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1. Down the rabbit hole



A puzzle

Question

Does there exist a computer program that is guaranteed to
terminate in a finite amount of time, and will print “Yes” if there is
intelligent life elsewhere in the universe and “No” if there is not?

Answer

Yes, there is.

If there is intelligent life elsewhere in the universe, then the
program is

p r i n t ” Yes ” .

If not, the program is

p r i n t ”No ” .
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Two responses

1 Haha, that’s clever.

2 NO! That’s WRONG!



Two responses

1 Haha, that’s clever.

2 NO! That’s WRONG!



More of the same

A joke

The math department at USD, where I work, is on the ground
floor of Serra Hall, which is laid out as “a maze of twisty little
passages, all alike.” One day a lost visitor poked his head into an
office and said “Excuse me, is there a way out of this maze?” The
math professor in the office looked up and replied “Yes.”



Does it have to be that way?

“When I use a word,”
Humpty Dumpty said, in rather a
scornful tone, “it means just
what I choose it to mean—
neither more nor less.”

“The question is,” said Alice,
“whether you can make words
mean so many different things.”

“The question is,” said
Humpty Dumpty, “which is to be
master—that’s all.”

In mathematics, we make the rules! In particular, we decide what
words mean. If we don’t like something, we can define it away.



Constructive proofs

The anathema

If there is intelligent life elsewhere in the universe, then the
program is

p r i n t ” Yes ” .

If not, the program is

p r i n t ”No ” .

We will change logic so that this no longer counts as a proof.

“Definition”

A constructive proof of existence is one that actually tells you
how to find the object being claimed to exist.

A non-constructive proof is one that doesn’t.
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Non-constructive proofs

Non-constructivity comes from. . .

1 The axiom of choice.
So if you know what that is, pretend you don’t.

2 More importantly: the law of excluded middle:

Every statement is either true or false.

This was our problem; we silently assumed that

Either there is intelligent life somewhere
else in the universe, or there isn’t.

Mathcamp T-shirt slogan, 1993–2002

A mathematician is cautious in the presence of the obvious.
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On freedom

Mathcamp T-shirt slogan, 2003

“In mathematics, existence is freedom from contradiction.”

– David Hilbert

On the other hand

“None are more hopelessly enslaved than
those who falsely believe they are free.”

– Johann Wolfgang von Goethe
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Moving forward

Mathcamp T-shirt slogan, 2004–present

Out of nothing I have constructed a strange new universe.

– János Bolyai

In our case

We have to learn to do mathematics entirely without the law of
excluded middle!
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What

You must unlearn what you
have learned!



2. Looking-glass logic



What is a proof?

What is a “proof” anyway?

“Definition”

“I shall not today attempt further to define the kinds of material I
understand to be embraced within that shorthand description, and
perhaps I could never succeed in intelligibly doing so. But I know it
when I see it.”

– Supreme Court Justice Potter Stewart, Jacobellis v. Ohio



What is a proof?

Put differently:

“Definition”

A proof is an argument that convinces other mathematicians.

Pros:

Describes the way proofs are used in practice.

Doesn’t require us to do any work.

Cons:

Doesn’t help us teach a computer what a proof is.

Doesn’t help us invent a new “notion of proof”.



What is a proof? Take 2

Definition

A proof is a deduction from hypotheses to conclusion in which
each step is justified by one of a finite list of rules of inference.

Pros:

Can program the rules of inference into a computer.

To describe a new notion of proof, just specify the rules of
inference.

Cons:

Most “real-world” proofs are at a much higher level than the
rules of inference. (This is an “assembly language” description
of proofs.)

Humans use the rules of inference as a guide to learn what kinds of
arguments are valid.



Rules of inference

Most rules of inference fall into two groups:

1 A way to prove a statement of a particular form.

2 A way to use a known statement of a particular form.

For example:

To prove “if P then Q”, assume P and prove Q under that
hypothetical assumption.

If we know “if P then Q”, and we also know P, then we can
conclude Q.

To prove “P and Q”, prove P and also prove Q.

If we know that “P and Q”, then we know P and we also
know Q.

“Proof by induction” is another kind of rule of inference.



Rules of constructive logic

Most of the rules of constructive logic are familiar. The important
ones are those involving “or”:

Rules for “or”

To prove “P or Q”, it suffices to prove P.

To prove “P or Q”, it suffices to prove Q.

If we know that “P or Q”, then we can divide any proof into
“Case 1: Assume P” and “Case 2: Assume Q”.

In “classical” (non-constructive) mathematics, there is an
additional “excluded middle” rule

For any P, we can conclude “P or not P”.

To get constructive mathematics, we just leave this out.
In particular, every constructive proof is also a classical proof.
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Some theorems can be made constructive

Theorem

There exist irrational numbers α, β such that αβ is rational.

Non-constructive proof.

The number
√
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(N.B. “irrational” means “not rational”.)
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Some theorems can be made constructive

Theorem

There exist irrational numbers α, β such that αβ is rational.

Constructive proof.

Let α =
√

3 and β = log3(4). Then

αβ =
√

3
log3(4) = 3

1
2
log3(4) = 3log3(2) = 2.

It is easy to show that α and β are both irrational.



Excluded middle is sometimes fine

We can sometimes use excluded middle; we just can’t assume it
without proving it.

Theorem

Every natural number is either equal to zero or not equal to zero.

Constructive proof.

By induction.

If n = 0, then n = 0.

Assume inductively that either n = 0 or n 6= 0.
In either case, n + 1 6= 0.

Thus, by induction, for all natural numbers n, either n = 0 or
n 6= 0.



Arithmetic and algebra are familiar

Other facts we can prove constructively by induction:

1 Any two integers are either equal or not equal.

2 Any integer is either odd or even.

3 Any two rational numbers are either equal or not equal.

4 For rational numbers x , y , either x < y or x = y or x > y .

5 For any two integers a, b, either a divides b or not.

6 Any integer n ≥ 2 is either prime or composite.



What about proof by contradiction?

“Contrariwise,” continued
Tweedledee, “if it was so, it
might be; and if it were so, it
would be; but as it isn’t, it
ain’t. That’s logic.”

“Reductio ad absurdum, which
Euclid loved so much, is one of a
mathematician’s finest weapons.
It is a far finer gambit than any
chess play: a chess player may
offer the sacrifice of a pawn or
even a piece, but a
mathematician offers the game.”



What is proof by contradiction anyway?

Proof by contradiction is informally used to refer to two different
rules of inference:

To prove P, it suffices to
assume “not P” and derive
a contradiction.

To prove “not P”, it
suffices to assume P and
derive a contradiction.

This one is equivalent to
excluded middle.

This one is fine constructively!
It’s the basic “prove” rule
associated to “not” statements.

Classically, “P is true” is the same as “not-P is false”.
Constructively, claims of falsity have a qualitatively different status
from claims of truth.
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Proof of negation by contradiction

Theorem

5 is prime.

Constructive proof.

Suppose that 5 = ab where 0 < a < 5 and 0 < b < 5 are integers.
Then a = 1, 2, 3, or 4.

If a = 1, then b = 5, which is not < 5, a contradiction.

If a = 2, then b = 5
2 , which is not an integer, a contradiction.

If a = 3, then b = 5
3 , which is not an integer, a contradiction.

If a = 4, then b = 5
4 , which is not an integer, a contradiction.

Thus, 5 can not be written as the product of two smaller positive
integers. Hence, by definition, 5 is prime.



Some proofs by contradiction aren’t really

Theorem

Every integer n ≥ 2 can be written as a product of primes.

Non-constructive proof.

Suppose for contradiction that there is an n ≥ 2 that cannot be so
written. Without loss of generality, let n be the smallest such
counterexample.

If n is prime, then n = n is a product of one prime, a
contradiction.

If n is composite, then n = ab with a, b < n, so they can be
written as products of primes. Hence n = ab is also a product
of primes, a contradiction.
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Some proofs by contradiction aren’t really

Theorem

Every integer n ≥ 2 can be written as a product of primes.

Constructive proof.

By strong induction, we may assume that for any 2 ≤ k < n we
can write k as a product of primes.

If n is prime, then n = n is a product of one prime.

If n is composite, then n = ab with a, b < n, so they can be
written as products of primes. Hence n = ab is also a product
of primes.

Constructive logic encourages better “proof hygiene”.



Some proofs by contradiction really are

“Theorem”

For any real numbers x , y , either x < y or x = y or x > y .

Non-constructive proof.

Suppose not, so that x 6< y and x 6= y and x 6> y . Starting at the
left, compare the decimal expansions† of x and y digit-by-digit
until they differ (if ever).

Since x 6< y , at the first point of difference, the digit of x is
not smaller.

Since x 6> y , at the first point of difference, the digit of x is
not bigger.

Since of two different digits one must be bigger, there can be
no first point of difference. Hence x = y , contradicting our
assumption that x 6= y .

† Technically we have to use Cauchy sequences.
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Some proofs by contradiction really are

“Theorem”

For any real numbers x , y , either x < y or x = y or x > y .

This theorem has no constructive proof!



A weak counterexample

zn =

1
if a string of one billion nines in the decimal
expansion of π starts at the nth place.

0 otherwise.

z =
∞∑
n=0

(−1)n
zn
2n
.

This is well-defined constructively, since we can compute it to
arbitrary precision.

z = 0 iff there is no string of one billion nines in π,

z > 0 iff the first such string starts at an even place,

z < 0 iff the first such string starts at an odd place.

So if we could prove “either z < 0 or z = 0 or z > 0”
constructively, we could decide whether the first string of one
billion nines in π starts at an even or an odd place.





What is truth?

There are (at least) two ways to wrap your head around this.

1 Continue to believe that every real number “really” is either
positive, negative, or zero. We just can’t give a constructive
proof of this because we have no method to tell which is the
case in general.

2 Start to believe that in the “world of constructive
mathematics” it really isn’t true that every real number is
either positive, negative, or zero.

The first is the easiest. But (as we will see) the more constructive
math you do, the harder it is to avoid the second.



Plus, it’s not that big a deal

Theorem

For any real numbers x , y , if x 6< y and x 6> y , then x = y .

Constructive proof.

Suppose x 6< y and x 6> y , and compare the decimal expansions†

of x and y digit-by-digit until they differ (if ever).

Since x 6< y , at the first point of difference, the digit of x is
not smaller.

Since x 6> y , at the first point of difference, the digit of x is
not bigger.

Since of two different digits one must be bigger, there can be
no first point of difference. Hence x = y .



It’s not that big a deal, part 2

Theorem

For any real numbers x , y and positive integer n, either x < y + 1
n

or x > y − 1
n .

Constructive proof.

Let k be such that 10k > n, and let xk and yk be the decimal
expansions† of x and y out to the kth decimal place. These are
rational numbers, so either xk < yk or xk = yk or xk > yk .

If xk < yk , then x < y + 1
n .

If xk = yk , then both x < y + 1
n and x > y − 1

n .

If xk > yk , then x > y − 1
n .



Calculus is a little weird

Other classical theorems that we can’t prove constructively:

For any real numbers x , y , either x = y or x 6= y .

If x 6= y , then x < y or x > y .

For any real numbers x , y , either x ≤ y or x ≥ y .

If x 6= 0, then 1/x exists.

If x 6= y is false, then x = y .

The Intermediate Value Theorem (IVT).

The Extreme Value Theorem (EVT).

But we can prove that

If x > 0 or x < 0, then 1/x exists.

IVT holds for any differentiable function whose derivative is
bounded away from 0.

IVT holds “approximately” for any continuous function.

With sufficient care, we can develop all of calculus constructively.
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Set theory is very weird

Let P be any statement, and consider the set

A = { 0 | P is true } .

Theorem

If A is finite, then P is either true or false.

Proof.

If A is finite, then its cardinality is a natural number |A|.
If |A| = 0, then A = ∅, hence 0 /∈ A and so P is false.

if |A| 6= 0, we must have 0 ∈ A and so P is true.



Set theory is very weird

Let P be any statement, and consider the set

A = { 0 | P is true } .

Theorem

If A is finite, then P is either true or false.

Thus, we cannot prove constructively that A is always finite
for any P.

Note that A is a subset of the finite set {0}. Thus, we cannot
prove that every subset of a finite set is finite!



Set theory is very weird

Let P be any statement, and consider the set

A = { 0 | P is true } .

But. . .

Theorem

A is not infinite.

Proof.

Suppose A were infinite, i.e. not finite. Then |A| 6= 1, so P is not
true, i.e. P is false. But also |A| 6= 0, so P is not false either. Since
P can’t be both false and not false, this is a contradiction.



3. Impossible things

“I can’t believe that!” said
Alice.

“Can’t you?” the Queen said
in a pitying tone. “Try again:
draw a long breath, and shut
your eyes.”

Alice laughed. “There’s no
use trying,” she said “one can’t
believe impossible things.”

“I daresay you haven’t had
much practice,” said the Queen.
“When I was your age, I always
did it for half-an-hour a day.
Why, sometimes I’ve believed as
many as six impossible things
before breakfast.”



Calculus can be very weird too

Fact

In constructive mathematics, every function is continuous!

The usual example of a discontinuous function

f (x) =

{
1 if x ≥ 0

0 if x < 0

is not well-defined everywhere: we can’t say that every real number
is either ≥ 0 or < 0.



Wait a minute

Every constructive proof is also a classical proof! So

“Every function is continuous”

is not a constructive theorem — even though every particular
function we can define constructively is continuous.

But because of this, in constructive mathematics we can
consistently take

“Every function is continuous”

as an axiom!
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Computability

Another fact

In constructive mathematics, every function is computable!

In other words, anything we can define can be computed by
an algorithm.

This has to be understood in the same way as continuity: it’s
not a theorem, but can consistently be taken as an axiom.

This is reassuring: it means our “constructive proofs” really
are constructive in the intuitive sense.

Exercise: if you know an example of a noncomputable
function, look and see where it uses excluded middle.



Infinitesimal calculus

“And what are these [infinitesimals]? The Velocities of evanescent
Increments? And what are these same evanescent Increments? They
are neither finite Quantities nor Quantities infinitely small, nor yet
nothing. May we not call them the ghosts of departed quantities?”

– Berkeley, The Analyst: a discourse addressed to an infidel mathematician



Infinitesimal calculus

In constructive mathematics, there can also be numbers† d
such that d2 = 0 but not necessarily d = 0.

Any such d will necessarily be not unequal to 0.

We can’t divide by them, but we can consistently assume

If a · d = b · d for all d such that d2 = 0, then a = b.

Now we can define f ′(x) to be the unique number such that

f (x + d) = f (x) + f ′(x) · d

for all d such that d2 = 0.

For example, if f (x) = x2, then

f (x + d) = (x + d)2

= x2 + 2x · d + d2

= x2 + 2x · d
=⇒ f ′(x) = 2x .

† Well, not real numbers.



What is truth? Take 2

Conclusion

Using constructive logic not only ensures our proofs are
constructive; it gives us axiomatic freedom: we can assume
powerful axioms that would classically be inconsistent.

This places us firmly on the side of viewing constructive logic
as a “strange new universe”, rather than just a refined notion
of proof for ordinary mathematics.

This can be made precise by constructing models of
constructive logic, with new nonclassical axioms, inside
classical logic.



Congratulations

You’ve taken your first step into a larger world.
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