equality.

• if a evaluates to b, and c : C (a), then also c : C (b).
• In particular, if a evaluates to b, then reflb : (a = b).

• if p : (a = b) and c : C (a), then only transport(p, c) : C (b).



Two kinds of equality

Problem

Type theory is stricter than (∞, 1)-categories.

In type theory, we have two kinds of “equality”:

1 Equality witnessed by inhabitants of equality types (= paths).

2 Computational equality: (λx .b)(a) evaluates to b[a/x ].

These play different roles: type checking depends on
computational equality.

• if a evaluates to b, and c : C (a), then also c : C (b).
• In particular, if a evaluates to b, then reflb : (a = b).

• if p : (a = b) and c : C (a), then only transport(p, c) : C (b).



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
(()

(x)
)
 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
()

(f (x)) λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
((

g ◦ f
)
(x)
)

 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
()

(f (x)) λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
((
λx .g(f (x))

)
(x)
)

 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
()

(f (x)) λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
((
λx .g(f (x))

)
(x)
)
 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
()

(f (x)) λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
((
λx .g(f (x))

)
(x)
)
 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
(

h ◦ g
)

(f (x))

 λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
((
λx .g(f (x))

)
(x)
)
 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
(
λy .h(g(y))

)
(f (x))

 λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
((
λx .g(f (x))

)
(x)
)
 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
(
λy .h(g(y))

)
(f (x)) λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

g ◦ f := λx .g(f (x))

h ◦ (g ◦ f ) = λx .h
((
λx .g(f (x))

)
(x)
)
 λx .h(g(f (x)))

(h ◦ g) ◦ f = λx .
(
λy .h(g(y))

)
(f (x)) λx .h(g(f (x)))

• This is the sort of issue that homotopy theorists are intimately
familiar with!

• We need a model for (∞, 1)-categories with (at least) a
strictly associative composition law.



Display map categories

Forget everything you know about homotopy theory; let’s see how
the type theorists come at it.

Definition

A display map category is a category with

• A terminal object.

• A subclass of its morphisms called the display maps, denoted
P � A or P _ A.

• Any pullback of a display map exists and is a display map.

• A display map P � A is a type dependent on A.

• A display map A� 1 is a plain type (dependent on nothing).

• Pullback is substitution.



Display map categories

Forget everything you know about homotopy theory; let’s see how
the type theorists come at it.

Definition

A display map category is a category with

• A terminal object.

• A subclass of its morphisms called the display maps, denoted
P � A or P _ A.

• Any pullback of a display map exists and is a display map.

• A display map P � A is a type dependent on A.

• A display map A� 1 is a plain type (dependent on nothing).

• Pullback is substitution.



Dependent sums of display maps

(x : A) ` (B(x) : Type)

If the types B(x) are the fibers of B � A, their dependent sum∑
x : A B(x) should be the object B.

(x : A) ` (B(x) : Type)

B

����

A

����

1

`
(∑

x : A B(x) : Type
) B

����

1



Dependent sums in context

More generally:

(x : A), (y : B(x)) ` (C (x , y) : Type)

C

����

B

����

A

(x : A) `
(∑

y : B(x) C (x , y) : Type
) C

����

A

Dependent sums ←→ display maps compose



Dependent sums in context

More generally:

(x : A), (y : B(x)) ` (C (x , y) : Type)

C

����

B

����

A

(x : A) `
(∑

y : B(x) C (x , y) : Type
) C

����

A

Dependent sums ←→ display maps compose



Aside: adjoints to pullback

• In a category C , if pullbacks along f : A→ B exist, then the
functor

f ∗ : C /B −→ C /A

has a left adjoint Σf given by composition with f .

• If f is a display map and display maps compose, then Σf

restricts to a functor

(C /A)disp −→ (C /B)disp

implementing dependent sums.

• A right adjoint to f ∗, if one exists, is an “object of sections”.
C is locally cartesian closed iff all such right adjoints Πf exist.



Aside: adjoints to pullback

• In a category C , if pullbacks along f : A→ B exist, then the
functor

f ∗ : C /B −→ C /A

has a left adjoint Σf given by composition with f .

• If f is a display map and display maps compose, then Σf

restricts to a functor

(C /A)disp −→ (C /B)disp

implementing dependent sums.

• A right adjoint to f ∗, if one exists, is an “object of sections”.
C is locally cartesian closed iff all such right adjoints Πf exist.



Aside: adjoints to pullback

• In a category C , if pullbacks along f : A→ B exist, then the
functor

f ∗ : C /B −→ C /A

has a left adjoint Σf given by composition with f .

• If f is a display map and display maps compose, then Σf

restricts to a functor

(C /A)disp −→ (C /B)disp

implementing dependent sums.

• A right adjoint to f ∗, if one exists, is an “object of sections”.
C is locally cartesian closed iff all such right adjoints Πf exist.



Dependent products of display maps

(x : A), (y : B(x)) ` (C (x , y) : Type)

C

����

B // // A

(x : A) `
(∏

y : B(x) C (x , y) : Type
) ΠBC

����

B // // A

Dependent products ←→ “display maps exponentiate”



Dependent products of display maps

(x : A), (y : B(x)) ` (C (x , y) : Type)

C

����

B // // A

(x : A) `
(∏

y : B(x) C (x , y) : Type
) ΠBC

����

B // // A

Dependent products ←→ “display maps exponentiate”



Identity types for display maps

The dependent identity type

(x : A), (y : A) ` ((x = y) : Type)

must be a display map
IdA

����

A× A



Identity types for display maps

The reflexivity constructor

(x : A) ` (refl(x) : (x = x))

must be a section

∆∗IdA
//

����

IdA

����

A
∆

//

@@

A× A

or equivalently a lifting

IdA

����

A
∆

//

refl
<<yyyyyyyyy

A× A



Identity types for display maps

The reflexivity constructor

(x : A) ` (refl(x) : (x = x))

must be a section

∆∗IdA
//

����

IdA

����

A
∆

//

@@

A× A

or equivalently a lifting

IdA

����

A
∆

//

refl
<<yyyyyyyyy

A× A



Identity types for display maps

The eliminator says given a dependent type with a section

refl∗C //

����

C

����

A
refl

//

??

IdA

there exists
a compatible
section

C

����

IdA

??

In other words, we have the lifting property

A //

refl
��

C

����

IdA

∃
==

IdA



Identity types for display maps

The eliminator says given a dependent type with a section

refl∗C //

����

C

����

A
refl

//

??

IdA

there exists
a compatible
section

C

����

IdA

??

In other words, we have the lifting property

A //

refl
��

C

����

IdA

∃
==

IdA



Identity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A //

refl
��

C

����

IdA f
// B

Conclusion

Identity types factor ∆: A→ A× A as

A
refl−−→ IdA

q
−−� A× A

where q is a display map and refl lifts against all display maps.



Identity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A //

refl
��

f ∗C

����

//

_� C

����

IdA IdA f
// B

Conclusion

Identity types factor ∆: A→ A× A as

A
refl−−→ IdA

q
−−� A× A

where q is a display map and refl lifts against all display maps.



Identity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A //

refl
��

f ∗C

����

//

_� C

����

IdA

∃
<<

IdA f
// B

Conclusion

Identity types factor ∆: A→ A× A as

A
refl−−→ IdA

q
−−� A× A

where q is a display map and refl lifts against all display maps.



Identity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A //

refl
��

f ∗C

����

//

_� C

����

IdA

∃
<<

IdA f
// B

Conclusion

Identity types factor ∆: A→ A× A as

A
refl−−→ IdA

q
−−� A× A

where q is a display map and refl lifts against all display maps.



Weak factorization systems

Definition

We say j � f if any commutative square

X //

j
��

B

f
��

Y //

∃
??

A

admits a (non-unique) diagonal filler.

• J � = { f | j � f ∀j ∈ J }
• �F = { j | j � f ∀f ∈ F }

Definition

A weak factorization system in a category is (J ,F) such that

1 J = �F and F = J �.

2 Every morphism factors as f ◦ j for some f ∈ F and j ∈ J .



Weak factorization systems

Definition

We say j � f if any commutative square

X //

j
��

B

f
��

Y //

∃
??

A

admits a (non-unique) diagonal filler.

• J � = { f | j � f ∀j ∈ J }
• �F = { j | j � f ∀f ∈ F }

Definition

A weak factorization system in a category is (J ,F) such that

1 J = �F and F = J �.

2 Every morphism factors as f ◦ j for some f ∈ F and j ∈ J .



Weak factorization systems

Definition

We say j � f if any commutative square

X //

j
��

B

f
��

Y //

∃
??

A

admits a (non-unique) diagonal filler.

• J � = { f | j � f ∀j ∈ J }
• �F = { j | j � f ∀f ∈ F }

Definition

A weak factorization system in a category is (J ,F) such that

1 J = �F and F = J �.

2 Every morphism factors as f ◦ j for some f ∈ F and j ∈ J .



General factorizations

Theorem (Gambino–Garner)

In a display map category that models identity types, any
morphism g : A→ B factors as

A
j

// Ng
f // // B

where f is a display map, and j lifts against all display maps.

(y : B) ` Ng(y) := hfiber(g , y) :=
∑
x : A

(g(x) = y)

is the type-theoretic mapping path space.



General factorizations

Theorem (Gambino–Garner)

In a display map category that models identity types, any
morphism g : A→ B factors as

A
j

// Ng
f // // B

where f is a display map, and j lifts against all display maps.

(y : B) ` Ng(y) := hfiber(g , y) :=
∑
x : A

(g(x) = y)

is the type-theoretic mapping path space.



The identity type wfs

Corollary (Gambino-Garner)

In a type theory with identity types,(
�(display maps), (�(display maps))�

)
is a weak factorization system.

This behaves very much like (acyclic cofibrations, fibrations):

• Dependent types are like fibrations (recall “transport”).

• Every map in �(display maps) is an equivalence; in fact, the
inclusion of a deformation retract.



The identity type wfs

Corollary (Gambino-Garner)

In a type theory with identity types,(
�(display maps), (�(display maps))�

)
is a weak factorization system.

This behaves very much like (acyclic cofibrations, fibrations):

• Dependent types are like fibrations (recall “transport”).

• Every map in �(display maps) is an equivalence; in fact, the
inclusion of a deformation retract.



Modeling identity types

Conversely:

Theorem (Awodey–Warren,Garner–van den Berg)

In a display map category, if(
�(display maps), (�(display maps))�

)
is a “pullback-stable” weak factorization system, then the category
(almost∗) models identity types.

identity types ←→ weak factorization systems



Model categories

Definition (Quillen)

A model category is a category C with limits and colimits and
three classes of maps:

• C = cofibrations

• F = fibrations

• W = weak equivalences

such that

1 W has the 2-out-of-3 property.

2 (C ∩W,F) and (C,F ∩W) are weak factorization systems.



Type-theoretic model categories

Corollary

Let M be a model category such that

1 M (as a category) is locally cartesian closed.

2 M is right proper.

3 The cofibrations are the monomorphisms.

Then M (almost∗) models type theory with dependent sums,
dependent products, and identity types.

Homotopy
theory

Type
theory(homotopy type) theory

Examples

• Simplicial sets with the Quillen model structure.

• Any injective model structure on simplicial presheaves.



Type-theoretic model categories

Corollary

Let M be a model category such that

1 M (as a category) is locally cartesian closed.

2 M is right proper.

3 The cofibrations are the monomorphisms.

Then M (almost∗) models type theory with dependent sums,
dependent products, and identity types.

Homotopy
theory

Type
theory(homotopy type) theory

Examples

• Simplicial sets with the Quillen model structure.

• Any injective model structure on simplicial presheaves.



Type-theoretic model categories

Corollary

Let M be a model category such that

1 M (as a category) is locally cartesian closed.

2 M is right proper.

3 The cofibrations are the monomorphisms.

Then M (almost∗) models type theory with dependent sums,
dependent products, and identity types.

Homotopy
theory

Type
theory(homotopy type) theory

Examples

• Simplicial sets with the Quillen model structure.

• Any injective model structure on simplicial presheaves.



Type-theoretic model categories

Corollary

Let M be a model category such that

1 M (as a category) is locally cartesian closed.

2 M is right proper.

3 The cofibrations are the monomorphisms.

Then M (almost∗) models type theory with dependent sums,
dependent products, and identity types.

Homotopy
theory

Type
theory(homotopy type) theory

Examples

• Simplicial sets with the Quillen model structure.

• Any injective model structure on simplicial presheaves.



Homotopy type theory in categories

(x : A) ` p : isProp(B(x))

⇐⇒ (x : A), (u : B(x)), (v : B(x)) ` (pu,v : (u = v))

⇐⇒ The path object PAB has a section in M/A

⇐⇒ Any two maps into B are homotopic over A

(x : A) ` p : isContr(B(x))

⇐⇒ (x : A) ` p : isProp(B(x))× B(x)

⇐⇒ Any two maps into B are homotopic over A

⇐⇒

and B � A has a section

⇐⇒ B � A is an acyclic fibration



Homotopy type theory in categories

(x : A) ` p : isProp(B(x))

⇐⇒ (x : A), (u : B(x)), (v : B(x)) ` (pu,v : (u = v))

⇐⇒ The path object PAB has a section in M/A

⇐⇒ Any two maps into B are homotopic over A

(x : A) ` p : isContr(B(x))

⇐⇒ (x : A) ` p : isProp(B(x))× B(x)

⇐⇒ Any two maps into B are homotopic over A

⇐⇒

and B � A has a section

⇐⇒ B � A is an acyclic fibration



Homotopy type theory in categories

For f : A→ B,

` p : isEquiv(f ) ⇐⇒ `
∏
y : B

isContr(hfiber(f , y))

⇐⇒ (y : B) ` isContr(hfiber(f , y))

⇐⇒ hfiber(f )� A is an acyclic fibration

⇐⇒ f is a (weak) equivalence

(Recall hfiber is the factorization A→ Nf � B of f .)

Conclusion

Any theorem about “equivalences” that we can prove in type
theory yields a conclusion about weak equivalences in appropriate
model categories.



Homotopy type theory in categories

For f : A→ B,

` p : isEquiv(f ) ⇐⇒ `
∏
y : B

isContr(hfiber(f , y))

⇐⇒ (y : B) ` isContr(hfiber(f , y))

⇐⇒ hfiber(f )� A is an acyclic fibration

⇐⇒ f is a (weak) equivalence

(Recall hfiber is the factorization A→ Nf � B of f .)

Conclusion

Any theorem about “equivalences” that we can prove in type
theory yields a conclusion about weak equivalences in appropriate
model categories.



Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

A

f ∗g∗A

a : A ` P(g(f (a)))

C

P

c : C ` P(c)

B

g∗P

b : B ` P(g(b))

f g

But, of course, f ∗g∗P is only isomorphic to (g ◦ f )∗P.



Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

A

(g ◦ f )∗A

a : A ` P((g ◦ f )(a))

C

P

c : C ` P(c)

g ◦ f

But, of course, f ∗g∗P is only isomorphic to (g ◦ f )∗P.



Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

A

(g ◦ f )∗A

a : A ` P((λx .g(f (x)))(a))

C

P

c : C ` P(c)

g ◦ f

But, of course, f ∗g∗P is only isomorphic to (g ◦ f )∗P.



Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

A

(g ◦ f )∗A

a : A ` P(g(f (a)))

C

P

c : C ` P(c)

g ◦ f

But, of course, f ∗g∗P is only isomorphic to (g ◦ f )∗P.



Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

A

(g ◦ f )∗A

a : A ` P(g(f (a)))

C

P

c : C ` P(c)

g ◦ f

But, of course, f ∗g∗P is only isomorphic to (g ◦ f )∗P.



Coherence with a universe

There are several resolutions; perhaps the cleanest is:

Solution (Voevodsky)

Represent dependent types by their classifying maps into a universe
object.

Now substitution is composition, which is strictly associative
(in our model category):

A
f // B

g
// C

P // U

A
g◦f

// C
P // U

We needed a universe object anyway, to model the type Type and
prove univalence.

New problem

Need very strict models for universe objects.



Coherence with a universe

There are several resolutions; perhaps the cleanest is:

Solution (Voevodsky)

Represent dependent types by their classifying maps into a universe
object.

Now substitution is composition, which is strictly associative
(in our model category):

A
f // B

g
// C

P // U

A
g◦f

// C
P // U

We needed a universe object anyway, to model the type Type and
prove univalence.

New problem

Need very strict models for universe objects.



Outline

1 Homotopy type theory in model categories

2 The universal Kan fibration

3 Models in (∞, 1)-toposes



Representing fibrations

(Following Kapulkin–Lumsdaine–Voevodsky)

Goal

A universe object in simplicial sets giving coherence and univalence.

Simplicial sets are a presheaf category, so there is a standard trick
to build representing objects.

Un
∼= Hom(∆n,U) ' {fibrations over ∆n}

But n 7→ {fibrations over ∆n} is only a pseudofunctor; we need to
rigidify it.



Representing fibrations

(Following Kapulkin–Lumsdaine–Voevodsky)

Goal

A universe object in simplicial sets giving coherence and univalence.

Simplicial sets are a presheaf category, so there is a standard trick
to build representing objects.

Un
∼= Hom(∆n,U) ' {fibrations over ∆n}

But n 7→ {fibrations over ∆n} is only a pseudofunctor; we need to
rigidify it.



Representing fibrations

(Following Kapulkin–Lumsdaine–Voevodsky)

Goal

A universe object in simplicial sets giving coherence and univalence.

Simplicial sets are a presheaf category, so there is a standard trick
to build representing objects.

Un
∼= Hom(∆n,U) ' {fibrations over ∆n}

But n 7→ {fibrations over ∆n} is only a pseudofunctor; we need to
rigidify it.



Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p : E → B together
with, for every x ∈ Bn, a well-ordering on p−1(x) ⊆ En.

Two well-ordered Kan fibrations are isomorphic in at most one way
which preserves the orders.

Definition

Un :=
{

X � ∆n a well-ordered fibration
}/

ordered ∼=

Ũn :=
{

(X , x)
∣∣∣ X � ∆n well-ordered fibration, x ∈ Xn

}/
ordered ∼=

(with some size restriction, to make them sets).



Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p : E → B together
with, for every x ∈ Bn, a well-ordering on p−1(x) ⊆ En.

Two well-ordered Kan fibrations are isomorphic in at most one way
which preserves the orders.

Definition

Un :=
{

X � ∆n a well-ordered fibration
}/

ordered ∼=

Ũn :=
{

(X , x)
∣∣∣ X � ∆n well-ordered fibration, x ∈ Xn

}/
ordered ∼=

(with some size restriction, to make them sets).



Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p : E → B together
with, for every x ∈ Bn, a well-ordering on p−1(x) ⊆ En.

Two well-ordered Kan fibrations are isomorphic in at most one way
which preserves the orders.

Definition

Un :=
{

X � ∆n a well-ordered fibration
}/

ordered ∼=

Ũn :=
{

(X , x)
∣∣∣ X � ∆n well-ordered fibration, x ∈ Xn

}/
ordered ∼=

(with some size restriction, to make them sets).



Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p : E → B together
with, for every x ∈ Bn, a well-ordering on p−1(x) ⊆ En.

Two well-ordered Kan fibrations are isomorphic in at most one way
which preserves the orders.

Definition

Un :=
{

X � ∆n a well-ordered fibration
}/

ordered ∼=

Ũn :=
{

(X , x)
∣∣∣ X � ∆n well-ordered fibration, x ∈ Xn

}/
ordered ∼=

(with some size restriction, to make them sets).



Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p : E → B together
with, for every x ∈ Bn, a well-ordering on p−1(x) ⊆ En.

Two well-ordered Kan fibrations are isomorphic in at most one way
which preserves the orders.

Definition

Un :=
{

X � ∆n a well-ordered fibration
}/

ordered ∼=

Ũn :=
{

(X , x)
∣∣∣ X � ∆n well-ordered fibration, x ∈ Xn

}/
ordered ∼=

(with some size restriction, to make them sets).



The universal Kan fibration

Theorem

The forgetful map Ũ → U is a Kan fibration.

Proof.

A map E → B is a Kan fibration if and only if every pullback

b∗E //

��

_� E

��

∆n
b

// B

is such, since the horns Λn
k ↪→ ∆n have codomain ∆n.

Thus, of course, every pullback of Ũ → U is a Kan fibration.



The universal Kan fibration

Theorem

The forgetful map Ũ → U is a Kan fibration.

Proof.

A map E → B is a Kan fibration if and only if every pullback

b∗E //

��

_� E

��

∆n
b

// B

is such, since the horns Λn
k ↪→ ∆n have codomain ∆n.

Thus, of course, every pullback of Ũ → U is a Kan fibration.



The universal Kan fibration

Theorem

Every (small) Kan fibration E → B is some pullback of Ũ → U:

E //

��

_� Ũ

��

B // U

Proof.

Choose a well-ordering on each fiber, and map x ∈ Bn to the
isomorphism class of the well-ordered fibration b∗(E )� ∆n.

It is essential that we have actual pullbacks here, not just
homotopy pullbacks.



The universal Kan fibration

Theorem

Every (small) Kan fibration E → B is some pullback of Ũ → U:

E //

��

_� Ũ

��

B // U

Proof.

Choose a well-ordering on each fiber, and map x ∈ Bn to the
isomorphism class of the well-ordered fibration b∗(E )� ∆n.

It is essential that we have actual pullbacks here, not just
homotopy pullbacks.



Type theory in the universe

Let the size-bound for U be inaccessible (a Grothendieck universe).
Then small fibrations are closed under all categorical constructions.

Now we can interpret type theory with coherence, using morphisms
into U for dependent types.

Example

A context
(x : A), (y : B(x)), (z : C (x , y))

becomes a sequence of fibrations together with classifying maps:

C // //

��
555555 B // //

��
555555

[C ]

��						
A // //

��
555555

[B]

��						
1

[A]

��







Ũ // // U Ũ // // U Ũ // // U

in which each trapezoid is a pullback.



Type theory in the universe

Let the size-bound for U be inaccessible (a Grothendieck universe).
Then small fibrations are closed under all categorical constructions.

Now we can interpret type theory with coherence, using morphisms
into U for dependent types.

Example

A context
(x : A), (y : B(x)), (z : C (x , y))

becomes a sequence of fibrations together with classifying maps:

C // //

��
555555 B // //

��
555555

[C ]

��						
A // //

��
555555

[B]

��						
1

[A]

��







Ũ // // U Ũ // // U Ũ // // U

in which each trapezoid is a pullback.



Strict cartesian products

Every type-theoretic operation can be done once over U, then
implemented by composition.

Example (Cartesian product)

• Pull Ũ back to U × U along the two projections π1, π2.

• Their fiber product over U × U admits a classifying map:

(π∗1Ũ)×U×U (π∗2Ũ) //

��

_� Ũ

��

U × U
[×]

// U

• Define the product of [A] : X → U and [B] : X → U to be

X
([A],[B])−−−−−→ U × U

[×]−−→ U

This has strict substitution.



Strict cartesian products

Every type-theoretic operation can be done once over U, then
implemented by composition.

Example (Cartesian product)

• Pull Ũ back to U × U along the two projections π1, π2.

• Their fiber product over U × U admits a classifying map:

(π∗1Ũ)×U×U (π∗2Ũ) //

��

_� Ũ

��

U × U
[×]

// U

• Define the product of [A] : X → U and [B] : X → U to be

X
([A],[B])−−−−−→ U × U

[×]−−→ U

This has strict substitution.



Strict cartesian products

Every type-theoretic operation can be done once over U, then
implemented by composition.

Example (Cartesian product)

• Pull Ũ back to U × U along the two projections π1, π2.

• Their fiber product over U × U admits a classifying map:

(π∗1Ũ)×U×U (π∗2Ũ) //

��

_� Ũ

��

U × U
[×]

// U

• Define the product of [A] : X → U and [B] : X → U to be

X
([A],[B])−−−−−→ U × U

[×]−−→ U

This has strict substitution.



Nested universes

Problem

So far the object U lives outside the type theory.
We want it inside, giving a universe type “Type” and univalence.

Solution

Let U ′ be a bigger universe. If U is U ′-small and fibrant, then it
has a classifying map:

U //

��

_� Ũ ′

��

1 u
// U ′

and the type theory defined using U ′ has a universe type u.



Nested universes

Problem

So far the object U lives outside the type theory.
We want it inside, giving a universe type “Type” and univalence.

Solution

Let U ′ be a bigger universe. If U is U ′-small and fibrant, then it
has a classifying map:

U //

��

_� Ũ ′

��

1 u
// U ′

and the type theory defined using U ′ has a universe type u.



U is fibrant

Theorem

U is fibrant.

Outline of proof.

Λn
k

f //

j
��

U

∆n
?

>>

With hard work, we can extend f ∗Ũ to a fibration over ∆n:

f ∗Ũ //

��

_� P

��

Λn
k j

// ∆n

and extend the well-ordering of f ∗Ũ to P, yielding g : ∆n → U
with gj = f (and g∗Ũ ∼= P).



U is fibrant

Theorem

U is fibrant.

Outline of proof.

Λn
k

f //

j
��

U

∆n
?

>>

With hard work, we can extend f ∗Ũ to a fibration over ∆n:

f ∗Ũ //

��

_� P

��

Λn
k j

// ∆n

and extend the well-ordering of f ∗Ũ to P, yielding g : ∆n → U
with gj = f (and g∗Ũ ∼= P).



U is fibrant

Theorem

U is fibrant.

Outline of proof.

Λn
k

f //

j
��

U

∆n
?

>>

With hard work, we can extend f ∗Ũ to a fibration over ∆n:

f ∗Ũ //

��

_� P

��

Λn
k j

// ∆n

and extend the well-ordering of f ∗Ũ to P, yielding g : ∆n → U
with gj = f (and g∗Ũ ∼= P).



U is fibrant

Theorem

U is fibrant.

Outline of proof.

Λn
k

f //

j
��

U

∆n
?

>>

With hard work, we can extend f ∗Ũ to a fibration over ∆n:

f ∗Ũ //

��

_� P

��

Λn
k j

// ∆n

and extend the well-ordering of f ∗Ũ to P, yielding g : ∆n → U
with gj = f (and g∗Ũ ∼= P).



U is fibrant

Theorem

U is fibrant.

Outline of proof.

Λn
k

f //

j
��

U

∆n
?

>>

With hard work, we can extend f ∗Ũ to a fibration over ∆n:

f ∗Ũ //

��

_� P

��

Λn
k j

// ∆n

and extend the well-ordering of f ∗Ũ to P, yielding g : ∆n → U
with gj = f (and g∗Ũ ∼= P).



Extending fibrations

Lemma

Any fibration P → Λn
k is the pullback of some fibration over ∆n.

Proof.

• Let P ′ ⊆ P be a minimal subfibration.

• There is a retraction P → P ′ that is an acyclic fibration.

• Since Λn
k is contractible, the minimal fibration P ′ → Λn

k is
isomorphic to a trivial bundle Λn

k × F → Λn
k .

Λn
k ∆n

P ′ ∼= Λn
k × F

j

P

∆n × F
j × F

Πj×FP



Extending fibrations

Lemma

Any fibration P → Λn
k is the pullback of some fibration over ∆n.

Proof.

• Let P ′ ⊆ P be a minimal subfibration.

• There is a retraction P → P ′ that is an acyclic fibration.

• Since Λn
k is contractible, the minimal fibration P ′ → Λn

k is
isomorphic to a trivial bundle Λn

k × F → Λn
k .

Λn
k ∆n

P ′ ∼= Λn
k × F

j

P

∆n × F
j × F

Πj×FP



Extending fibrations

Lemma

Any fibration P → Λn
k is the pullback of some fibration over ∆n.

Proof.

• Let P ′ ⊆ P be a minimal subfibration.

• There is a retraction P → P ′ that is an acyclic fibration.

• Since Λn
k is contractible, the minimal fibration P ′ → Λn

k is
isomorphic to a trivial bundle Λn

k × F → Λn
k .

Λn
k ∆n

P ′ ∼= Λn
k × F

j

P

∆n × F
j × F

Πj×FP



Extending fibrations

Lemma

Any fibration P → Λn
k is the pullback of some fibration over ∆n.

Proof.

• Let P ′ ⊆ P be a minimal subfibration.

• There is a retraction P → P ′ that is an acyclic fibration.

• Since Λn
k is contractible, the minimal fibration P ′ → Λn

k is
isomorphic to a trivial bundle Λn

k × F → Λn
k .

Λn
k ∆n

P ′ ∼= Λn
k × F

j

P

∆n × F
j × F

Πj×FP



Extending fibrations

Lemma

Any fibration P → Λn
k is the pullback of some fibration over ∆n.

Proof.

• Let P ′ ⊆ P be a minimal subfibration.

• There is a retraction P → P ′ that is an acyclic fibration.

• Since Λn
k is contractible, the minimal fibration P ′ → Λn

k is
isomorphic to a trivial bundle Λn

k × F → Λn
k .

Λn
k ∆n

P ′ ∼= Λn
k × F

j

P

∆n × F
j × F

Πj×FP



Extending fibrations

Lemma

Any fibration P → Λn
k is the pullback of some fibration over ∆n.

Proof.

• Let P ′ ⊆ P be a minimal subfibration.

• There is a retraction P → P ′ that is an acyclic fibration.

• Since Λn
k is contractible, the minimal fibration P ′ → Λn

k is
isomorphic to a trivial bundle Λn

k × F → Λn
k .

Λn
k ∆n

P ′ ∼= Λn
k × F

j

P

∆n × F
j × F

Πj×FP



Extending fibrations

Lemma

Any fibration P → Λn
k is the pullback of some fibration over ∆n.

Proof.

• Let P ′ ⊆ P be a minimal subfibration.

• There is a retraction P → P ′ that is an acyclic fibration.

• Since Λn
k is contractible, the minimal fibration P ′ → Λn

k is
isomorphic to a trivial bundle Λn

k × F → Λn
k .

Λn
k ∆n

P ′ ∼= Λn
k × F

j

P

∆n × F
j × F

Πj×FP



Univalence

We want to show that PU → Eq(U) is an equivalence:

PU Eq(U)

U × U

?

U
∼

∆

U

π2
id

?

It suffices to show:

1 The composite U → Eq(U) is an equivalence.

2 The projection Eq(U)→ U is an equivalence.

3 The projection Eq(U)→ U is an acyclic fibration.



Univalence

We want to show that PU → Eq(U) is an equivalence:

PU Eq(U)

U × U

?
U

∼

∆

U

π2
id

?

It suffices to show:

1 The composite U → Eq(U) is an equivalence.

2 The projection Eq(U)→ U is an equivalence.

3 The projection Eq(U)→ U is an acyclic fibration.



Univalence

We want to show that PU → Eq(U) is an equivalence:

PU Eq(U)

U × U

?
U

∼

∆

U

π2
id

?

It suffices to show:

1 The composite U → Eq(U) is an equivalence.

2 The projection Eq(U)→ U is an equivalence.

3 The projection Eq(U)→ U is an acyclic fibration.



Univalence

We want to show that PU → Eq(U) is an equivalence:

PU Eq(U)

U × U

?
U

∼

∆

U

π2
id

?

It suffices to show:

1 The composite U → Eq(U) is an equivalence.

2 The projection Eq(U)→ U is an equivalence.

3 The projection Eq(U)→ U is an acyclic fibration.



Univalence

By representability, a commutative square

with a lift

∂∆n

∆n

Eq(U)

U

i

corresponds to a diagram

∂∆n ∆n

E1

E2

i

E 2

with E1 → E2 an equivalence.



Univalence

By representability, a commutative square with a lift

∂∆n

∆n

Eq(U)

U

i

corresponds to a diagram

∂∆n ∆n

E1

E2

i

E 2

E 1

with E1 → E2 and E 1 → E 2 equivalences.



Univalence

∂∆n ∆n

E1

E2

i

E 2e2

E 1

Πi (E2)

Πi (E1)

• By factorization, consider separately the cases when E1 → E2

is (1) an acyclic fibration or (2) an acyclic cofibration.

• (1) E 1 → E 2 is an acyclic fibration (Πi preserves such).

• (2) E 1 is a deformation retract of E 2.



Univalence

∂∆n ∆n

E1

E2

i

E 2e2

E 1

Πi (E2)

Πi (E1)

• By factorization, consider separately the cases when E1 → E2

is (1) an acyclic fibration or (2) an acyclic cofibration.

• (1) E 1 → E 2 is an acyclic fibration (Πi preserves such).

• (2) E 1 is a deformation retract of E 2.



Univalence

∂∆n ∆n

E1

E2

i

E 2e2

E 1

Πi (E2)

Πi (E1)

• By factorization, consider separately the cases when E1 → E2

is (1) an acyclic fibration or (2) an acyclic cofibration.

• (1) E 1 → E 2 is an acyclic fibration (Πi preserves such).

• (2) E 1 is a deformation retract of E 2.



Univalence

∂∆n ∆n

E1

E2

i

E 2e2

E 1

Πi (E2)

Πi (E1)

• By factorization, consider separately the cases when E1 → E2

is (1) an acyclic fibration or (2) an acyclic cofibration.

• (1) E 1 → E 2 is an acyclic fibration (Πi preserves such).

• (2) E 1 is a deformation retract of E 2.



Outline

1 Homotopy type theory in model categories

2 The universal Kan fibration

3 Models in (∞, 1)-toposes



(∞, 1)-toposes

Definition

An (∞, 1)-topos is an (∞, 1)-category that is a left-exact
localization of an (∞, 1)-presheaf category.

Examples

• ∞-groupoids (plays the role of the 1-topos Set)

• Parametrized homotopy theory over any space X

• G -equivariant homotopy theory for any group G

• ∞-sheaves/stacks on any space

• “Smooth ∞-groupoids” (or “algebraic” etc.)



Univalence in categories

Definition (Rezk)

An object classifier in an (∞, 1)-category C is a morphism Ũ → U
such that pullback

B //

��

_� Ũ

��

A // U

induces an equivalence of ∞-groupoids

Hom(A,U) ∼−→ Core(C/A)small

(“Core” is the maximal sub-∞-groupoid.)



(∞, 1)-toposes

Theorem (Rezk)

An (∞, 1)-category C is an (∞, 1)-topos if and only if

1 C is locally presentable.

2 C is locally cartesian closed.

3 κ-compact objects have object classifiers for κ� 0.

Corollary

If a combinatorial model category M interprets dependent type
theory as before (i.e. it is locally cartesian closed, right proper, and
the cofibrations are the monomorphisms), and contains universes
for κ-compact objects that satisfy the univalence axiom, then the
(∞, 1)-category that it presents is an (∞, 1)-topos.



(∞, 1)-toposes

Theorem (Rezk)

An (∞, 1)-category C is an (∞, 1)-topos if and only if

1 C is locally presentable.

2 C is locally cartesian closed.

3 κ-compact objects have object classifiers for κ� 0.

Corollary

If a combinatorial model category M interprets dependent type
theory as before (i.e. it is locally cartesian closed, right proper, and
the cofibrations are the monomorphisms), and contains universes
for κ-compact objects that satisfy the univalence axiom, then the
(∞, 1)-category that it presents is an (∞, 1)-topos.



(∞, 1)-toposes

Conjecture

Every (∞, 1)-topos can be presented by a model category which
interprets dependent type theory with the univalence axiom.

Homotopy type theory is the internal logic of (∞, 1)-toposes.

If this is true, then anything we prove in homotopy type theory
(which we can also verify with a computer) will automatically be
true internally to any (∞, 1)-topos. The “constructive core” of
homotopy theory should be provable in this way, in a uniform way
for “all homotopy theories”.



(∞, 1)-toposes

Conjecture

Every (∞, 1)-topos can be presented by a model category which
interprets dependent type theory with the univalence axiom.

Homotopy type theory is the internal logic of (∞, 1)-toposes.

If this is true, then anything we prove in homotopy type theory
(which we can also verify with a computer) will automatically be
true internally to any (∞, 1)-topos. The “constructive core” of
homotopy theory should be provable in this way, in a uniform way
for “all homotopy theories”.



Status of the conjecture

∞Gpd (∞, 1)-presheaves (∞, 1)-toposes

inverse (∞, 1)-presheaves

4



Status of the conjecture

∞Gpd (∞, 1)-presheaves (∞, 1)-toposes

inverse (∞, 1)-presheaves

4



Status of the conjecture

∞Gpd (∞, 1)-presheaves (∞, 1)-toposes
4

inverse (∞, 1)-presheaves

4



Status of the conjecture

∞Gpd (∞, 1)-presheaves (∞, 1)-toposes
4

inverse (∞, 1)-presheaves

4



Status of the conjecture

∞Gpd (∞, 1)-presheaves (∞, 1)-toposes
4

inverse (∞, 1)-presheaves

4
4?


