
Inductive and higher inductive types

Michael Shulman

13 April 2012

Homotopy invariance

Question

Suppose two model categories M, N present the same
(∞, 1)-category C . Do they have the same internal type theory?

1 All type-theoretic operations are homotopy invariant
(represent well-defined (∞, 1)-categorical operations).

2 Therefore, any type-theoretic construction performed on
equivalent data in M and N yields equivalent results.

3 All type-theoretic data is terms in (dependent) types, i.e.
sections of fibrations. If all objects in M and N are cofibrant,
any “section” in C can be represented in both M and N .

4 The only trouble is with asserting computational equalities,
e.g. “let G be a group with computationally associative
multiplication”. If we stick with properties that can be
expressed in the type theory, we are fine.

Positive types

Recall: positive types are characterized by their introduction rules.

In fact, any choice of introduction rule(s) determines a positive
type in an algorithmic way.

• The derived eliminator literally does a case analysis on the
introduction rules.

• We call these introduction rules constructors.

Positive types

Example (Coproduct types)

• Introduction: inl : A→ A + B and inr : B → A + B

• Elimination: If (x : A) ` (cA : C (inl(x))) and
(y : B) ` (cB : C (inr(y))), then for p : A + B we have
case(p, cA, cB) : C (p).

Example (Empty type)

• Introduction:

• Elimination: If (nothing), then for p : ∅ we have
abort(p) : C (p).

The natural numbers

The natural numbers are a positive type.

1 Formation: There is a type N.

2 Introduction: 0 : N, and (x : N) ` (s(x) : N).

A new feature: the input of the constructor “s” involves something
of the type N being defined!

We intend, of course, that all elements of N are generated by
successively applying constructors.

0, s(0), s(s(0)), s(s(s(0))), . . .

The natural numbers

1 Formation: There is a type N.

2 Introduction: 0 : N, and (x : N) ` (s(x) : N).

3 Elimination? If c0 : C (0) and (x : N) ` (cs : C (s(x))), then
for p : N we have match(p, c0, cs) : C (p).

But this is not much good; we need to recurse.

3 Elimination: If c0 : C (0) and

(x : N), (r : C (x)) ` (cs : C (s(x)))

then for p : N we have rec(p, c0, cs) : C (p).

The variable r represents the result of the recursive call at x , to be
used the computation cs of the value at s(x).

Example: Addition

We define addition by recursion on the first input.

plus(0,m) := m

plus(s(n),m) := s(plus(n,m))

In terms of the rec eliminator, this is

(n : N), (m : N) ` plus(n,m) := rec(n,m, s(r))

• When n = 0, the result is m.

• When n is a successor s(x), the result is s(r).
(As before, r is the result of the recursive call at x .)

The natural numbers

1 Formation: There is a type N.

2 Introduction: 0 : N, and (x : N) ` (s(x) : N).

3 Elimination: If c0 : C (0) and

(x : N), (r : C (x)) ` (cs : C (s(x)))

then for p : N we have rec(p, c0, cs) : C (p).

4 Computation:
• rec(0, c0, cs) computes to c0.
• rec(s(n), c0, cs) computes to cs with n substituted for x and

rec(n, c0, cs) substituted for r .

Computing an addition

plus(ss0, sss0) := rec(ss0, sss0, s(r))

 s
(

rec(s0, sss0, s(r))
)

 s
(

s
(

rec(0, sss0, s(r))
))

 s(s(sss0)) = sssss0

Other recursive inductive types

Generalized positive types of this sort are called inductive types.

Example (Lists)

For any type A, there is a type List(A), with constructors

` nil : List(A)

(a : A), (` : List(A)) ` (cons(a, `) : List(A))

Functional programming is built on defining functions by recursion
over inductive datatypes.

length(nil) := 0

length(cons(a, `)) := s(length(`))

This is defined using the eliminator for List(A).

Proof by induction

3 If c0 : C (0) and

(x : N), (r : C (x)) ` (cs : C (s(x)))

then for p : N we have rec(p, c0, cs) : C (p).

When C is a predicate, this is just proof by induction.

types ←→ propositions
programming ←→ proving

recursion ←→ induction

Conclusion

Proof by induction is not something special about the natural
numbers; it applies to any inductive type.

Recursively defined types

We can define dependent types as Type-valued recursive functions.

Theorem

0 6= 1.

Proof.

Define P : N→ Type by “recursion”:

P(0) := 1

P(s(n)) := ∅

• Suppose p : (0 = 1).

• Since ? : P(0), we have trans(p, ?) : P(1) ≡ ∅.
• Thus, λp.trans(p, tt) : ((0 = 1)→ ∅) ≡ ¬(0 = 1).

Example: Truncation

Definition

An ∞-groupoid is n-truncated if it has no nontrivial k-morphisms
for any k > n.

• h-sets are 0-truncated.
• A is (n + 1)-truncated ⇐⇒ each (x = y) is n-truncated.
• A is an h-set ⇐⇒ each (x = y) is an h-prop.

Thus, it makes sense to call h-props “(−1)-truncated”.
• A is an h-prop ⇐⇒ each (x = y) is contractible.

Thus, we call contractible spaces “(−2)-truncated”.
• After this, it’s “turtles all the way down”: (−3)-truncated is

the same as (−2)-truncated.
• (Voevodsky) h-level n means (n − 2)-truncated.

isHlevel(0,A) := isContr(A)

isHlevel(s(n),A) :=
∏
x : A

∏
y : A

isHlevel(n, (x = y))

Inductive families

We can define dependent types inductively as well.

Example (Vectors)

For any A there is a dependent type Vec(A) : N→ Type, with
constructors

` nil : Vec(A, 0)

(a : A), (n : N), (` : Vec(A, n)) ` (cons(a, `) : Vec(A, s(n)))

(We build the length of a list into its type.)

Example (Equality!)

For any A there is a dependent type EqA : A× A→ Type, with
constructor

(a : A) ` (refla : EqA(a, a))

Natural numbers objects

The positive type N should have a left universal property.

Definition

A natural numbers object is N with 0: 1→ N, s : N → N, s.t.

• For any object X with 0X : 1→ X and sX : X → X , there is a
unique r : N → X such that

1
0 //

0X ��
??

??
??

?? N
s //

r

��

N

r

��

X sX
// X

= an initial object in the category of triples (X , 1→ X ,X → X).

natural numbers type N ←→ natural numbers object

Algebras for endofunctors

Let F be a functor from a category to itself.

Definition

An F -algebra is an object X with a morphism x : F (X)→ X .
An F -algebra map is a map f : X → Y such that

F (X)
F (f)

//

x

��

F (Y)

y

��

X
f

// Y

An initial F -algebra is an initial object in the category of
F -algebras and F -algebra maps.

Inductive types and endofunctors

inductive types ←→ initial algebras for endofunctors

inductive type endofunctor

N ←→ F (X) := 1 + X
List(A) ←→ F (X) := 1 + (A× X)
A + B ←→ F (X) := A + B

(a constant endofunctor)

The eliminator directly asserts only weak initiality, but using the
dependent eliminator one can prove:

Theorem (Awodey–Gambino–Sojakova)

Any inductive type W is a homotopy initial F -algebra: the space
of F -algebra maps W → X is contractible.

Constructing initial algebras

We also have:

Theorem

If F is an accessible endofunctor of a locally presentable category,
then there exists an initial F -algebra.

Sketch of proof.

Take the colimit of the transfinite sequence

∅ → F (∅)→ F (F (∅))→ · · ·

Higher inductive types

Idea

• Inductive types are a good way to build sets: we specify the
elements of a set by giving constructors.

• To build an space (or ∞-groupoid), we need to specify not
only elements, but paths and higher paths.

• The iterative construction of initial algebras looks a lot like
the small object argument.

• Is there an analogous notion of higher inductive type that
described more general cell complexes?

Example

The circle S1 should be inductively defined by two constructors

base : S1 and loop : (base = base)

Can we make sense of this?

The circle (first try)

1 Formation: There is a type S1.

2 Introduction: base : S1 and loop : (base = base).

3 Elimination: Given b : C and ` : (b = b), for any p : S1 we
have match(p, b, `) : C .

4 Computation: match(base, b, `) computes to b, and
map(match(−, b, `), loop) computes to `.

What about a dependent eliminator?

Dependent loops

As hypotheses of the dependent eliminator for S1, we need

1 A point b : C (base).

2 A path ` from b to b lying over “loop”.

C

S1

base

loop

b

`

`′

` : (b = b)

b

` : (transport(loop, b) = b)`′ : (transport(loop, b) = b)

Dependent loops

As hypotheses of the dependent eliminator for S1, we need

1 A point b : C (base).

2 A path ` from b to b lying over “loop”.

C

S1

base

loop

b

`

`′

` : (b = b)

b

` : (transport(loop, b) = b)`′ : (transport(loop, b) = b)

Dependent loops

As hypotheses of the dependent eliminator for S1, we need

1 A point b : C (base).

2 A path ` from b to b lying over “loop”.

C

S1

base

loop

b

` `′

` : (b = b)

b

` : (transport(loop, b) = b)`′ : (transport(loop, b) = b)

Dependent loops

As hypotheses of the dependent eliminator for S1, we need

1 A point b : C (base).

2 A path ` from b to b lying over “loop”.

C

S1

base

loop

b

` `′

` : (b = b)

b

` : (transport(loop, b) = b)

`′ : (transport(loop, b) = b)

Dependent loops

As hypotheses of the dependent eliminator for S1, we need

1 A point b : C (base).

2 A path ` from b to b lying over “loop”.

C

S1

base

loop

b

` `′

` : (b = b)

b

` : (transport(loop, b) = b)

`′ : (transport(loop, b) = b)

The circle (final version)

1 Formation: There is a type S1.

2 Introduction: base : S1 and loop : (base = base).

3 Elimination: Given b : C (base) and ` : (trans(loop, b) = b), for
any p : S1 we have match(p, b, `) : C (p).

4 Computation: match(base, b, `) computes to b, and
map(match(−, b, `), loop) computes to `.

The Interval

Example

The interval I is an inductive type with three constructors:

zero : I one : I segment : (zero = one)

• Unsurprisingly, this type is provably contractible.

• But surprisingly, it is not useless; it implies function
extensionality.

The 2-sphere

Example

The 2-sphere S2 has two constructors:

base2 : S2 loop2 : (reflbase2 = reflbase2)

OR:

northpole : S2

southpole : S2

greenwich : (northpole = southpole)

dateline : (northpole = southpole)

east : (greenwich = dateline)

west : (greenwich = dateline)

etc. . .

The torus

Example

The torus T 2 has four constructors:

pt : T 2

p : (pt = pt)

q : (pt = pt)

surf : (p ∗ q = q ∗ p)

pt pt

pt pt

p

p

q qsurf

Cylinders

Example

The cylinder Cyl(A) on A has three constructors:

(a : A) ` (top(a) : Cyl(A)) (a : A) ` (bot(a) : Cyl(A))

(a : A) ` (seg(a) : (top(a) = bot(a)))

top(a)

bot(a)

seg(a)

Homotopy pushouts

Example

The homotopy pushout of f : A→ B and g : A→ C has three
constructors:

(b : B) ` (left(b) : pushout(f , g))

(c : C) ` (right(c) : pushout(f , g))

(a : A) ` (glue(a) : (left(f (a)) = right(g(a))))

CB

A

Suspension

Example

The suspension ΣA of A has three constructors:

north : ΣA south : ΣA

(a : A) ` (mer(a) : (north = south))

north

south

mer(a)

Higher spheres

Example

The n-sphere Sn is defined by recursion on n:

S0 := 1 + 1

S s(n) := Σ(Sn)

. . .

Nontriviality

Theorem

The type S1 is contractible ⇐⇒ all types are h-sets.

Proof.

Easy; S1 is the “universal loop”.

HITs by themselves don’t guarantee the homotopy theory is
nontrivial. We need something else, like univalence.

π1(S1) ∼= Z, classically

π1(S1) ∼= Z

How do we prove this classically?

1 Consider the winding map R→ S1.

2 This is the universal cover of S1.

3 Thus, its fiber over a point, namely Z, is π1(S1).

The universal cover of S1

R

S1

base

0

1

2

π1(S1) ∼= Z, homotopically

π1(S1) ∼= Z

A more homotopy-theoretic way to phrase the classical proof:

1 We have a fibration R→ S1 with fiber Z.

2 We have a map ∗ → S1, whose homotopy fiber is ΩS1.

3 R is contractible, so we have an equivalence ∗ ' R over S1.
By the short five lemma, the induced map on homotopy fibers
is an equivalence.

ΩS1 //

∼
��

∗ //

∼
��

S1

Z // R // S1

4 In particular, π1(S1) ∼= Z.

π1(S1) ∼= Z, type-theoretically

How can we build the fibration R� S1 in type theory?

• A fibration over S1 is a dependent type R : S1 → Type.

• By the eliminator for S1, a function R : S1 → Type is
determined by

• A point B : Type and
• A path ` : (B = B).

• By univalence, ` is an equivalence B ' B.

Thus we can take B = Z and ` to be “+1”.

• All that’s left to do is prove that
∑

x : S1 R(x) is contractible.
We can do this by “induction” on S1.

• What we get is ΩS1 ∼= Z, which is classically stronger than
π1(S1) ∼= Z. Here, we don’t yet have a definition of π1.

Supports

Recall: A is (−1)-truncated, or an h-prop, if∏
x ,y : A

(x = y).

The support of A, denoted supp(A), is supposed to be:

• an h-prop that contains a point precisely when A does.

• a reflection of A into h-props.

Support as an HIT

Definition (Lumsdaine)

The support of A is inductively defined by two constructors:

(a : A) ` (inhab(a) : supp(A))

(x : supp(A)), (y : supp(A)) ` (inpath(x , y) : (x = y))

The type of inpath is precisely isProp(supp(A))!

3 if (x : A) ` (cA : C) and (z ,w : C) ` (c= : (z = w)), for
any p : supp(A) we have match(p, cA, c=) : C .

The hypotheses of the eliminator say exactly that C is an h-prop
and we have a map A→ C .

A

inhab
��

cA

$$HHH
HHH

HHH

supp(A) // C

The rest of logic

P and Q ←→ P × Q

P implies Q ←→ QP

> (true) ←→ 1

⊥ (false) ←→ ∅
(∀x : A)P(x) ←→

∏
x : A B(x)

P or Q ←→ supp(P + Q)

(∃x : A)P(x) ←→ supp(
∑

x : A B(x))

The magic of supp

Note: our ability to define “isProp” without using “supp” was
crucial to our ability to define “supp” itself!

• Because we defined isProp using only paths, path-constructors
can “universally force” a type to be an h-prop.

• Because isProp is an h-prop, these path-constructors have no
other effect (give no extra data).

0-truncation

Example

The 0-truncation π0(A) has two constructors:

(a : A) ` (cpnt(a) : π0(A))

(x , y : π0(A)), (p, q : (x = y)) ` (pp(x , y , p, q) : (p = q))

• The type of pp is precisely isHlevel(2,A).

• The eliminator says that π0(A) is a reflection of A into h-sets.

Now we can define
π1(A) := π0(ΩA)

etc.. . .

Nonclassicality

Remark

h-sets and homotopy groups are a bit surprising.

1 A map f : A→ B which induces πn(A) ∼−→ πn(B) for all n : N
is not necessarily an equivalence!

• Not closely related to non-CW-complex spaces.
• It has to do with non-hypercomplete (∞, 1)-toposes.
• A reason not to call “equivalences” “weak equivalences”.

2 There may be types which do not admit a connected map
from an h-set!

• This happens in ∞Gpd/X if X is not discrete.
• As a foundation, not every ∞-groupoid has an “underlying

set” of objects (though it does have a π0).
• In particular, not every type has a cell decomposition.

These are “classicality properties” of ∞Gpd, like excluded middle
and the axiom of choice in Set.

Localization

Given f : A→ B.

Definition

• Z is f -local if ZB −◦f−−→ ZA is an equivalence.

• An f -localization of X is a reflection of X into f -local spaces.

Examples

• If f is Sn → Dn+1, then f -local means (n − 1)-truncated.

• Localization and completion at primes.

• Construction of (∞, 1)-toposes from (∞, 1)-presheaves.

• . . .

h-isomorphisms

Recall: f : A→ B is an h-isomorphism if we have

• A map g : B → A

• A homotopy r :
∏

a : A(g(f (a)) = a)

• A map h : B → A

• A homotopy s :
∏

b : B(f (g(b)) = b)

The type isHiso(f) is an h-prop, equivalent to isEquiv(f).

Localization as a HIT

Definition

Given f : A→ B and X , the localization Lf X has constructors:

(x : X) ` (tolocal(x) : Lf X)

(g : A→ Lf X), (b : B) ` (lsec(g , b) : Lf X)

(g : A→ Lf X), (a : A) ` (lsech(g , a) : (lsec(g , f (a)) = g(a)))

(g : A→ Lf X), (b : B) ` (lret(g , b) : Lf X)

(h : B → Lf X), (b : B) ` (lreth(h, b) : (lret(h ◦ f , b) = h(b))

The meaning of localization

• Of course, tolocal is a map X → Lf X .

• lsec is a map (Lf X)A → (Lf X)B .

• lsech is a homotopy from (Lf X)A
lsec−−→ (Lf X)B

−◦f−−→ (Lf X)A

to the identity.

• lret is a map (Lf X)A → (Lf X)B .

• lreth is a homotopy from (Lf X)B
−◦f−−→ (Lf X)A

lret−−→ (Lf X)B

to the identity.

Together, (lsec, lsech, lret, lreth) exactly inhabit “isHiso(− ◦ f)”,
i.e. “isLocal(f ,X)”.

Thus, Lf X is an f -localization of X .

The other factorization

Recall:

• A model category has two weak factorization systems:

(acyclic cofibrations, fibrations)
(cofibrations, acyclic fibrations)

• Identity types correspond to the first WFS, using the
mapping path space:

A→
[
y : B, x : A, p : (g(x) = y)

]
� B

• In topology, the second WFS is likewise related to the
mapping cylinder.

A→ Mf � B

Can we use HITs to construct this?

Acyclic fibrations

What is an acyclic fibration in type theory?

1 A fibration that is also an equivalence.

2 A fibration p : B � A which admits a section s : A→ B
(hence ps = 1A) such that sp ∼ 1B .

3 A dependent type B : A→ Type such that each B(a) is
contractible.

Cofibrations

What is a cofibration in type theory?

Actually, what is an acyclic cofibration in type theory?
I.e. when does i : A→ B satisfy i � p for any fibration p?

Acyclic cofibrations

Theorem (Gambino-Garner)

If B is an inductive type and i is its only constructor, then i � p for
any fibration p.

A
f //

i
��

Y

p
����

B g
//

?
??

X

Proof.

• p is a dependent type Y : X → Type; we want to define

h :
∏
b : B

Y (g(b))

• By the eliminator, it suffices to specify h(b) when b = i(a).

• But then we can take h(i(a)) := f (a).

Path object factorizations

Example

refl: A→ IdA is the only constructor of the identity type. Thus,

A
refl−−→ IdA � A× A

is an (acyclic cofibration, fibration) factorization.

Some cofibrations

Theorem

If B is an inductive type and i : A→ B is one of its constructors,
then i � p for any acyclic fibration p.

A
f //

i
��

Y

p
����

B g
//

?
??

X

Proof.

• Now we have a section s :
∏

x : x Y (x).

• We define h :
∏

b : B Y (g(b)) with the eliminator of B:
• If b = i(a), take h(b) := f (a).
• If b is some other constructor, take h(b) := s(g(b)).

More cofibrations

Theorem

If B is a higher inductive type and i : A→ B is one of its
point-constructors, then i � p for any acyclic fibration p.

A
f //

i
��

Y

p
����

B g
//

?
??

X

Proof.

• Now we have a section s :
∏

x : x Y (x).

• We define h :
∏

b : B Y (g(b)) with the eliminator of B:
• If b = i(a), take h(b) := f (a).
• If b is some other point-constructor, take h(b) := s(g(b)).
• In the case of path-constructors, use the contractibility of the

fibers of p.

The other factorization

Need a mapping cylinder for f : A→ B that is dependent over B.

Definition

The mapping cylinder Mf : B → Type has three constructors:

(b : B) ` (right(b) : Mf (b))

(a : A) ` (left(a) : Mf (f (a)))

(a : A) ` (glue(a) : (left(a) = right(f (a))))

Theorem (Lumsdaine)

• This defines a WFS (cofibrations, acyclic fibrations).

• With the other WFS, and the type-theoretic equivalences, we
have a model category (except for strict limits and colimits).

Categorical models

Conversely:

Theorem (Lumsdaine–Shulman)

A well-behaved combinatorial model category which models type
theory as before (lccc etc.) also models all higher inductive types.

(In particular, simplicial sets.)

Very rough sketch of proof.

Combine the transfinite construction of initial algebras with the
homotopy-theoretic small object argument.

Elementary (∞, 1)-toposes

Proposal

An elementary (∞, 1)-topos is an (∞, 1)-category C such that:

1 C has finite limits.

2 C is locally cartesian closed.

3 C has sufficiently many object classifiers.

4 C has sufficently many “higher initial algebras”
(⇒ C has finite colimits).

Conjecture

Any elementary (∞, 1)-topos has an internal homotopy type theory
modeling the univalence axiom and higher inductive types.

