
The Seifert–van Kampen Theorem in Homotopy Type Theory

Kuen-Bang Hou (Favonia)
Carnegie Mellon University

favonia@cs.cmu.edu

Michael Shulman
University of San Diego
shulman@sandiego.edu

Abstract
Homotopy type theory is a recent research area connecting type the-
ory with homotopy theory by interpreting types as spaces. In par-
ticular, one can prove and mechanize type-theoretic analogues of
homotopy-theoretic theorems, yielding “synthetic homotopy the-
ory”. Here we consider the Seifert–van Kampen theorem, which
characterizes the loop structure of spaces obtained by gluing. This
is useful in homotopy theory because many spaces are constructed
by gluing, and the loop structure helps distinguish distinct spaces.
The synthetic proof showcases many new characteristics of syn-
thetic homotopy theory, such as the “encode-decode” method, en-
forced homotopy-invariance, and lack of underlying sets.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Homotopy type theory is an emerging research area which draws
ideas from type theory, homotopy theory and category theory (Uni-
valent Foundations Program 2013; Warren 2008; Awodey and War-
ren 2009; van den Berg and Garner 2012; Kapulkin, Lumsdaine,
and Voevodsky 2012; Hofmann and Streicher 1998; Gambino and
Garner 2008). Most of the current research has focused on an exten-
sion of Martin-Löf type theory by Voevodsky’s univalence axiom
and higher inductive types (Univalent Foundations Program 2013),
interpreting types as “spaces up to homotopy”, and Martin-Löf’s
identification type as a space of “homotopical paths”. One of the
more intriguing applications of this theory is synthetic homotopy
theory: proving and mechanizing type-theoretic versions of the-
orems in classical homotopy theory (Univalent Foundations Pro-
gram 2013; Licata and Shulman 2013; Licata and Brunerie 2013;
Licata and Finster 2014; Licata and Brunerie 2015; Favonia 2013).
Upon translation through the homotopy-theoretic semantics of type
theory (Kapulkin, Lumsdaine, and Voevodsky 2012), these yield
proofs of the corresponding classical results, sometimes involving
significant new insights (Rezk 2014).

In this paper we advance the program of synthetic homotopy
theory by proving and mechanizing the Seifert–van Kampen the-
orem, which computes the fundamental group of a homotopy

[Copyright notice will appear here once ’preprint’ option is removed.]

Input:

Homotopy pushout:

Figure 1. A homotopy pushout

pushout. The fundamental group π1(X) is a homotopy-theoretic
invariant of a space X that measures intuitively “how many loops”
it contains. For instance, the fundamental group of a circle is the
integers Z, because one can loop around the circle any number of
times (in either direction); while the fundamental group of a torus
(the surface of a donut) is Z×Z, because one can either loop around
the outer edge or through the hole (any number of times each).

A homotopy pushout is a way of gluing two spaces together to
produce a new one, by specifying an inclusion of a common sub-
space that should be glued together. For instance, given two circles
and a specified point on each, we can glue the two points together
with a “bridge”, producing a “barbell” shape; see Figure 1. Many
of the spaces of interest to homotopy theory can be obtained by
gluing together intervals, discs, and higher-dimensional discs (such
gluings are called cell complexes); thus it obviously of interest to
calculate invariants of such gluings, such as the fundamental group.

The Seifert–van Kampen theorem tells us how to compute the
fundamental group of a homotopy pushout; that is, it tells us how
many loops there are in a glued space. In the example of Figure 1,
a loop in the homotopy pushout can go around one circle any
number of times (in either direction), then around the other circle
any number of times, then back around the first circle some other
number of times, and so on. More precisely, the fundamental group
of the figure-eight or barbell is the free product of the fundamental
groups of the two circles (Z and Z), which is the coproduct in
the category of groups. More generally, the Seifert–van Kampen
theorem says that if we glue two spaces B and C together along a
connected spaceA,1 then the fundamental group π1(BtAC) is the
amalgamated free product (the pushout in the category of groups)
of π1(B) and π1(C) over π1(A).

In fact, the full Seifert–van Kampen theorem applies also in the
case whenA is not connected. This requires replacing fundamental
groups π1(X) by fundamental groupoids Π1X , which keep track
of loops at different basepoints. If a space is not connected, such as
the disjoint union of a circle with a point, then different numbers
of loops may be possible depending on where we start. The fun-
damental groupoid actually records all paths between points, thus

1 The theorem is traditionally stated for a topological space X which is the
union of two open subspacesU and V , but in homotopy-theoretic terms this
is just a convenient way of ensuring that X is the homotopy pushout of U
and V over U ∩ V .

1 2016/1/19

including loops starting at all points and also the information about
which pairs of points are connected. The full SvKT says that the
functor Π1 takes homotopy pushouts to pushouts of groupoids.

Stating and proving this theorem in homotopy type theory is a
bit subtle for several reasons. According to the homotopy-theoretic
interpretation of type theory, types act like∞-groupoids, and ordi-
nary groupoids can be identified with the “1-truncated” types. Un-
der this interpretation, the Π1 is represented by a type constructor
called the 1-truncation, which is a left adjoint to the inclusion of 1-
truncated types into all types. Since left adjoints preserve pushouts,
the SvKT appears to follow trivially.

However, this form of SvKT is not actually particularly useful.
We were originally interested in the fundamental group π1(X),
which is a hom-set in the fundamental groupoid Π1X . If Π1X is
represented by a 1-truncated type, then its “hom-sets” are its path
spaces (Martin-Löf’s identity types), and so to find π1(X) when
X is a pushout, we must compute the path space of a pushout.
But computing the path space of a pushout is what the SvKT was
supposed to do for us! So this version of the theorem has really just
shifted the burden of calculation elsewhere.

To obtain a more calculationally useful version of SvKT, we
represent groupoids more “analytically” with a type of objects and
dependent types of morphisms. For Π1X , the type of objects is
X itself, and the hom-set between x, y : X is the 0-truncation
(set of connected components) of the path-space from x to y. (The
connection between the two fundamental groupoids is that in the
language of (Univalent Foundations Program 2013, Chapter 9), the
latter Π1A is a “pregroupoid” whose “Rezk completion” (Ahrens,
Kapulkin, and Shulman 2015) has the 1-truncation of X as its type
of objects.)

Now our goal is to calculate this truncated path space, given
an expression of X as a homotopy pushout. For this we use the
“encode-decode method” (Licata and Shulman 2013; Univalent
Foundations Program 2013). The idea of this method is to define
a type family code : X → X → U using the recursion principle
of X (coming from its expression as a homotopy pushout), and
then show (using the analogous induction principle of X , along
with path induction) that for all x, y : X the type code(x, y) is
equivalent to Π1X(x, y).

We will do this in Section 3, after a brief review of homotopy
type theory in Section 2. However, there is one further valuable re-
finement. The description of code in Section 3 is not maximally
explicit in all cases, because it incorporates π1(A) through “homo-
topical magic”. To rectify this, in Section 4 we prove an improved
version of SvKT where A is equipped with an arbitrary type of
“base points”. Some example applications can be found at the ends
of Section 3 and Section 4.

All the results of the paper have been mechanized in the proof
assistant AGDA. We end in Section 5 with some remarks on the
mechanization and how it differs from the informal treatment.

2. Homotopy Type Theory
As in (Univalent Foundations Program 2013), we will work in
Martin-Löf type theory extended with Voevodsky’s univalence ax-
iom and some higher inductive types. For a type A and elements
x, y : A, we write the identification type as x =A y or just x = y,
and often refer to its elements as paths. The defining feature of
homotopy type theory is that x = y might have more than one
element.

The induction principle for x = y, which we refer to as Id-
induction or path induction, says that if D :

∏
(x,y:A)(x = y) →

U , then to define d :
∏

(x,y:A)

∏
(p:x=y)D(x, y, p) it suffices to

define r :
∏

(x:A)D(x, x, reflx). From this we can construct all the
operations of a higher groupoid onA; for instance, given p : x = y

and q : y = z we have their concatenation p � q : x = z
(identification is transitive), and for any p : x = y we have its
inverse or opposite p−1 : y = x (identification is symmetric).
We also have the operation of transport (a.k.a. substitution): given
C : A → U and u : C(x), for any p : x =A y we have
transportC(p, u) : C(y). Finally, for any f : A → B and
p : x =A y, we can define apf (p) : f(x) =B f(y) (functions
respect identifications).

A type A is called a mere proposition (or simply a proposition)
if it has at most one element, i.e.

∏
x,y:A x = y. It is called a set if it

satisfies Uniqueness of Identity Proofs, i.e. if
∏
x,y:A

∏
p,q:x=y p =

q; or equivalently if each type x = y is a proposition. Propositions
and sets are the first two rungs on an infinite ladder of “n-types”
(Univalent Foundations Program 2013, Chapter 7), and as such are
also called (−1)-types and 0-types respectively.

If we have two types A and B and functions f : A → B and
g : B → A such that

∏
a:A g(f(a)) = a and

∏
b:B f(g(b)) = b,

then A and B are equivalent, written A ' B. (This is not the
definition of “equivalence” — see (Univalent Foundations Program
2013, Chapter 4) for that — but it is how we generally produce
equivalences.) Since types are elements of a universe type, we also
have the path type A = B, with a canonical map (A = B) →
(A ' B) since identified types are equivalent; the univalence
axiom says that this canonical map is itself an equivalence, so that
equivalent types are identified.

Higher inductive types (HITs) are a generalization of inductive
types that allow constructors which generate new identifications
(paths) in addition to elements. For instance, the circle S1 is a HIT
generated by a point b : S1 and a path l : b = b. Note that the
path l is “new” and not identified with reflb (at least, not a priori —
proving that it is definitely unequal to reflb is a significant theorem
(Licata and Shulman 2013)).

The central HIT for us will be the pushout B tA C of two
functions f : A → B and g : A → C, which is generated by
the following constructors:

• i : B → B tA C,
• j : C → B tA C, and
• for all x : A, a path h(x) : i(f(x)) = j(g(x)).

As in Fig. 1, the paths h(x) form the “glue”, or the “handle” of the
barbell. We thus have a commutative diagram

A C

B B tA C

f

g

i

j

that is universal, in the category-theoretic sense. This follows from
the type-theoretic induction principle of B tA C, which says
(slightly informally) that given a family D : B tA C → U , to de-
fine d :

∏
(p:BtAC)D(p) it suffices to define m :

∏
(b:B)D(i(b))

and n :
∏

(c:C)D(j(c)) which “agree over h(x)” for all x : A.
Details can be found in (Univalent Foundations Program 2013,
Chapter 6). In particular, the “recursion principle” (the case where
D is non-dependent) says that to define a map d : B tA C → D,
it suffices to give maps m : B → D and n : C → D and a path
mf = ng; this is the “existence” part of the universal property of
a pushout.

Other important HITs are the propositional truncation and the
set-truncation. The propositional truncation of a type A is a type
‖A‖−1 that is a proposition, together with a map |– |−1 : A →
‖A‖−1 that is universal among maps from A to propositions. In-

2 2016/1/19

formally, ‖A‖−1 is “0 if A is empty and 1 if A is inhabited”. Sim-
ilarly, the set-truncation of A is a type ‖A‖0 that is a set, together
with a map |– |0 : A → ‖A‖0 that is universal among maps from
A to sets; we think of it as “the set of connected components ofA”.
See (Univalent Foundations Program 2013, Chapter 7) for how to
construct these truncations as HITs, as well as a generalization to
the n-truncation (the 1-truncation was mentioned in the introduc-
tion).

Given a function f : A → B and a point b : B, the fiber of f
over b is fibf (b) :≡

∑
(a:A) f(a) = b. We say f is an embedding if

fibf (b) is a proposition for all b : B, and 0-truncated if fibf (b) is a
set for all b : B. Dually, we say f is surjective if each ‖fibf (b)‖−1
is contractible (equivalent to 1), and connected (or 0-connected for
emphasis) if each ‖fibf (b)‖0 is contractible. In particular, a type
A is connected if the unique function A → 1 is connected, which
is equivalent to saying that ‖A‖0 is contractible — that is, A has
exactly one connected component.

The set-truncation is also how we define the fundamental group
and the fundamental groupoid. Given a type A and a point a : A,
we write π1(A, a) :≡ ‖a = a‖0. (Often one writes simply π1(A),
since many types have canonical “basepoints” a. Moreover, if A
is connected, we have ‖a = b‖−1 for all a, b : A, and hence
‖π1(A, a) ' π1(A, b)‖−1 as well; so up to “propositional equiva-
lence” the choice of a doesn’t matter.) And given just a type A, for
any points x, y : A we write Π1A(x, y) :≡ ‖x = y‖0; this defines
the “hom-sets” of a groupoid with A as its type of objects. Note
that we have induced groupoid operations

(– � –) : Π1X(x, y)→ Π1X(y, z)→ Π1X(x, z)

(–)−1 : Π1X(x, y)→ Π1X(y, x)

reflx : Π1X(x, x)

apf : Π1X(x, y)→ Π1Y (fx, fy)

for which we use the same notation as the corresponding operations
on paths.

The set-truncation also allows us to define quotients of equiva-
lence relations on sets. If A is a set and R : A → A → U is an
equivalence relation, then its “homotopy coequalizer” is the HIT
generated by

• A quotient map q : A→ Q, and
• For each a, b : A such that R(a, b), a path q(a) = q(b).

In general,Q will not be a set; we define the set-quotient ofR to be
its set-truncation ‖Q‖0. This has the usual universal property of a
quotient with respect to other sets (Univalent Foundations Program
2013, §6.10).

2.1 Encode-decode Proof Style
Many theorems in homotopy type theory, including the Seifert–
van Kampen, can be phrased as an equivalence between an abstract,
general description X we wish to understand (often a family of
path-spaces or truncated path-spaces), and a concrete, combinato-
rial description, which we call code. Recall that an equivalence,
as mentioned above involves two functions with the proof of their
mutual invertibility. We call the function fromX to code “encode”,
and the other “decode”. The encode-decode proof style essentially
fills in the components of an equivalence one by one:

1. Define the code that will be equivalent to the X we wish to
understand. If X is a family of (truncated) path-spaces in some
higher inductive type P , then code is usually a type family over
P defined using the recursion principle of P .

2. Define a encode function from X to code, and a decode func-
tion from code toX . Generally the encode function is immedi-

ate from path induction, while decode requires a further induc-
tion over the base space P .

3. Show encode and decode are inverse to each other. Again, one
direction of this is usually easy, while the other requires an
induction.

For the rest of the paper we will follow this recipe.

3. Naive Seifert–van Kampen Theorem
Let f : A → B and g : A → C be given functions, and let
P :≡ B tA C be their pushout. In Section 3.1 we will define the
family code : P → P → U , and in Section 3.2 we will prove the
following theorem.

Theorem 3.1 (Naive Seifert–van Kampen theorem). For all u, v :
P there is an equivalence

Π1P (u, v) ' code(u, v).

3.1 Definition of code

We define the combinatorial description code : P → P → U by
double recursion on P . In other words, we first apply the recursion
principle to the first P in the type of code, concluding that it
suffices to define maps codeB : B → P → U and codeC : C →
P → U that agree on A. Then we apply the recursion principle
again for each b : B and each c : C, so that to define codeB it
suffices to define maps B → B → U and B → C → U that
agree in B → A→ U , and similarly for codeC . Finally, we apply
the induction principle to each a : A to determine what it means for
codeB and codeC to agree onA. When this is all reduced out using
the theorems of (Univalent Foundations Program 2013, Chapter 2)
(which use function extensionality and the univalence axiom), it
suffices for us to give the following.2

• code(i(b), i(b′)) is a set-quotient of the type of sequences

(b, p0, x1, q1, y1, p1, x2, q2, y2, p2, . . . , yn, pn, b
′)

where

n : N
xk : A and yk : A for 0 < k ≤ n
p0 : Π1B(b, f(x1)) and pn : Π1B(f(yn), b′) for n > 0,
and p0 : Π1B(b, b′) for n = 0

pk : Π1B(f(yk), f(xk+1)) for 1 ≤ k < n

qk : Π1C(g(xk), g(yk)) for 1 ≤ k ≤ n
The quotient is generated by the following identifications:

(. . . , qk, yk, reflf(yk), yk, qk+1, . . .) = (. . . , qk � qk+1, . . .)

(. . . , pk, xk, reflg(xk), xk, pk+1, . . .) = (. . . , pk � pk+1, . . .)

(see Remark 1 below). Note that the type of such sequences is
a little subtle to define precisely, since the types of pk and qk
depend on xk and yk; the reader may undertake it as an exercise,
or refer to the AGDA mechanization.
• code(j(c), j(c′)) is identical, with the roles of B and C re-

versed. We likewise notationally reverse the roles of x and y,
and of p and q.
• code(i(b), j(c)) and code(j(c), i(b)) are similar, with the par-

ity changed so that they start in one type and end in the other.

2 Since code is a “curried” function of two variables and we are using
standard mathematical function application notation, we ought technically
to write code(a)(b); but as in (Univalent Foundations Program 2013) we
will instead write this as code(a, b).

3 2016/1/19

• For a : A and b : B, we require an equivalence

code(i(b), i(f(a))) ' code(i(b), j(g(a))). (1)

We define this to consist of the two functions defined on se-
quences by

(. . . , yn, pn, f(a)) 7→ (. . . , yn, pn, a, reflg(a), g(a)),

(. . . , xn, pn, a, reflf(a), f(a))←[(. . . , xn, pn, g(a)).

Both of these functions are easily seen to respect the equiva-
lence relations, and hence to define functions on the types of
codes. The left-to-right-to-left composite is

(. . . , yn, pn, f(a)) 7→ (. . . , yn, pn, a, reflg(a), a, reflf(a), f(a))

which is equal to the identity by a generating path of the quo-
tient. The other composite is analogous. Thus we have defined
an equivalence (1).
• Similarly, we require equivalences

code(j(c), i(f(a))) ' code(j(c), j(g(a)))

code(i(f(a)), i(b)) ' (j(g(a)), i(b))

code(i(f(a)), j(c)) ' (j(g(a)), j(c))

all of which are defined in exactly the same way (the second
two by adding reflexivity terms on the beginning rather than the
end).
• Finally, we need to know that for a, a′ : A, the following

diagram commutes:

code(i(f(a)), i(f(a′))) //

��

code(i(f(a)), j(g(a′)))

��
code(j(g(a)), i(f(a′))) // code(j(g(a)), j(g(a′)))

(2)
This amounts to saying that if we add something to the begin-
ning and then something to the end of a sequence, we might as
well have done it in the other order.3

Remark 1. One might expect to see in the definition of code some
additional generating equations for the set-quotient, such as

(. . . , pk−1
� apf (w), x′k, qk, . . .) = (. . . , pk−1, xk, apg(w) � qk, . . .)

(for w : Π1A(xk, x
′
k))

(. . . , qk � apg(w), y′k, pk, . . .) = (. . . , qk, yk, apf (w) � pk, . . .).
(for w : Π1A(yk, y

′
k))

However, these are not necessary! In fact, they follow automatically
by path induction on w. This is the main difference between the
“naive” Seifert–van Kampen theorem and the more refined one we
will consider in Section 4.

3.2 The Encode-decode Proof
Before beginning the encode-decode proof proper, we characterize
transports in the fibration code:

• For p : b =B b′ and u : P , we have

transportb 7→code(u,i(b))(p, (. . . , yn, pn, b)) = (. . . , yn, pn�p, b
′).

• For q : c =C c′ and u : P , we have

transportc7→code(u,j(c))(q, (. . . , xn, qn, c)) = (. . . , xn, qn�q, c
′).

3 This might be simplified by the cubical methods of (Licata and Brunerie
2015), but we leave that to the interested reader.

Here we are abusing notation by using the same name for a path
in X and its image in Π1X . Note that transport in Π1X is also
given by concatenation with (the image of) a path. From this we
can prove the above statements by induction on u. We also have:

• For a : A and u : P ,

transportv 7→code(u,v)(h(a), (. . . , yn, pn, f(a)))

= (. . . , yn, pn, a, reflg(a), g(a)).

This follows essentially from the definition of code.
Now, as is often the case, the function encode will be defined by

transporting a “reflexivity code” along a path. The reflexivity code

r :
∏
u:P

code(u, u)

is defined by induction on u as follows:

r(i(b)) :≡ (b, reflb, b)

r(j(c)) :≡ (c, reflc, c)

and for r(h(a)) we take the composite path

(h(a), h(a))∗(f(a), reflf(a), f(a))

= (g(a), reflg(a), a, reflf(a), a, reflg(a), g(a))

= (g(a), reflg(a), g(a))

where the first path is by the observation above about transporting
in code, and the second is an instance of the set quotient relation
used to define code.

We can now prove the theorem.

Proof of Theorem 3.1. To define a function

encode : Π1P (u, v)→ code(u, v)

it suffices to define a function (u =P v) → code(u, v), since
code(u, v) is a set. We do this by transport:

encode(p) :≡ transportv 7→code(u,v)(p, r(u)).

Now to define

decode : code(u, v)→ Π1P (u, v)

we proceed as usual by induction on u, v : P . In each case for u
and v, we apply i or j to all the paths pk and qk as appropriate and
concatenate the results in P , using h to identify the endpoints. For
instance, when u ≡ i(b) and v ≡ i(b′), we define

decode(b, p0, x1, q1, y1, p1, . . . , yn, pn, b
′)

:≡ (p0) � h(x1) � apj(q1) � h(y1)−1 � api(p1)�

· · · � h(yn)−1 � api(pn). (3)

This respects the set-quotient equivalence relation and the equiva-
lences such as (1), by the naturality and functoriality of paths (Uni-
valent Foundations Program 2013, Chapter 2).

As usual with the encode-decode method, to show that the
composite

Π1P (u, v)
encode−−−→ code(u, v)

decode−−−→ Π1P (u, v)

is the identity, we first peel off the 0-truncation (since the codomain
is a set) and then apply path induction. The input reflu goes to r(u),
which then goes back to reflu (applying a further induction on u to
decompose decode(r(u))).

Finally, consider the composite

code(u, v)
decode−−−→ Π1P (u, v)

encode−−−→ code(u, v).

4 2016/1/19

We proceed by induction on u, v : P . When u ≡ i(b) and
v ≡ i(b′), this composite is

(b, p0, x1, q1, y1, p1, . . . , yn, pn, b
′)

7→
(

api(p0) � h(x1) � apj(q1) � h(y1)−1 � api(p1)�

· · · � h(yn)−1 � api(pn)
)
∗
(r(i(b)))

= api(pn)∗ · · · apj(q1)∗h(x1)∗api(p0)∗(b, reflb, b)

= api(pn)∗ · · · apj(q1)∗h(x1)∗(b, p0, i(f(x1)))

= api(pn)∗ · · · apj(q1)∗(b, p0, x1, reflg(x1), j(g(x1)))

= api(pn)∗ · · · (b, p0, x1, q1, j(g(y1)))

=
...

= (b, p0, x1, q1, y1, p1, . . . , yn, pn, b
′).

i.e., the identity function. (To be precise, there is an implicit induc-
tive argument needed here.) The other three point cases are analo-
gous, and the path cases are trivial since all the types are sets.

3.3 Examples
Theorem 3.1 allows us to calculate the fundamental groups of many
types, provided A is a set, for in that case, each code(u, v) is, by
definition, a set-quotient of a set by a relation.
Example 1. Let A :≡ 2, B :≡ 1, and C :≡ 1. Then P
is equivalent to the circle S1. Inspecting the definition of, say,
code(i(?), i(?)), we see that the paths all may as well be trivial, so
the only information is in the sequence of elements

x1, y1, . . . , xn, yn : 2.

Moreover, if we have xk = yk or yk = xk+1 for any k, then
the set-quotient relations allow us to excise both of those elements.
Thus, every such sequence is identified with a canonical reduced
one in which no two adjacent elements are equal. Clearly such a
reduced sequence is uniquely determined by its length (a natural
number n) together with, if n > 1, the information of whether x1
is 02 or 12, since that determines the rest of the sequence uniquely.
And these data can, of course, be identified with an integer, where
n is the absolute value and x1 encodes the sign. Thus we recover
π1(S1) ∼= Z (Licata and Shulman 2013).

Since Theorem 3.1 asserts only a bijection of families of sets,
this isomorphism π1(S1) ∼= Z is likewise only a bijection of sets.
We could, however, define a concatenation operation on code (by
concatenating sequences) and show that encode and decode form
an isomorphism respecting this structure (i.e. an equivalence of
groupoids, or “pregroupoids”). We leave the details to the reader.
Example 2. Let A :≡ 1 and B and C be arbitrary, so that f
and g simply equip B and C with basepoints b and c, say. Then
P is the wedge B ∨ C of B and C (the coproduct in the cate-
gory of based spaces). In this case, it is the elements xk and yk
which are trivial, so that the only information is a sequence of
loops (p0, q1, p1, . . . , pn) with pk : π1(B, b) and qk : π1(C, c).
Such sequences, modulo the equivalence relation we have imposed,
are easily identified with the usual explicit description of the free
product of the groups π1(B, b) and π1(C, c). Thus, π1(B ∨ C) is
isomorphic to this free product π1(B) ∗ π1(C).

Theorem 3.1 is also applicable to some cases when A is not a
set, such as the following generalization of Example 1:
Example 3. Let B :≡ 1 and C :≡ 1 but A be arbitrary; then P is,
by definition, the suspension ΣA of A. Then once again the paths
pk and qk are trivial, so that the only information in a path code
is a sequence of elements x1, y1, . . . , xn, yn : A. The first two

generating paths say that adjacent equal elements can be canceled,
so it makes sense to think of this sequence as a word of the form

x1y
−1
1 x2y

−1
2 · · ·xny

−1
n

in a group. Indeed, it looks similar to the free group on A (or
equivalently on ‖A‖0), but we are considering only words that start
with a non-inverted element, alternate between inverted and non-
inverted elements, and end with an inverted one. This effectively
reduces the size of the generating set by one. For instance, if A
has a point a : A, then we can identify π1(ΣA) with the group
presented by ‖A‖0 as generators with the relation |a|0 = e.

In particular, if A is connected (that is, ‖A‖0 is contractible),
it follows that π1(ΣA) is trivial. Since the higher spheres can be
defined as Sn+1 :≡ ΣSn, and S1 is easily seen to be connected, it
follows that π1(Sn) = 1 for all n > 1.

However, Theorem 3.1 stops just short of being the full classical
Seifert–van Kampen theorem, which states that

π1(B tA C) ∼= π1(B) ∗π1(A) π1(C)

(with base point coming from A). Indeed, the conclusion of Theo-
rem 3.1 says nothing at all about π1(A). The paths in A are “built
into the quotienting” in a type-theoretic way that makes it hard to
extract explicit information, since code(u, v) is a set-quotient of
a non-set by a relation. For this reason, we now consider a better
version of the Seifert–van Kampen theorem.

4. Improvement with an Indexing Space
The improvement of Seifert–van Kampen we present now is closely
analogous to a similar improvement in classical algebraic topology,
where A is equipped with a set S of base points. In fact, it turns
out to be unnecessary for our proof to assume that the “set of
basepoints” is a set — it might just as well be an arbitrary type. The
utility of assuming S is a set arises later, when applying the theorem
to obtain computations. What is important is that S contains at
least one point in each connected component of A. We state this
in type theory by saying that we have a type S and a function
κ : S → A which is surjective, i.e. (−1)-connected. If S ≡ A
and κ is the identity function, then we will recover Theorem 3.1.
Another example to keep in mind is when A is pointed and (0-
)connected, with κ : 1 → A the point: by (Univalent Foundations
Program 2013, Lemmas 7.5.2 and 7.5.11) this map is surjective just
when A is 0-connected.

Let A,B,C, f, g, P, i, j, h be as in the previous section. We
now define, given our surjective map κ : S → A, an auxiliary
type which improves the connectedness of κ. Let T be the higher
inductive type generated by

• A function ` : S → T , and
• For each s, s′ : S, a function

m : (κ(s) =A κ(s′))→ (`(s) =T `(s
′)).

There is an obvious induced function κ : T → A such that
κ◦` = κ, and any p : κ(s) = κ(s′) is identified with the composite

κ(s) = κ(`(s))
κ(m(p))

= κ(`(s′) = κ(s′).

Lemma 1. κ is 0-connected.

Proof. We must show that for all a : A, the 0-truncation of the type∑
(t:T)(κ(t) = a) is contractible. Since contractibility is a mere

proposition and κ is (−1)-connected, we may assume that a = κs
for some s : S. Now we can take the center of contraction to be
|(`(s), q)|0 where q is the path κ(`(s)) = κ(s).

It remains to show that for any φ :
∥∥∥∑(t:T)(κ(t) = κ(s))

∥∥∥
0

we have φ = |(`(s), q)|0. Since the latter is a mere proposition,

5 2016/1/19

and in particular a set, we may assume that φ = |(t, p)|0 for t : T
and p : κ(t) = κ(s).

Now we can do induction on t : T . If t ≡ `(s′), then κ(s′) =

κ(`(s′))
p
= κ(s) yields via m a path `(s) = `(s′). Hence by

definition of κ and of identification in homotopy fibers, we obtain a
path (κ(s′), p) = (κ(s), q), and thus |(κ(s′), p)|0 = |(κ(s), q)|0.
Next we must show that as t varies along m these paths agree.
But they are paths in a set (namely

∥∥∥∑(t:T)(κ(t) = κ(s))
∥∥∥
0
), and

hence this is automatic.

Remark 2. T can be regarded as the (homotopy) coequalizer of the
“kernel pair” of κ. If S andAwere sets, then the (−1)-connectivity
of κ would imply thatA is the 0-truncation of this coequalizer (this
is a standard fact about exact categories, proven in our context in
(Univalent Foundations Program 2013, Chapter 10)). For general
types, higher topos theory suggests that (−1)-connectivity of κwill
imply instead that A is the colimit (a.k.a. “geometric realization”)
of the “simplicial kernel” of κ. The type T is the colimit of the
“1-skeleton” of this simplicial kernel, so it makes sense that it
improves the connectivity of κ by 1. More generally, we might
expect the colimit of the n-skeleton to improve connectivity by n.

4.1 New code

Now we define code : P → P → U by double induction as
follows.

• code(i(b), i(b′)) is now a set-quotient of the type of sequences

(b, p0, x1, q1, y1, p1, x2, q2, y2, p2, . . . , yn, pn, b
′)

where

n : N,

xk : S and yk : S for 0 < k ≤ n,

p0 : Π1B(b, f(κ(x1))) and pn : Π1B(f(κ(yn)), b′) for
n > 0, and p0 : Π1B(b, b′) for n = 0,

pk : Π1B(f(κ(yk)), f(κ(xk+1))) for 1 ≤ k < n,

qk : Π1C(g(κ(xk)), g(κ(yk))) for 1 ≤ k ≤ n.

The quotient is generated by the following paths, as before:

(. . . , qk, yk, reflf(yk), yk, qk+1, . . .) = (. . . , qk � qk+1, . . .)

(. . . , pk, xk, reflg(xk), xk, pk+1, . . .) = (. . . , pk � pk+1, . . .)

and also the following new paths (see Remark 1):

(. . . , pk−1
� apf (w), x′k, qk, . . .)

= (. . . , pk−1, xk, apg(w) � qk, . . .)
(for w : Π1A(κ(xk), κ(x′k)))

(. . . , qk � apg(w), y′k, pk, . . .)

= (. . . , qk, yk, apf (w) � pk, . . .).
(for w : Π1A(κ(yk), κ(y′k)))

We will need below the definition of the case of decode on
such a sequence, which as before concatenates all the paths
pk and qk together with instances of h to give an element of
Π1P (i(f(b)), i(f(b′))), cf. (3). As before, the other three point
cases are nearly identical.
• For a : A and b : B, we require an equivalence

code(i(b), i(f(a))) ' code(i(b), j(g(a))). (4)

Since code is set-valued, by Lemma 1 we may assume that
a = κ(t) for some t : T . Next, we can do induction on t. If

t ≡ `(s) for s : S, then we define (4) as in Section 3:

(. . . , yn, pn, f(κ(s))) 7→ (. . . , yn, pn, s, reflg(κ(s)), g(κ(s)))

and

(. . . , xn, pn, s, reflf(κ(s)), f(κ(s)))←[(. . . , xn, pn, g(κ(s))).

These respect the equivalence relations, and define quasi-
inverses just as before. Now suppose t varies along apms,s′

(w)

for some w : κ(s) = κ(s′); we must show that (4) respects
transporting along apκ(apm(w)). By definition of κ, this es-
sentially boils down to transporting along w itself. By the char-
acterization of transport in path types, what we need to show is
that

w∗(. . . , yn, pn, f(κ(s))) = (. . . , yn, pn � apf (w), f(κ(s′)))

is mapped by (4) to

w∗(. . . , yn, pn, s, reflg(κ(s)), g(κ(s)))

= (. . . , yn, pn, s, reflg(κ(s)) � apg(w), g(κ(s′))).

But this follows directly from the new generators we have
imposed on the set-quotient relation defining code.
• The other three requisite equivalences are defined similarly.
• Finally, since the commutativity (2) is a mere proposition, by

(−1)-connectedness of κ we may assume that a = κ(s) and
a′ = κ(s′), in which case it follows exactly as before.

4.2 Improved Theorem
Theorem 4.1 (Seifert–van Kampen with a set of basepoints). For
all u, v : P there is an equivalence

Π1P (u, v) ' code(u, v).

with code defined as in Section 4.1.

Proof. Basically just like before. To show that decode respects the
new generators of the quotient relation, we use the naturality of h.
And to show that decode respects the equivalences such as (4),
we need to induct on κ and on T in order to decompose those
equivalences into their definitions, but then it becomes again simply
functoriality of f and g. The rest is easy. In particular, no additional
argument is required for encode◦decode, since the goal is to prove
an equality in a set, and so the case of h is trivial.

4.3 Examples
Theorem 4.1 allows us to calculate the fundamental group of a
pushout B tA C even when A is not a set, provided S is a set,
for in that case, each code(u, v) is, by definition, a set-quotient
of a set by a relation. In that respect, it is an improvement over
Theorem 3.1.
Example 4. Suppose S :≡ 1, so that A has a basepoint a :≡
κ(?) and is connected. Then code for loops in the pushout can be
identified with alternating sequences of loops in π1(B, f(a)) and
π1(C, g(a)), modulo an equivalence relation which allows us to
slide elements of π1(A, a) between them (after applying f and g
respectively). Thus, π1(P) can be identified with the amalgamated
free product π1(B) ∗π1(A) π1(C) (the pushout in the category of
groups). This (in the case when B and C are open subspaces of
the pushout P , and A is their intersection) is probably the most
classical version of the Seifert–van Kampen theorem.
Example 5. As a special case of Example 4, suppose additionally
that C :≡ 1, so that P is the cofiber B/A. Then every loop in C
is identified with reflexivity, so the relations on path codes allow
us to collapse all sequences to a single loop in B. The additional
relations require that multiplying on the left, right, or in the middle

6 2016/1/19

by an element in the image of π1(A) is the identity. We can thus
identify π1(B/A) with the quotient of the group π1(B) by the
normal subgroup generated by the image of π1(A).
Example 6. As a further special case of Example 5, let B :≡
S1 ∨ S1, let A :≡ S1, and let f : A → B pick out the composite
loop p � q � p−1 � q−1, where p and q are the generating loops in
the two copies of S1 comprising B. Then P is a presentation of the
torus T 2 (Licata and Brunerie 2015). Thus, π1(T 2) is the quotient
of the free group on two generators (i.e., π1(B)) by the relation
p � q � p−1 � q−1 = 1. This clearly yields the free abelian group on
two generators, which is Z× Z.
Example 7. More generally, any CW complex can be obtained by
repeatedly “coning off” spheres. That is, we start with a set X0 of
points (“0-cells”), which is the “0-skeleton” of the CW complex.
We take the pushout

S1 × S0 f1 //

��

X0

��
1 // X1

for some set S1 of 1-cells and some family f1 of “attaching maps”,
obtaining the “1-skeleton” X1. Then we take the pushout

S2 × S1 f2 //

��

X1

��
1 // X2

for some set S2 of 2-cells and some family f2 of attaching maps,
obtaining the 2-skeleton X2, and so on. The fundamental group
of each pushout can be calculated from the Seifert–van Kampen
theorem: we obtain the group presented by generators derived from
the 1-skeleton, and relations derived from S2 and f2. The pushouts
after this stage do not alter the fundamental group, since (as noted
in Example 3) π1(Sn) is trivial for n > 1.
Example 8. In particular, suppose given any presentation of a group
G = 〈X | R〉, with X a set of generators and R a set of words
in these generators. Let B :≡

∨
X S1 and A :≡

∨
R S1, with

f : A → B sending each copy of S1 to the corresponding word
in the generating loops of B. It follows that π1(P) ∼= G; thus we
have constructed a connected type whose fundamental group is G.
Since any group has a presentation, any group is the fundamental
group of some type. If we 1-truncate such a type, we obtain a
type whose only nontrivial homotopy group is G; this is called
an Eilenberg–Mac Lane space K(G, 1). (Eilenberg–Mac Lane
spaces in homotopy type theory were constructed more explicitly
by (Licata and Finster 2014)).

5. Notes on Mechanization
In contrast to the usual situation in mechanization of mathematics,
many results in homotopy type theory have been proven first using
the aid of a proof assistant, and only “unmechanized” afterwards
(Univalent Foundations Program 2013). However, this is not the
case for our Seifert–van Kampen theorems: they were proven first
informally by the second author and then mechanized by the first
author. Overall, however, the structure of the AGDA proof follows
closely the informal argument, giving further evidence that homo-
topy type theory is suitable for mechanization.

The largest gap between the informal proof and the mech-
anized proof is due to the lack of support of higher-inductive
types. AGDA (like other proof assistants such as COQ (coq) and
LEAN (de Moura, Kong, Avigad, van Doorn, and von Raumer

2015)) was designed for a different, more traditional, variant of
Martin-Löf type theory, without the univalence axiom and higher
inductive types. (More recently, the proof assistant CUBE (Bezem,
Coquand, and Huber 2014) includes these properties more natively,
but at the time of this mechanization it was not mature enough to
use.)

Thus, we have to partially simulate univalence and higher induc-
tive types using axioms and the built-in data types of AGDA. This
results in a system with fewer definitional (computational) rules
than in a type theory such as that of CUBE, so that many conver-
sions need to be manually carried out. However, there is a trick due
to (Licata 2011), which we use, that enables some of the computa-
tion rules to be definitional (those involving point constructors of a
higher inductive type).

In particular, the code in the informal proof which consists of
lists of paths is defined in two steps: four mutually recursive higher-
inductive types for four different combinations of the sides (inA or
in B) of the beginning and ending points of the path list, and then
the final code as the union of these four types. The four higher-
inductive types, even with clever programming tricks, take about
500 lines of AGDA code to simulate. It then takes another 500 lines
to finish the definition of code. This constitutes a major part as the
entire mechanization which takes roughly 1800 lines in total.

Though the current mechanization is already satisfying, we be-
lieve built-in support of higher-inductive types would simplify the
code further. Another possibility is the cubical approach whose po-
tential is already shown in the work of cohomology theory (Cav-
allo).

References
The Coq proof assistant. URL https://coq.inria.fr/.

B. Ahrens, K. Kapulkin, and M. Shulman. Univalent categories and
the Rezk completion. Mathematical Structures in Computer Sci-
ence, 25:1010–1039, 6 2015. ISSN 1469-8072. doi: 10.1017/
S0960129514000486. URL http://journals.cambridge.org/
article_S0960129514000486. arXiv:1303.0584.

S. Awodey and M. A. Warren. Homotopy theoretic models of identity
types. 146(1):45–55, jan 2009. ISSN 0305-0041. doi: 10.1017/
S0305004108001783.

M. Bezem, T. Coquand, and S. Huber. A model of type theory in cu-
bical sets. In 19th International Conference on Types for Proofs and
Programs, volume 26 of Leibniz International Proceedings in Informat-
ics, pages 107–128. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2014. ISBN 978-3-939897-72-9. doi: 10.4230/LIPIcs.TYPES.2013.
107.

E. Cavallo. The Mayer-Vietoris sequence in HoTT. In Oxford Quantum
Video. The QMAC and Clay Mathematics Institute and The EPSRC.
URL https://youtu.be/6QCFV4op1Uo.

L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The
Lean theorem prover (system description). In Automated Deduction -
CADE-25, volume 9195 of Lecture Notes in Computer Science, pages
378–388. Springer, 2015. ISBN 978-3-319-21401-6. doi: 10.1007/
978-3-319-21401-6 26.

Favonia. BlakersMassey.agda. https://github.com/HoTT/
HoTT-Agda/blob/1.0/Homotopy/BlakersMassey.agda, April
2013.

N. Gambino and R. Garner. The identity type weak factorisation system.
409(1):94–109, 2008. doi: 10.1016/j.tcs.2008.08.030.

M. Hofmann and T. Streicher. The groupoid interpretation of type theory.
In Twenty-five years of constructive type theory, volume 36 of Oxford
Logic Guides, pages 83–111. Oxford University Press, 1998. ISBN 978-
0-19-850127-5.

C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky. The simplicial model of
univalent foundations, 2012.

7 2016/1/19

D. Licata and E. Finster. Eilenberg–MacLane spaces in homotopy type
theory. LICS, 2014. http://dlicata.web.wesleyan.edu/pubs/
lf14em/lf14em.pdf.

D. R. Licata. Running circles around (in) your proof
assistant; or, quotients that compute, 2011. URL
http://homotopytypetheory.org/2011/04/23/
running-circles-around-in-your-proof-assistant/.

D. R. Licata and G. Brunerie. πn(Sn) in homotopy type theory.
CPP, 2013. http://dlicata.web.wesleyan.edu/pubs/lb13cpp/
lb13cpp.pdf.

D. R. Licata and G. Brunerie. A cubical approach to synthetic homotopy
theory. LICS, 2015. http://dlicata.web.wesleyan.edu/pubs/
lb15cubicalsynth/lb15cubicalsynth.pdf.

D. R. Licata and M. Shulman. Calculating the fundamental group of the
circle in homotopy type theory. In LICS’13, 2013.

C. Rezk. Proof of the Blakers–Massey theorem. http://www.math.
uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf,
2014.

T. Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations for Mathematics. Institute for Advanced Study, git commit
hash g662cdd8 edition, 2013. URL http://homotopytypetheory.
org/book.

B. van den Berg and R. Garner. Topological and simplicial models of
identity types. 13(1):3:1–3:44, 2012. ISSN 1529-3785. doi: 10.1145/
2071368.2071371.

M. A. Warren. Homotopy theoretic aspects of constructive type theory. PhD
thesis, 2008. URL http://mawarren.net/papers/phd.pdf.

8 2016/1/19

